Supporting Information

Iridium-Catalyzed Asymmetric Hydrogenation of 4,6-Disubstituted 2-Hydroxypyrimidines

Table of Contents

1. General and Materials. S1
2. Synthesis of Pyrimidin-2-ol Derivatves S1
3. General Procedure for Asymmetric Hydrogenation S2-7
4. Asymmetric Hydrogenation at Gram Scale S7
5. Mechanistic Investigation. S8-9
6. Product Elaboration. S9-10
7. References S10
8. Copy of NMR and HPLC. S11-79

1. General and Materials

General: All reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques, unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at room temperature in $\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ on 400 MHz instrument with tetramethylsilane (TMS) as internal standard. Enantiomeric excess was determined by HPLC analysis, using chiral column described below in detail. Optical rotations were measured by polarimeter. Flash column chromatography was performed on silica gel (200-300 mesh). All reactions were monitored by TLC analysis or NMR analysis.

Materials: Commercially available reagents were used throughout without further purification. The solvents for asymmetric hydrogenation reaction were purchased without further purification.

2. Synthesis of Pyrimidin-2-ol Derivatives

4,6-Disubstituted pyrimidin-2-ols can be conveniently synthesized according to the known literature procedure. ${ }^{1}$ The $\mathbf{1 a},{ }^{1 \mathrm{a}} \mathbf{1 b},{ }^{\text {If }} \mathbf{1} \mathbf{c},{ }^{1 \mathrm{~b}}{ }^{\mathbf{1} \mathbf{d} \mathbf{- 1 h},{ }^{1 \mathrm{f}}} \mathbf{1} \mathbf{i - 1} \mathbf{j},{ }^{1 \mathrm{c}} \mathbf{1} \mathbf{k},{ }^{\text {1d }} \mathbf{1 1},{ }^{\text {1c }} \mathbf{1} \mathbf{m}^{\text {le }}$ and $\mathbf{1 n} \mathbf{- 1}{ }^{1 \mathrm{f}}$ are all known compounds. The $4,5,6$-trisubstituted pyrimidin-2-ols can be synthesized according to the known literature procedure. ${ }^{2}$ The $\mathbf{3 a},{ }^{2} \mathbf{3 c}-\mathbf{3 d}{ }^{2}$ are the known compounds.

General procedure: Copper(II) trifluoromethanesulfonate ($0.271 \mathrm{~g}, 5.0 \mathrm{~mol} \%$) was added into a solution of arylaldehyde (15.0 mmol), urea ($1.08 \mathrm{~g}, 18.0 \mathrm{mmol}$), ethyl 3-oxo-3-arylpropanoate $(15.0 \mathrm{mmol})$ in 40 mL ethanol. After refluxing for 24 h , the reaction mixture was then cooled to 0 ${ }^{\circ} \mathrm{C}$, the precipitation was collected by filtration and dried. The resulting white powder was triturated with cooled ethanol to afford $\mathbf{S}-\mathbf{1}$ as a pale yellow powder.

A solution of the above S-1 (3.0 mmol), copper(II) chloride dihydrate ($5.1 \mathrm{mg}, 1.0 \mathrm{~mol} \%$), potassium carbonate ($41 \mathrm{mg}, 10 \mathrm{~mol} \%$) in dichloromethane $(6.0 \mathrm{~mL})$ was heated at reflux for 30 min , and then $65 \mathrm{wt} \%$ tert-butyl hydroperoxide ($0.832 \mathrm{~g}, 6.0 \mathrm{mmol}$) was added dropwise over a period of 10 minutes. The resulting mixture was stirred at $35^{\circ} \mathrm{C}$ for 24 h . The saturated aqueous sodium thiosulfate (10 mL) was added to destroy tert-butyl hydroperoxide, then, the mixture was extracted with dichloromethane. The combined organic layer was dried over anhydrous sodium sulfate, concentrated in vacuo. The crude product was purified by flash column chromategraphy to afford the products 3 .

Ethyl 2-hydroxy-4,6-di(m-tolyl)pyrimidine-5-carboxylate (3b): 1.104 g , 55% yield (2 steps), white solid, mp: $190-191{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.51$ (dichloromethane/methanol $=20 / 1$), new compound; ${ }^{1} \mathrm{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.04(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 8 \mathrm{H}), 3.93(\mathrm{q}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,157.2,137.9,133.7,131.4,128.2,128.1,124.6$, 111.4, 61.2, 20.9, 12.9; HRMS (ESI) m/z Calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 349.1547$, found 349.1553.

3. General Procedure for Asymmetric Hydrogenation

In a nitrogen-filled glove box, a mixture of $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(2.0 \mathrm{mg}, 0.003 \mathrm{mmol})$ and ligand (S, S)-f-Binaphane ($5.3 \mathrm{mg}, 0.0066 \mathrm{mmol}$) in isopropanol $(1.0 \mathrm{~mL})$ was stirred at room temperature for 10 min , then substrates $1(0.3 \mathrm{mmol})$ and TCCA $(7.0 \mathrm{mg}, 0.03 \mathrm{mmol})$ together with ethanol $(1.0 \mathrm{~mL})$ and isopropanol $(1.0 \mathrm{~mL})$ were added to the above catalyst solution. The hydrogenation was performed at $40^{\circ} \mathrm{C}$ under 800 psi of hydrogen for 24 h . After carefully releasing the hydrogen, excess solid sodium bicarbonate was added. The resulted mixture was stirred for 30 min , then filtrated off and concentrated in vacuo. Further purification was performed by a silica gel chromatography eluted with ethyl acetate/methanol to give the desired chiral product 2 . The enantiomeric excesses were determined by chiral HPLC for the corresponding benzamides.
(4R,6R)-(+)-4-Methyl-6-phenyltetrahydropyrimidin-2(1H)-one (2a): 35 mg (0.2 mmol scale), 92% yield, pale yellow solid, known compound, $\mathrm{R}_{\mathrm{f}}=0.30$ (dichloromethane/methanol $=$
 $20: 1), 95 \%$ ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+44.1(c 0.70, \mathrm{MeOH})\left[\right.$ lit. ${ }^{2}$: for $(4 R, 6 R)$-isomer $[\alpha]^{20}{ }_{\mathrm{D}}$ $=+51.1(\mathrm{c} 0.28, \mathrm{MeOH})$ for 84% ee]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ $7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.47-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.57$ $(\mathrm{m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 158.9,143.9,130.1,129.2,127.6,56.8,47.8,41.7,22.9$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, n-Hexane $/ \mathrm{i}-\mathrm{PrOH}=75 / 25$, detector: 254 nm , flow rate: $0.80 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=14.9 \mathrm{~min}$ (maj), $\mathrm{t}_{2}=16.8 \mathrm{~min}$.
(+)-4-Methyl-6-m-tolyltetrahydropyrimidin-2(1H)-one (2b): $56 \mathrm{mg}, 92 \%$ yield, white solid, new compound, mp: $143-144{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.35$ (dichloromethane/methanol $=15: 1$), 95% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=$
 +62.1 (c 0.68, MeOH); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.23(\mathrm{~m}, 1 \mathrm{H})$, $7.16-7.11(\mathrm{~m}, 3 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.50-4.47(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.63$ (m, 1H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.9,141.9,138.7,128.9$, $128.8,126.8,123.2,55.6,46.5,40.2,21.9,21.4$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, n-Hexane $/ \mathrm{i}-\mathrm{PrOH}=75 / 25$, detector: 254 nm , flow rate: $0.80 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=12.2 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=15.3 \mathrm{~min}$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$205.1335, found 205.1335.
(+)-4-Methyl-6-p-tolyltetrahydropyrimidin-2(1H)-one (2c): $54 \mathrm{mg}, 89 \%$ yield, white solid, new compound, mp: $88-89{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.35$ (dichloromethane/methanol $=15: 1$); 94\% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=$
 +63.1 (c 0.74, MeOH); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.28-7.20(\mathrm{~m}, 4 \mathrm{H})$, $5.06(\mathrm{~d}, \mathrm{~J}=29.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.53-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H}), 2.05-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 156.8,139.3,137.8,129.4,126.1,55.3,46.5$, 40.2, 21.7, 20.8; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, n-Hexane $/ \mathrm{i}-\mathrm{PrOH}=75 / 25$, detector: 254 nm , flow rate: $0.80 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=$ $12.9 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=15.1 \mathrm{~min}$; HRMS (ESI) m/z Calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$205.1335, found 205.1335.
(+)-4-(3,5-Dimethylphenyl)-6-methyltetrahydropyrimidin-2(1H)-one (2d): $58 \mathrm{mg}, 89 \%$ yield, white solid, new compound, mp : $83-84{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.36$ (dichloromethane/methanol $=15: 1$),
 86% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+41.8(c 0.94, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.95-6.90 (m, 3H), $4.71(\mathrm{~d}, ~ J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.46-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.63$ $(\mathrm{m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 2.04(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2,141.3,138.1,129.3$, 123.4, 55.0, 46.0, 39.6, 21.4, 20.7; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, $n-\mathrm{Hexane} / i-\mathrm{PrOH}=75 / 25$, detector: 254 nm , flow rate: $0.80 \mathrm{~mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=8.6 \mathrm{~min}$ (maj), $\mathrm{t}_{2}=14.2 \mathrm{~min}$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]+219.1492$, found 219.1491.
(+)-4-(2-Methoxyphenyl)-6-methyltetrahydropyrimidin-2(1H)-one (2e): $59 \mathrm{mg}, 89 \%$ yield, pale oil, new compound, $\mathrm{R}_{f}=0.30$ (dichloromethane/methanol $=15: 1$), $90 \% \mathrm{ee},[\alpha]^{20}{ }_{\mathrm{D}}=+87.6(c$
 $0.78, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H})$, 4.97-4.93 (m, 1H), 4.88 (s, 1H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.12$ (m, 1H), 1.53-1.44 (m, 1H), $1.21(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.5,158.3,131.8,130.6,127.7,122.9,112.4,57.3,50.5,48.4,39.4,23.7$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (IC column, n-Hexane $/ \mathrm{i}-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=21.9 \mathrm{~min}$ (maj), $\mathrm{t}_{2}=29.2 \mathrm{~min} ;$ HRMS (ESI) m / z Calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$221.1285, found 221.1286.
(-)-4-(3-Methoxyphenyl)-6-methyltetrahydropyrimidin-2(1H)-one (2f): $58 \mathrm{mg}, 88 \%$ yield, white solid, new compound, mp: $184-185{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.26$ (dichloromethane/methanol $=15: 1$), 92%
 ee, $[\alpha]^{20}{ }_{\mathrm{D}}=-25.8(c \quad 0.72, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.80(\mathrm{~m}, 3 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.51-4.48$ $(\mathrm{m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{q}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 160.1, 157.1, 143.6, 129.9, 118.4, 113.7, 111.4, 55.6, 55.3, 46.5, 40.1, 21.8; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, n-Hexane $/ \mathrm{i}-\mathrm{PrOH}=$ $75 / 25$, detector: 254 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=23.6 \mathrm{~min}, \mathrm{t}_{2}=25.6 \mathrm{~min}(\mathrm{maj})$; HRMS (ESI) m/z Calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$221.1285, found 221.1286.
(+)-4-(4-Methoxyphenyl)-6-methyltetrahydropyrimidin-2(1H)-one (2g): $62 \mathrm{mg}, 94 \%$ yield, white solid, new compound, mp: $148-149{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.26$ (dichloromethane/methanol $=15: 1$), 93%
 ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+49.3(c 0.86, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H})$, 4.48-4.44 (m, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 1 \mathrm{H})$, $1.58-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.9,156.5,133.4,126.8,113.7,54.8,54.5,46.0,39.7,21.3$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, n-Hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=16.0 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=20.0 \mathrm{~min}$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$221.1285, found 221.1287.
(+)-4-(3,4-Dimethoxyphenyl)-6-methyltetrahydropyrimidin-2(1H)-one (2h): $67 \mathrm{mg}, 89 \%$ yield, pale oil, new compound, $\mathrm{R}_{f}=0.18$ (dichloromethane/methanol $=15: 1$), $90 \% \mathrm{ee},[\alpha]_{\mathrm{D}}^{20}=$ $+46.8(c 1.16, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.88-6.80(\mathrm{~m}, 3 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}$, $1 \mathrm{H}), 4.49-4.46(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 1 \mathrm{H})$,
1.64-1.57 (m, 1H), $1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,149.4,148.8$,
 134.4, 118.4, 111.2, 108.8, 56.0, 55.4, 46.5, 40.3, 21.8; Enantiomeric excess was determined by HPLC analysis for corresponding benzamide (OD-H column, n-Hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 230 nm , flow rate: $0.7 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=23.8 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=29.7 \mathrm{~min} ; \mathrm{HRMS}(E S I) \mathrm{m} / \mathrm{z}$ Calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$251.1390, found 251.1394.
(+)-4-(4-Chlorophenyl)-6-methyltetrahydropyrimidin-2(1H)-one (2i): $63 \mathrm{mg}, 94 \%$ yield, yellowish solid, new compound, mp: 257-258 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.35$ (dichloromethane/methanol $=15: 1$),
 93% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+49.3(c 0.96, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ $7.39-7.33(\mathrm{~m}, 4 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 4.54-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.61(\mathrm{~m}, 1 \mathrm{H})$, 2.06-2.03 (m, 1H), 1.59-1.50(m, 1H), $1.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 156.9,141.0,133.4,128.8,127.7,54.9,46.4,40.0$, 21.6; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, n-Hexane $/ i-\mathrm{PrOH}=75 / 25$, detector: 230 nm , flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=14.0 \mathrm{~min}$ (maj), $\mathrm{t}_{2}=18.2 \mathrm{~min}$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+} 225.0789$, found 225.0785 .
(+)-4-(3,4-Dichlorophenyl)-6-methyltetrahydropyrimidin-2(1H)-one (2j): $70 \mathrm{mg}, 90 \%$ yield, pale oil, new compound, $\mathrm{R}_{f}=0.38$ (dichloromethane/methanol $=15: 1$), $91 \% \mathrm{ee},[\alpha]^{20}{ }_{\mathrm{D}}=+46.1(c$
 $0.70, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 4.55-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.55(\mathrm{~m}$, $1 \mathrm{H}), 2.12-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 157.3,142.9,132.6,131.4,130.7,128.3,125.8$, 54.4, 46.2, 39.9, 21.4; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, n-Hexane $/ i-\mathrm{PrOH}=75 / 25$, detector: 230 nm , flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, $30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=14.5 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=20.4 \mathrm{~min} ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OCl}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 259.0399, found 259.0400.
(+)-4-(4-Fluorophenyl)-6-methyltetrahydropyrimidin-2(1H)-one (2k): $56 \mathrm{mg}, 91 \%$ yield, white solid, new compound, $\mathrm{mp}: 145-146{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.30$ (dichloromethane $/$ methanol $=15: 1$), 96%
 ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+69.0(c \quad 0.80, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 7.39-7.36 (m, 2H), 7.11-7.07 (m, 2H), $5.39(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.52$ $(\mathrm{m}, 1 \mathrm{H}), 3.71-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 162.3(\mathrm{~d}, J=245.4 \mathrm{~Hz})$, $156.9,138.2(\mathrm{~d}, ~ J=3.0 \mathrm{~Hz}), 127.9(\mathrm{~d}, ~ J=8.2 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 54.9,46.4,40.2,21.6 ;$ ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta-115.2$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, n-Hexane $/ \mathrm{i}-\mathrm{PrOH}=75 / 25$, detector: 230 nm , flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=12.4 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=17.5 \mathrm{~min}$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OF}[\mathrm{M}+\mathrm{H}]^{+}$209.1085, found 209.1085.
(-)-4-Methyl-6-(4-(trifluoromethyl)phenyl)tetrahydropyrimidin-2(1H)-one (2l): 66 mg , 86% yield, yellowish solid, new compound, mp: 191-192 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.33$ (dichloromethane/
 methanol $=20: 1$), 83% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=-35.4(c 0.76, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{~s}$, $1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.64-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.96(\mathrm{~m}$, $1 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 157.5,146.7,129.7(\mathrm{q}, J=32.4 \mathrm{~Hz}), 126.6,125.6(\mathrm{q}, J=3.8$
$\mathrm{Hz}), 124.2(\mathrm{q}, J=272 \mathrm{~Hz}) 55.0,46.3,40.1,21.4 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta-62.8$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, n-Hexane $/ \mathrm{i}$ - $\mathrm{PrOH}=75 / 25$, detector: 254 nm , flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=13.3 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}$ $=15.8 \mathrm{~min}$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 259.1053$, found 259.1052 .
(+)-4-Ethyl-6-phenyltetrahydropyrimidin-2(1H)-one (2m): $55 \mathrm{mg}, 90 \%$ yield, pale oil, new compound, $\mathrm{R}_{f}=0.38$ (dichloromethane/methanol $=15: 1$), 96% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+50.6(c 0.72, \mathrm{MeOH})$;
 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H})$, 4.53-4.49 (m, 1H), 3.52-3.42(m, 1H), 2.14-2.04 (m, 1H), 1.57-1.51 (m, 3H), $0.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.4,142.1,128.9$, 128.1, 126.1, 55.5, 52.2, 37.8, 28.9, 9.5; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, n-Hexane $/ i-\mathrm{PrOH}=75 / 25$, detector: 230 nm , flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, 3{ }^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=12.3 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=15.0 \mathrm{~min}$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$205.1335, found 205.1336.
(+)-4-Isopropyl-6-phenyltetrahydropyrimidin-2(1H)-one (2n): $58 \mathrm{mg}, 89 \%$ yield, white solid, new compound, mp: 183-184 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.35$ (dichloromethane/methanol $=15: 1$), 83% ee,
 $[\alpha]^{20}{ }_{\mathrm{D}}=+13.3(c 0.52, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.30(\mathrm{~m}$, $5 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.54-4.46(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.33(\mathrm{~m}, 1 \mathrm{H})$, $2.02-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.93(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.4,142.9,129.7,129.0,127.0,57.2,56.3$, 35.7, 33.1, 19.0, 18.5; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, $n-H e x a n e / i-\mathrm{PrOH}=90 / 10$, detector: 254 nm , flow rate: $0.7 \mathrm{~mL} / \mathrm{min}$, $30{ }^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=17.6 \mathrm{~min}, \mathrm{t}_{2}=19.2 \mathrm{~min}(\mathrm{maj}) ;$ HRMS (ESI) m / z Calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 219.1492, found 219.1496.
(-)-4-Cyclohexyl-6-methyltetrahydropyrimidin-2(1H)-one (20): $48 \mathrm{mg}, 81 \%$ yield, white solid, new compound, mp: $157-158^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.30$ (ethyl acetate/methanol $=20: 1$), 86% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=$
 $-0.6(c 0.86, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H})$, $3.53-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.18(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 4 \mathrm{H})$, $1.18(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-0.94(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 157.3, 55.6, 46.2, 42.4, 33.5, 28.6, 28.3, 26.4, 26.1, 26.0, 22.0; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, Hexanes $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $0.7 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=7.0 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=$ 9.9 min ; HRMS (ESI) m / z Calculated for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$197.1648, found 197.1652.
(+)-4-(Furan-2-yl)-6-methyltetrahydropyrimidin-2(1H)-one (2p): $49 \mathrm{mg}, 91 \%$ yield, pale yellow solid, new compound, mp: $159-160{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.20$ (ethyl acetate/methanol $=20: 1$), 83% ee,
 $[\alpha]^{20}{ }_{\mathrm{D}}=+6.4(c \quad 0.52, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.33(\mathrm{~m}$, $1 \mathrm{H}), 6.37-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.29-6.23(\mathrm{~m}, 1 \mathrm{H}), 5.71-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.52-5.40(\mathrm{~m}$, $1 \mathrm{H}), 4.67-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.78-1.69 (m, 1H), $1.24(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $157.0,153.8,142.2,110.4,105.6,48.8,46.0,36.0,21.7$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H column, $n-H e x a n e / i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $0.7 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=12.0 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=13.8 \mathrm{~min} ;$ HRMS (ESI) m / z Calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$181.0972, found 181.0971 .

General procedure for asymmetric hydrogenation of 4,5,6-trisubstituted pyrimidin-2-ols:

In a nitrogen-filled glove box, a mixture of $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(2.0 \mathrm{mg}, 0.003 \mathrm{mmol})$ and (S, S) -f-Binaphane ($5.3 \mathrm{mg}, 0.0066 \mathrm{mmol}$) in isppropanol $(1.0 \mathrm{~mL})$ was stirred at room temperature for 10 min , then substrates $3(0.3 \mathrm{mmol})$ and TCCA $(7.0 \mathrm{mg}, 0.03 \mathrm{mmol})$ together with isppropanol $(1.0 \mathrm{~mL})$ and ethanol $(1.0 \mathrm{~mL})$ were added to the mixture. The hydrogenation was performed at $40^{\circ} \mathrm{C}$ under 800 psi of hydrogen for 48 h . After carefully releasing the hydrogen, excess solid sodium bicarbonate was added. The resulted mixture was stirred for 30 min , then filtrated off and concentrated in vacuo. Further purification was performed by a silica gel column eluted with ethyl acetate/methanol to give the desired chiral product 4.
(+)-Ethyl 2-oxo-4,6-diphenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4a): $86 \mathrm{mg}, 89 \%$ yield, white solid, known compound, $\mathrm{R}_{f}=0.80$ (ethyl acetate), 68% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+10.5$ (c 0.98,
 $\mathrm{MeOH}),\left[\mathrm{Lit.}^{2}[\alpha]^{20}{ }_{\mathrm{D}}=-31.1(c 0.44, \mathrm{MeOH})\right.$ for 97% ee]; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.27(\mathrm{~m}, 10 \mathrm{H}), 6.99(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H})$, $5.50(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.78(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,152.5,146.8,143.4,135.1,129.6,128.9$, 128.3, 128.1, 128.0, 126.6, 102.5, 60.1, 56.1, 13.5; Enantiomeric excess was determined by HPLC (AD-H column, n-Hexane $/ i-\mathrm{PrOH}=80 / 20$, detector: 254 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$) $\mathrm{t}_{1}=14.4 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=17.7 \mathrm{~min}$.
(+)-Ethyl 2-oxo-4,6-dim-tolyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4b): $95 \mathrm{mg}, \mathbf{9 0 \%}$ yield, white solid, new compound, mp: $196-197{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.70$ (ethyl acetate), $83 \% \mathrm{ee},[\alpha]^{20}{ }_{\mathrm{D}}=$
 +17.4 (c 1.34, MeOH); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}$, $1 \mathrm{H}), 5.47(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.81(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 0.84(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,152.3,146.7$, $143.3,138.5,138.1,135.1,130.3,128.9,128.8,128.5,128.2,127.4$, $125.0,123.7,102.5,60.0,56.2,21.6,21.3,13.5$; Enantiomeric excess was determined by HPLC (AD-H column, n-Hexane $/ i-\mathrm{PrOH}=80 / 20$, detector: 254 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$) t_{1} $=12.1 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=15.2 \mathrm{~min}$; HRMS (ESI) m/z Calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 351.1703$, found 351.1705 .
(+)-Ethyl 2-oxo-4,6-dip-tolyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4c): $94 \mathrm{mg}, 90 \%$ yield, white solid, known compound, $\mathrm{R}_{f}=0.70$ (ethyl acetate), 81% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+32.3$ (c 0.90,
 $\mathrm{MeOH}),\left[\mathrm{Lit}^{2}{ }^{2}[\alpha]^{20}{ }_{\mathrm{D}}=-31.9(c 0.26, \mathrm{MeOH})\right.$ for 93% ee]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}$, $2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,153.1,147.2,140.7,139.6,137.6$, $132.1,129.5,128.9,128.0,126.5,102.1,60.0,55.5,21.4,21.2,13.7$; Enantiomeric excess was determined by HPLC (AD-H column, n-Hexane $/ i-\mathrm{PrOH}=80 / 20$, detector: 254 nm , flow rate: 0.70 $\left.\mathrm{mL} / \mathrm{min}, 30^{\circ} \mathrm{C}\right) \mathrm{t}_{1}=16.9 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=18.4 \mathrm{~min}$.
(+)-Ethyl 2-oxo-4,6-bis(3-methoxyphenyl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4d): $105 \mathrm{mg}, 92 \%$ yield, known compound, white solid, $\mathrm{R}_{f}=0.70$ (ethyl acetate), 75% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=$ $+14.1(c 0.74, \mathrm{MeOH}),\left[\mathrm{Lit.}^{2}[\alpha]^{20}{ }_{\mathrm{D}}=-22.4(c 0.58, \mathrm{MeOH})\right.$, for 99% ee]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{dd}, J=7.8,5.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 2 \mathrm{H})$, $6.11(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.79$ (s, 3H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2,159.9,159.4,152.7,146.7,144.9,136.2,129.9,129.4,120.4,118.8,115.3$, $113.4,113.3,112.5,102.3,60.1,55.8,55.4,55.2,13.6$; Enantiomeric excess was determined by HPLC (AD-H column, n-Hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, detector: 254 nm , flow rate: $0.70 \mathrm{~mL} / \mathrm{min}, 30$ $\left.{ }^{\circ} \mathrm{C}\right) \mathrm{t}_{1}=26.9 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=30.2 \mathrm{~min}$.

4. Asymmetric Hydrogenation at Gram Scale

In a nitrogen-filled glove box, a mixture of $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(18.1 \mathrm{mg}, 0.027 \mathrm{mmol})$ and (S, S) -f-Binaphane ($48 \mathrm{mg}, 0.059 \mathrm{mmol}$) in isppropanol (3.0 mL) was stirred at room temperature for 15 min , then substrates $1 \mathbf{a}(1.005 \mathrm{~g}, 5.4 \mathrm{mmol})$ and TCCA ($63 \mathrm{mg}, 0.27 \mathrm{mmol}$) together with isppropanol $(13.0 \mathrm{~mL})$ and ethanol $(8.0 \mathrm{~mL})$ were added to the mixture. The hydrogenation was performed at $40{ }^{\circ} \mathrm{C}$ under 800 psi of hydrogen for 48 h . After carefully releasing the hydrogen, excess solid sodium bicarbonate was added. The resulted mixture was stirred for 30 min , then filtrated off and concentrated in vacuo. Further purification was performed by a silica gel column eluted with ethyl acetate/methanol to give the chiral product 2a 0.945 g in 92% yield and 95% ee.

5. Mechanistic Investigation

5.1 Control Experiments

In order to further verify our hypothesis that the hydrogenation carried out via the oxo form of the 2-hydroxypyrimidine, we synthesized the hydroxyl protected 2-methoxy-4-methyl-6-phenyl pyrimidine 5 according to the literature method. ${ }^{3}$ Asymmetric hydrogenation of 5 was proceeded under the standard hydrogenation condition $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2} /(S, S)$-f-Binaphane $/ \mathrm{TCCA} / \mathrm{EtOH}:{ }^{i} \operatorname{PrOH}$ (1:2), no reaction occurred.

5.2 Isotopic Labeling Experiments

Asymmetric Hydrogenation with \mathbf{D}_{2} : 4-Methyl-6-phenylpyrimidin-2-ol 1a was hydrogenated in $\mathrm{D}_{2}(400 \mathrm{psi})$ with the $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2} /(S, S)$-f-Binaphane $/ \mathrm{TCCA} / \mathrm{MeOH}$ condition.

${ }^{1} \mathrm{H}$ NMR analysis of the crude hydrogenation product showed that deuterium atoms were incorporated to the 4,5,6-position (C4: 61\%; C5: 11% and 17%; C6: 63\%) of the hydrogenation product 4-methyl-6-phenyltetrahydropyrimidin-2(1H)-one [D]-2a (Figure S1). These experimental results confirmed that the 1a might be hydrogenated via imine form by the chiral iridium catalyst.

Figure S1. ${ }^{1} \mathrm{H}$ NMR of [D]-2a

Asymmetric Hydrogenation in $\mathrm{CD}_{3} \mathbf{O D}$:

${ }^{1} \mathrm{H}$ NMR analysis of the crude hydrogenation product showed that deuterium atoms were incorporated to the $4,5,6-$ position (C4: 11\%; C5: 59\% and 62\%; C6: 16\%) of 4-methyl-6-phenyltetrahydropyrimidin-2(1H)-one [D]-2a', which suggested that a rapid reversible process of enmine-imime existed during reaction process (Figure S2).

Figure S2. ${ }^{1} \mathrm{H}$ NMR of [D]-2a'

6. Product Elaboration

According to the known report ${ }^{2}$: A mixture of chiral cyclic urea (+)-2a ($98 \% \mathrm{ee}, 76 \mathrm{mg}, 0.4$ $\mathrm{mmol}), 60 \mathrm{wt} \%$ sodium hydride ($40 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 1,4-dioxane (4.0 mL) was refluxed for 15 min . The suspension was cooled to $25^{\circ} \mathrm{C}$, and benzyl bromide ($151 \mathrm{mg}, 0.88 \mathrm{mmol}$) was added. The mixture was refluxed for 16 h , cooled and filtered. The solvent was evaporated from the filtrate, to afford the crude product, followed by purification by a silica gel column using hexanes/ ethyl acetate as eluent to give the pure product $(+) \mathbf{- 1 1}$.
(+)-1,3-Dibenzyl-4-methyl-6-phenyltetrahydropyrimidin-2(1H)-one (11): 122 mg , pale oil, 82% yield, new compound, $[\alpha]^{20}{ }_{\mathrm{D}}=+45.3\left(c 1.06, \mathrm{CHCl}_{3}\right), \mathrm{R}_{f}=0.85$ (hexanes/ethyl acetate $=$ $10: 1) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.21(\mathrm{~m}, 13 \mathrm{H}), 7.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}$, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.9,141.0,138.5,138.1,128.3,128.0,127.9,127.6,127.1$, 127.0, 126.6, 126.4, 126.3, 56.6, 48.6, 48.2, 47.5, 38.1, 19.8; HRMS (ESI) m/z Calculated for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$371.2118, found 371.2117.

A mixture of lithium aluminum hydride ($63 \mathrm{mg}, 1.65 \mathrm{mmol}$) and $11(122 \mathrm{mg}, 0.33 \mathrm{mmol})$ in anhydrous ether (5.0 mL) was refluxed for 4 h . The reaction was quenched with water (3.0 mL), and 10% aqueous sodium hydroxide $(3.0 \mathrm{~mL})$ was added. After being stirred for 15 minutes, the mixture was diluted with ethyl acetate, filtered through Celite. The filtrate was extracted with ethyl acetate there times. The combined organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo to give the crude product, which was subjected to hydrolysis without further purification.

To the crude product obtained above was added $5 \% \mathrm{HCl}$ in methanol $(3.0 \mathrm{~mL})$. The mixture was stirred at $25^{\circ} \mathrm{C}$ until TLC revealed complete conversion. The reaction mixture was adjusted to $\mathrm{pH} 8 \sim 9$ with 10% ammonia solution. After being stirred for 15 minutes, the mixture was extracted with chloroform. The combined organic layer were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The crude product was purified by silica gel chromatography using dichloromethane/methanol as eluent to give 1,3-diamine (+)-12.
(+)-N,N-Dibenzyl-1-phenylbutane-1,3-diamine (12): 86 mg , pale yellow oil, 75% yield (two steps), 98% ee, new compound, $[\alpha]^{20}{ }_{\mathrm{D}}=+26.8$ (c $0.60, \mathrm{CHCl}_{3}$), $\mathrm{R}_{f}=0.2$ (dichloromethane) methanol $=15 / 1) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.24(\mathrm{~m}, 13 \mathrm{H}), 7.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.99(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,139.2,128.8,128.8,128.6,128.5,128.3,127.8,127.5$, $127.2,126.9,126.0,62.2,53.5,50.9,50.1,43.5,19.5$; Enantiomeric excess was determined by HPLC (OD-H, elute: n-Hexane/i-PrOH $=85 / 15,0.05 \% \mathrm{Et}_{3} \mathrm{~N}$, detector: 254 nm , flow rate: 0.6 $\mathrm{mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$), $\mathrm{t}_{1}=7.3 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=8.5 \mathrm{~min}$; HRMS (ESI) m/z Calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 345.2325$, found 345.2324 .

7. References

[1] (a) Murray, T. P.; Hay, J. V.; Portlock, D. E.; Wolfe, J. F. J. Org. Chem. 1974, 39, 595; (b) Nigam, S. C.; Saharia, G. S.; Sharma, H. R. J. Indian Chem. Soc. 1982, 59, 709; (c) Mcarthur, S. G.; Erwin, G.; Juergen, W.; Woltering, T. WO 2007110337 A1, 2007; (d) Shoichi, C.; Yojiro, U.; Tomiyosi, A.; Kyoichi, I. WO 9607641 A1, 1996; (e) Sakamoto, T.; Sakasai, T.; Yoshizawa, H.; Tanji, K.; Nishimura, S.; Yamanaka, H. Chem. Pharm. Bull.1983, 31, 4554; (f) 1b [CAS: 1697101-66-8]; 1d [CAS: 1698634-89-7]; 1e [CAS: 1159816-34-8]; 1f [CAS: 1702115-48-7]; 1g [CAS: 1695255-01-6]; 1h [CAS: 1972241-84-1]; 1n [CAS: 1412958-83-8]; 1o [CAS: 1412958-07-6], 1p [CAS: 1412960-34-9], these compounds are commercially available.
[2] Feng, G.-S.; Chen, M.-W.; Shi, L.; Zhou, Y.-G. Angew. Chem. Int. Ed. 2018, 57, 5853.
[3] Gompper, R. Chem. Ber. 1960, 93, 198.

8. Copy of NMR and HPLC

Abstract

1H NMR FM-5-8 in CDCl3

3b ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Abstract

 $\stackrel{\infty}{\stackrel{\infty}{\dot{\varphi}}}$ $\stackrel{\infty}{\infty} \stackrel{\infty}{\sim}$

13C NMR FM-5-8 in CDCl3

13C GF-6-17G In CD2Cl2

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$

13C NMR GF-6-52E IN CDCL3

${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$

1H NMR GF-6-53F IN CD2CI2
 NiN 1

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$

13C NMR GF-6-53F IN CD2C12

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)

13C NMR GF-6-53H in CDCl 3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1 H NMR GF－6－69B in CDCl 3

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		$\begin{aligned} & \stackrel{\infty}{\mathrm{N}} \\ & \underset{i}{2} \end{aligned}$	N	$\begin{aligned} & \sim_{0}^{\infty} \\ & 0.0 \\ & i \neq i \end{aligned}$	$\begin{gathered} \stackrel{\leftrightarrow}{\infty} \\ \stackrel{\sim}{\oplus} \end{gathered}$

13C NMR GF-6-69B in CDCI3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1H NMR GF-6-57C IN CDCl3

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

13C NMR GF-6-57C IN CDCI3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

てくモルー

$\stackrel{\stackrel{m}{\sim}}{\stackrel{1}{1}}$

13C NMR GF－6－51A in CDCl3

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

13C NMR GF-6-71G IN CDCl3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1H NMR GF-6-71F IN CD2Cl2

 Nowno Ni~~~~

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$

13C NMR GF-6-71F IN CD2C12

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$

13C NMR GF-6-56B IN CD2CI2

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)

1H NMR GF-6-70C IN CD2Cl2

13C NMR GF-6-70C IN CD2Cl2

19F NMR GF-6-70C IN CD2Cl2

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$

13C GF-6-99B IN CD2Cl2

19F NMR GF-6-99B IN CD2Cl2

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$

13 C NMR GF-6-51B In CDCI3

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

फ্লিল্লিপ্লিল্লিল্লি
 Nin mins

1H NMR GF-6-69A in CDCl3

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

∞	\％	さめぶ
	－	Ni®
		「J

13C NMR GF－6－69A CDCl

2n
${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

\section*{	$\infty \infty$	
∞		
∞	∞	 }

1H NMR GF-7-17A IN CDCI3

Js f

20

1’3C NMR GF-7-17A IN CDCL3

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(3)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

U
$\stackrel{y}{\circ}$
$\stackrel{1}{\circ}$
8%
0.8
0.0
0
$\stackrel{N}{\Gamma}$

13C NMR GF-9-77A IN CDCL3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\overline{5}$
$\stackrel{0}{0}$
\vdots
1
1

13C NMR GF-9-77B IN CDCL3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

13C NMR GF-9-78A IN CDCL3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ஜ๗ఱ\%
Oisisis

13C NMR GF-9-78B IN CDCL3

4d
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8 68 8	
	广-mpm

13C NMR GF-6-36A in CDCl3

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Injection Date : 3/31/2017 10:

Analy=is Method: (modified after loading)

$===$

$\underset{\text { Dilution: }}{\text { Use Multiplier }}$ \& Dilution Factor with $\begin{gathered}\text { ISTD } \\ \vdots\end{gathered}$
sigral 1: Nibl ar, wavelength=2a4 min

$\stackrel{\mathrm{Peak}}{\underset{\#}{*}}$	RetTime「min]	Type	width [ininl	$\operatorname{miv}_{\text {midea }}^{\text {area }}$	$\underset{\text { Height }}{\substack{\text { Hist }}}$	Area
1	9	Eb	0.5278		2	
2	16.833	Es	0.6591	519.24066	11.73090	48.3025

$$
\begin{array}{lll}
\text { Totals : } & 1074.97595 & 27.43993
\end{array}
$$

$(+1-)-2 a^{\prime}$
=-===============-1

sorted by : siqmal
hultiplier:

Signal 1: VWDI A , wavelength=254 nm

Totals : $5013.75533 \quad 166.53157$

(+)-2a'

$\begin{array}{ll}\text { Acc. Operator } \\ \text { ACq. Instrument } & \text { : } \\ \text { Instrument } 1\end{array}$

RCq. Method
Last chanqed
\vdots
\vdots
Analwis Hethod: (modified after loading)

sigmal 1: VID $1 \hat{A}$, wavelength $=254 \mathrm{~nm}$

$$
\begin{array}{lll}
\text { Totals : } & \text { 2195.60657 } & 71.67630
\end{array}
$$

$(+1-)-2 b^{\prime}$

${ }_{\text {Act. }}^{\text {Act. }}$ Inserator	Tnstrument 1	Location : Wial 1
Injection Date :	2/25/2017 4: 43:41 FM	, Mal
Act. Method		
Last chanced	2/25/2017 4:39:46 pM bw 0	
sis Method:		
Last changed		

$===$

Sorted BF
Multiplier: : sicmal

Ignal 1: VIDP A , wavelength=254 ma
Totals:

$$
1126.42415 \quad 41.96707
$$

(+)-2b'

Acc. onerator
Acq. Trustrument: Tnstrument 1

$===$

Sigmal 1: vidi 1 A, wavelength=254 nin

$\stackrel{\text { Peakk }}{\underset{\sim}{2}}$	RetTinue $[$ nin	Type	$\begin{aligned} & \text { width } \\ & \text { [minin } \end{aligned}$		$\begin{aligned} & \text { Height } \\ & \text { [maU } \end{aligned}$	גгea
$\frac{1}{2}$	12.677	$\stackrel{\text { Ve }}{\text { EF }}$	0.4074 0.5414	${ }_{2833.763542}^{2839}$	106.81567	${ }_{50}^{49.9127}$

Totals: $\quad 5657.36501 \quad 167.10135$

(+1-)-2 c^{\prime}

Multiplier:
Use Multiplier \& Dilution Factor with ISTDs
Signal 1: VID 1 A, Wavelength=254 nil

Total3: $\quad 979.51264 \quad 36.29609$

(+)-2c'
$=================$

Sigmal 1: VIDD 1 À, Wavelength=254 nm

$\stackrel{\text { Peakk }}{\underset{*}{2}}$	$\begin{aligned} & \text { RetTime } \\ & \text { 「minin } \end{aligned}$		$\begin{gathered} \text { width } \\ \lceil\text { winin } \end{gathered}$	$\operatorname{mind~}_{\text {minea }}^{\text {Ar }}$	$\begin{gathered} \text { Hei ight } \\ \hline \end{gathered}$	Area
1	46	VE	0.2734	819.16321	45.65667	50.8280
2	14.133	vE	0.6033	792.45026	19.94520	49.1712

Totals : $\quad 1611.61346 \quad 65.60367$

${ }_{\text {Act. }}^{\text {Act. }}$ Inserator	Tnstrument 1	Location : Wial 1
Injection Date :	2/27/2017 9:08:43 FM	O, Mal
Act. Method		
Last chanced	2/27/2017 8:54:07 PM bv 0 (nodified after loading)	
sis Method :		
Last changed	2/27/2017 10:14:58 PM by 0	

Sorted BF
Multiplier: : Sicmal , oon

Signal 1: VWD 1 A , Wavelength=254 nil

Totals: $\quad 2697.55630 \quad 146.99474$

$(+)-2 d^{\prime}$

imodified afrer loadingi

\qquad

signal 1: NBI A , wavelength=ess ma

Totals: $\quad 1.23266 \mathrm{Cl}^{291.11560}$

$(+1-)-2 e^{-}$

Acc. Operator Acc. Instrumen	Instrument 1	Location : Wial 1
Injection Date	5/9/2017 9:21:57 FM	Location : Mal 1
Acq. Merhod		
Last chanced	5/9/2017 9:12:32 pM bv 0 (nodified after loading	
Analvsis Method		
Last changed	8/17/2017 8:53: 30 MA by (modified after loading)	

Area Fercent Report
Sarted By
Haltiplier \quad : siqmal

Signal 1: VIWI A , wavelength=e254 nim

(+)-2e'

sigmal 1: VID 14 , wavelength $=254 \mathrm{~nm}$

Totals: $\quad 1.4469954 \quad 265.24366$

(+l-)-2f'

(+)-2f'

$2869.45654 \quad 50.36962$

Sorted BV
Hultiplier
Multiplier: : $\quad \stackrel{\text { Sicmal }}{\text { M }} 1.0000$

cgnal 1: WBI A , Wavelengti=254 mim

	al RetTime		Width	$\underset{t_{3}}{\text { miti }}$	$\underset{\text { rumig }}{\text { Height }}$	$\stackrel{\text { area }}{\substack{\text { a }}}$
	16.209	ve	0.5730	1.01600e4	271.31473	
	20.407	eb	0.745	1.02541 e 4	210.06502	50.2285
13 :						

Last changed : $2 / 24 / 2017$ 10:34:21 Mil by 0

Totals:
$3206.21029 \quad 65.83165$

(+)-2g'

0

Last changed imodified aiter loading

$==$

Totals: $\quad 1.46173 \mathrm{E} 4 \quad 175.63734$

$(+1-)-2 h^{\prime}$

bast chanqed
Analysis Method : (modified after loading)

Signal 1: GBl A , Wavelength=zas min

$\stackrel{\text { Peak }}{\underset{\#}{*}}$	RetTime Type [min]	${ }^{\text {Width }}$	$\operatorname{mint}_{\text {mixea }}^{\text {Ar }}$	$\begin{gathered} \text { Height } \\ \Gamma \mathrm{TmaU} \end{gathered}$	$\underset{\frac{A r e a}{4}}{ }$
$\frac{1}{2}$	$\begin{aligned} & 14.094 \mathrm{~EB} \\ & 17.909 \mathrm{EF} \end{aligned}$	0.4805	2701.78027 2698.78760	66.24693 6.48647	50.02

$$
\begin{array}{lll}
\text { Totals : } & 5400.56767 & 149.73330
\end{array}
$$

	Tnst	Location : Wial 1
Iniection Date	3/22/2017 9:08:55 pM	
Ac¢. Method		
chanced	3/22/2017 8:33:13 PM bv 0	
	(nodified after loading)	
Analvsis Method	C:\CHEM32才1MIETHODS\DEF Lic	
	ding)	

sarted By $\quad: \quad$ Simal
$\underset{\text { Dilutions }}{\text { Use Multiplier }}$ \& Dilution Factor with TsTo

$\stackrel{\text { Peakk }}{\#}$	RetTime		Width \lceil win $]$	$\underset{t_{3}}{\text { midea }}$		$\stackrel{\text { area }}{\text { a }}$
$\frac{1}{2}$	13.990	ve	0.4737	${ }^{76004.73486}$	247.21	${ }^{96.2662}$

(+)-2i'

sigmal 1 fol h,

Totals:
$1667.71924 \quad 49.32496$

(+/-)-2j'

	Tnstrument 1	Location : Wial 1
Iniection Date :	3/1/2017 6:16:55 FM	On Mal
Acq. Merhod		
Last chanced	3/1/2017 6:00:47 PM bw 0	
Analvsis Method:		
Last changed	3/1/2017 6:42:28 PM by 0	

Sorted By
Multiplier:
Area Fercent Report
$================$
pilution: $\quad \vdots \quad 1.0000$
Signal 1: vili 1 A , Wavelength=230 nia

$\begin{array}{llll}\text { Totals : } & 9503.45937 & 284.99064\end{array}$

(+)-2j'

Last chanced
Analysis Method ; imodified after loading)

$==$

Sigmal 1: VID 14 , Wavelength $=230 \mathrm{~nm}$

$\begin{array}{lll}\text { Totals : } & 4501.97949 & 140.67322\end{array}$

$(+1-)-2 k$

Acct.	Onstrument	Location : wial 1
Injection Date	3/19/2017 9:35:51 ph	
Ac¢. Method		
Last chanced	3/19/2017 9:29:24 PM bv 0 (modified after loading)	
Analvsis Method		
Last changed	3/19/2017 10:03:04 PM bY 0	

Sorted BF
Multiplier: : sicmal \quad :

signal 1: Ninl h , wavelenghin=esa mm

Last chanqed imodified after loading

Sigmal 1: vidi 1 A, wavelength=254 nin

$\stackrel{\text { Peakk }}{\underset{\sim}{*}}$	$\begin{aligned} & \text { RetTime } \\ & \lceil\text { min }] \end{aligned}$		$\begin{gathered} \text { uiden } \\ \Gamma_{\text {minin }} \end{gathered}$		$\underset{1}{\text { Height }}$	$\stackrel{\text { Area }}{ }$
1	13.271	VB	0.5587	8123.19971	223.11726	${ }^{50.2549}$
2	16.270	Es	0.6951	8040.78564	178.28824	49.7451

[^0]

	Instrument 1	Location : Wial 1
Iniection Date	4/27/2017 4:51:42 pm	
Acc. Method		
Last chanced	4/27/2017 4:50:21 PM bv 0 (modified after loading)	
Analveis Heth	C:\CHEM32\1uIETHIDS\DEF LC.m	
Last changed	4/27/2017 5:12:38 PM by 0	

Samole Info : $\quad 0 \mathrm{D}-\mathrm{H}, \mathrm{Hexme} / \mathrm{i}-\mathrm{PrOH}=75 / 25,0.8 \mathrm{~mL} / \mathrm{min}$, $30 \mathrm{oC}, 254 \mathrm{~nm}$

Sorted BF
Multiplier: : sicmal , 0000

Signal 1: Ninl h , Wavelenghin=254 nim

	RetTime「min 1		$\begin{aligned} & \text { Width } \\ & \text { [wini } \end{aligned}$			$\stackrel{\text { area }}{\text { \% }}$
1	13.253	VE	0.5481	2251.06079	16	${ }^{91.3564}$
2	15.772		0.6412	212.96186	4.8s456	6436

Totals: $\quad 2464.04205 \quad 67.05474$

$(+)-21^{\prime}$
$==================$

Data File C: CHEM3211DATAMFGTYZ000121.D

Acq. Operatar
Acq.
Instrument
In
Instrument
1
Injection Date : $8 / 21 / 2017$ 2:42.42 m

(+/-)-2m'

Multiplier:
Milution:
Use Multiplier \& Dilution Factor with TSTD
Sigmal 1: VWi 1 A , Wavelengthe 230 nul

	$\begin{aligned} & \text { RetTime } \\ & {\left[\begin{array}{l} \text { minine } \end{array}\right.} \end{aligned}$		Width $[$ inin]	${ }_{\text {midit }}^{\text {area }}$	$\underset{[\text { Heidicht }}{\left[\begin{array}{l} \text { Hid } \end{array}\right]}$	$\stackrel{\text { Area }}{\text { \% }}$
---1	12.306	ve	-0.3815	1544.-80554	-72.-70751	97.7377
2	15.045	Eb	0.6873	35.75692	7.78501e-1	2.2623
Totals :				1580.64246	63.28609	

$(+)-2 m^{\prime}$

Sigmal 1: VID 14 , wavelength $=254 \mathrm{~nm}$

Totals: $\quad 3745.67906 \quad 109.47116$

(+/-)-2n'

Sorted By : siqmal

Signal 1: Vibl h , wavelengchees4 rim

Totals :

$$
2364.02932 \quad 62.49509
$$

(+)-2n'
==================-=0,

Last chanqed $\quad 5 / 17 / 20178: 52: 09$ PM by

$==$

Sigmal 1：VID 14 ，wavelength $=254 \mathrm{~nm}$

Totals：$\quad 5535.34717$ 407．99306

$(+1-)-20$

位
Sarted By $\quad: \quad{ }^{\text {sicmal }}$

Signal 1：VWDI A ，wavelength＝254 nim

	RetTim「min \rceil	Type	Width		$\begin{gathered} \text { Height } \\ \text { 「midu } \end{gathered}$	$\stackrel{\text { Area }}{\substack{\text { a }}}$
1	7.066	w	0.166	265	7	93.169
2	9．860	es	0.3018	194． 52969	9.78569	6.8

$(+)-20^{\prime}$
$=================$

Analysis Method imoditied aiter loading

$===$

signal 1: VID1 \AA, wavelength=254 mi

Totals: 6474.55659 274.57379

$(+1-)-2 p^{\prime}$

Acc. Operator Acc. Instrumen	Instrument 1	Location : Wial 1
Injection Date	5/17/2017 8:06:08 PM	隹
Acq. Merhod		
Last chanced	5/17/2017 7:45:29 PM bv 0	
Analvsis Method	C:\CHEMS21:	
Last changed	5/17/2017 8:29:41 PM by o (nodified after loading)	

$===$

Sorted By
Multiplier: : Sicmal

Signal 1: VID 1 A, Wavelength=254 nil
Totals:

$$
6121.66263 \quad 269.39145
$$

$(-)-2 p^{\prime}$

$==$

sigmal 1: VIDI \AA, wavelength $=254 \mathrm{mn}$

Totals: $\quad 2553.36792 \quad 116.76624$

$(+1-)-4 a$
-=-=-=-=-=-=-=-=-=-

Area Percent Report
Sorted By
Multiplier

Signal 1: VND 1 A , Wavelength=254 nil

Totals: 3111.26309 157.30793

$==================$

$\begin{aligned} & \text { Sorted EV } \\ & \text { Muttiplier: } \\ & \text { Dilutiont }\end{aligned} \quad: \quad \stackrel{\text { Simal }}{1} \quad$ 1.000
$\underset{\text { Dilution: }}{\text { Use Multiplier }}$ \& Dilution Factor with $\begin{gathered}\text { ISTD } \\ \vdots\end{gathered}$
s_{1} gmal 1: VWD $1 \hat{A}$, Wavelength 254 nin

Totals : $\quad 2716.38664146 .03057$

s_{i} gnal 1: VID $1 \hat{\AA}$, Wavelength=254 nn

Totals: $2707.17810 \quad 109.00042$

(+1-)-4d

Acq. Inseraturent	Instrument 1	Location :	
Injection Date	7/25/2018 11:17:09 FK		
Acq. Method			
Last chanced			
Analysis Method :			
Last changed	8/1/2018 2:49:51 PM (modified after loadingi		

Sorted EV
Multiplier:

Data File C: CHEMB211DATAYZHOU-18:YzN007217.D

	Instrument 1	Location: Wial 1
Iniection Date	1/13/2018 8:40:32 mi	
Act. Method		
chan		
	(nodified after 10 a	
Analvsis Method	C: ¢CHEM32\1\IETHODS\DEF_LCLI.M	
Last changed	8/8/2018 2:56:12 PM	
	chodified after loadir	
Samble Info	OD-H, Hexame/i-ProH	

Sigmal 1: YWD 14 , Wavelength $=254$ nil

$\stackrel{a}{\#}$ R	$\begin{aligned} & \text { ertime } \\ & {[\min]} \end{aligned}$	True	$\underset{[i n i n]}{\text { Width }}$ [min]		$\begin{gathered} \text { Heicht } \\ {\left[\begin{array}{l} \text { [ind } \end{array}\right]} \end{gathered}$	$\stackrel{\text { Area }}{i}$
1	7.203	w	0.1700	3051.06592	263.53506	50.3189
2	8.167		0.2022	3012. 39844	217.75444	49.6811
Tatals				6063.46436	481.28951	

(+1-)-12

Totals
$5077.65239 \quad 445.55530$

$(+)-12$

[^0]: Totals:
 $1.6164094 \quad 401.40550$

