Supporting Information

Untemplated Resveratrol-Mediated Polydopamine Nanocapsule Formation

Devang R. Amin ${ }^{1,2}$, Cody J. Higginson ${ }^{1}$, Angie Korpusik ${ }^{1}$, Alyse R. Gonthier ${ }^{1}$, Phillip B. Messersmith ${ }^{1,3, *}$
${ }^{1}$ Departments of Bioengineering and Materials Science and Engineering University of California, Berkeley
210 Hearst Mining Building, Berkeley, CA 94720 United States
${ }^{2}$ Department of Biomedical Engineering
Northwestern University
2145 Sheridan Rd, Evanston, IL 60208 United States
${ }^{3}$ Materials Science Division
Lawrence Berkeley National Laboratory
Berkeley, CA 94720 United States

[^0]

Figure S1: Hydrodynamic diameters of RV@PDA in solutions containing $0.125 \mathrm{mg} / \mathrm{mL}$ RV and 0.25 $\mathrm{mg} / \mathrm{mL}$ DA after 7 h and 24 h of NP growth at various water:ethanol volume ratios. (Data collected from two independently prepared samples at each condition.)

Figure S2: Visual and spectroscopic evaluation of RV and DA control solutions after 24h. (a) UV-Vis absorbance spectra of $0.25 \mathrm{mg} / \mathrm{mL}$ RV in 5:1 EtOH:water with or without pH 8.5 buffer and 0.125 $\mathrm{mg} / \mathrm{mL}$ RV $+0.125 \mathrm{mg} / \mathrm{mL}$ DA in 5:1 EtOH:water after 24 h . Spectra of freshly prepared $0.125 \mathrm{mg} / \mathrm{mL}$ RV and $0.25 \mathrm{mg} / \mathrm{mL}$ DA solutions in 5:1 EtOH:water are provided for reference. All solutions diluted 8 before obtaining spectra. (b) Spectra in (a) within the $250 \mathrm{~nm}-400 \mathrm{~nm}$ wavelength range. (c) Visual appearance of $5: 1 \mathrm{EtOH}$:water without buffer (1), $250 \mu \mathrm{~g} / \mathrm{mL}$ RV in 5:1 EtOH:water without buffer (2), $250 \mu \mathrm{~g} / \mathrm{mL}$ RV in 5:1 EtOH:water with pH 8.5 buffer (3), and $250 \mu \mathrm{~g} / \mathrm{mL} \mathrm{DA}+125 \mu \mathrm{~g} / \mathrm{mL}$ RV in 5:1 EtOH:water without buffer.

Figure S3: UV-Vis absorbance spectroscopy of PDA and RV@PDA. (a) Effect of washing nanomaterial product: spectra of pure PDA and RV@PDA before and after a third round of centrifugation. (b-c) Analysis of supernatants separated from pure PDA and RV@PDA product by centrifugation: (b) Spectra of pure RV@PDA prepared from 1:1 RV:DA in growth solution and the corresponding supernatant. (c) Spectra of pure PDA and the corresponding supernatant.

Figure S4: Extinction coefficients of PDA and RV@PDA from $400 \mathrm{~nm}-977 \mathrm{~nm}$. RV@PDA was prepared with either a $0.5: 1$ or 1:1 RV:DA mass ratio. (a) Extinction coefficients plotted vs. wavelength plotted with a linear y-axis. (b) Extinction coefficients vs. wavelength plotted with a logarithmic scale. Error bars represent the propagation of uncertainty in particle concentration.

Wavelength (nm)	PDA	RV@PDA (0.5:1 RV:DA)	RV@PDA (1:1 RV:DA)
$\mathbf{4 0 0}$	$1.98 \times 10^{-2} \pm 4.74 \times 10^{-4}$	$1.81 \times 10^{-2} \pm 7.17 \times 10^{-4}$	$4.88 \times 10^{-3} \pm 5.18 \times 10^{-4}$
$\mathbf{5 0 0}$	$1.35 \times 10^{-2} \pm 3.23 \times 10^{-4}$	$1.02 \times 10^{-2} \pm 4.03 \times 10^{-4}$	$2.51 \times 10^{-3} \pm 2.66 \times 10^{-4}$
$\mathbf{6 0 0}$	$9.47 \times 10^{-3} \pm 2.27 \times 10^{-4}$	$7.00 \times 10^{-3} \pm 2.77 \times 10^{-4}$	$1.65 \times 10^{-3} \pm 1.75 \times 10^{-4}$
$\mathbf{7 0 0}$	$6.29 \times 10^{-3} \pm 1.50 \times 10^{-4}$	$4.49 \times 10^{-3} \pm 1.78 \times 10^{-4}$	$1.07 \times 10^{-3} \pm 1.14 \times 10^{-4}$
$\mathbf{8 0 0}$	$3.82 \times 10^{-3} \pm 9.14 \times 10^{-5}$	$2.50 \times 10^{-3} \pm 9.90 \times 10^{-5}$	$5.31 \times 10^{-4} \pm 5.63 \times 10^{-5}$
$\mathbf{9 0 0}$	$2.34 \times 10^{-3} \pm 5.61 \times 10^{-5}$	$1.32 \times 10^{-3} \pm 5.24 \times 10^{-5}$	$2.92 \times 10^{-4} \pm 3.09 \times 10^{-5}$
$\mathbf{9 7 7}$	$1.61 \times 10^{-3} \pm 3.85 \times 10^{-5}$	$8.03 \times 10^{-4} \pm 3.18 \times 10^{-5}$	$1.94 \times 10^{-4} \pm 2.06 \times 10^{-5}$

Table S1: Extinction coefficients (mean \pm SD) plotted in Figure S3 for PDA and RV@PDA. Units are $\mathrm{cm}^{-1} *(\mu \mathrm{~g} / \mathrm{mL})^{-1}$.

Figure S5: Analysis of high resolution XPS scans of PDA and RV@PDA nanomaterials. (a-c) C 1s peaks of PDA NPs ($0: 1 \mathrm{RV}: D A$) (a), RV@PDA with $0.5: 1$ RV:DA (b), and RV@PDA with 1:1 RV:DA (c). The deconvolution of this peak is shown, with energies corresponding to $\pi-\pi^{*}$ transition, $\mathrm{C}=\mathrm{O}$ bonds, $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ bonds, and $\mathrm{CH}_{\mathrm{x}}, \mathrm{C}-\mathrm{NH}_{2}$, and $\mathrm{C}=\mathrm{C}$ bonds labeled. (d-f) O 1s peaks of PDA (d), RV@PDA with $0.5: 1 \mathrm{RV}: \mathrm{DA}(\mathbf{e})$, and RV@PDA with 1:1 RV:DA (f). Deconvolution into O-C and O=C bonding components is shown. (g) at\% O calculated from analysis of high resolution O 1 s scans relative to total C , N , and O content. (h) C/O atomic ratios calculated from high resolution C 1 s and O 1 s scans. Theoretical values of at \% O and C/O ratio for DA (dashed lines) and RV (dotted lines) are shown for reference (g-h).

Figure S6: HPLC chromatographs of supernatant separated from RV@PDA nanomaterials (1:1 RV:DA) following 24h synthesis. Readouts from three UV-Vis detection wavelengths ($286 \mathrm{~nm}, 304 \mathrm{~nm}$, and 425 nm) are shown with the method for HPLC (\%A: \% ultrapure water $+0.1 \%$ TFA). The DA-RV adduct was identified by absorbance at 425 nm and elutes at 22.7 min (\#). This compound was recovered for further analysis by ESI-MS, NMR, ATR-FTIR, and UV-Vis spectroscopy.

Figure S7: UV-Vis absorbance spectra of the dopamine-resveratrol adduct after purification by semiprep HPLC. The two curves shown correspond to product isolated from adduct formation in two reaction conditions ($0.5: 1 \mathrm{RV}: \mathrm{DA}$ and 1:1 RV:DA mass ratios). Both curves have absorbance maxima at $\lambda_{\text {abs }}=$ 309 nm and $\lambda_{\text {abs }}=398 \mathrm{~nm}$.

Figure S8: Fluorescence of pure dopamine-resveratrol adduct under long wave UV irradiation at 1 $\mathrm{mg} / \mathrm{mL}$ in DMSO-d6.

Figure S9: Optical properties of various resveratrol-dopamine adduct solutions at $0.02 \mathrm{mg} / \mathrm{mL}$. Water blank is for visual reference. Samples were prepared by dilution of $1 \mathrm{mg} / \mathrm{mL}$ stock in DMSO- d_{6} into the appropriate diluent. (a) Visible light image of solutions, (b) samples under longwave UV illumination. Buffer compositions were 0.1 M acetate (pH 5), 1 x PBS (pH 7.4), 0.1 M bicine (pH 8.5), and 0.1 M sodium carbonate (pH 10).

Figure S10: Absorbance and fluorescence spectra of $0.2 \mathrm{mg} / \mathrm{mL}$ dopamine-resveratrol adduct solutions in unbuffered DMSO and DI water (also pictured in Figure S9). Solutions were prepared from the trifluoroacetate salt of the adduct, isolated by semi-preparative HPLC in the presence of trifluoroacetic acid. Dotted lines represent absorbance (left axis), and solid lines represent emission (right axis, excitation at 390 nm).

${ }^{1} \mathrm{H}$ NMR ($900 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HO}-\mathrm{C} 11), 9.81$ (s , $1 \mathrm{H}, \mathrm{HO}-\mathrm{C} 22$), 9.41 (bs, 2H, NH2•TFA), 7.85 (bs, 1H, HO-C4), 7.53 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 20), 7.21(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 17)$, 7.18 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 18), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 21)$, $6.80(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 10), 6.38(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 12), 6.36$ (s, 1H, H6), 3.28 (dd, $J=14.0, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2 \mathrm{a}), 3.12$ (app td, $J=13.7, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2 \mathrm{~b}), 2.70(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 16 \mathrm{a})$, 2.61 (dd, $J=11.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 16 \mathrm{~b}), 2.16$ (app td, $J=13.4,5.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 1 \mathrm{a}), 1.82(\operatorname{app} \mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1 \mathrm{~b}) .{ }^{13} \mathrm{C}$ NMR (226 $\mathrm{MHz}, \mathrm{DMSO}) \delta 188.61$ (C5), 166.09 (C13), 165.20 (C11), 164.14 (C7), 158.37 (C22), 139.91 (C9), 134.07 (C18), 128.89 (C20), 127.20 (C19), 120.09 (H17), 115.74 (C21), 113.48 (C6), 110.29 (C8), 107.66 (C10), 96.66 (C12), 86.79 (C4), 82.77 (C15), 43.48 (C16), 36.44 (C2), 29.13 (C1).

Figure S11: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of isolated DA-RV adduct.

Figure S12: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of isolated DA-RV adduct.

Figure S13: ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HSQC spectrum of isolated DA-RV adduct. Spectrum supports the presence of three methylene groups (red dashed boxes). Correlation of H6 and C6 is indicated by the blue dashed circle.

Figure S14: ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC spectrum of isolated DA-RV adduct. Correlation between carbonyl C5 and proton H16" is indicated by the red dashed box.

Figure S15: ATR-FTIR spectrum of solid HPLC-purified DA-RV adduct (256 scans).

Figure S16: Plausible mechanism for formation of azamonardine DA-RV adduct.

[^0]: * Corresponding author: email: philm@berkeley.edu; ph: 510-643-9631

