Supporting Information

Non-covalent Pyrene-PEG Coatings of Carbon Nanotubes Achieve *In Vitro* Biocompatibility

Mehdi Meran^a, Pelin Deniz Akkus^a, Ozge Kurkcuoglu^a, Elif Baysak^b, Gurkan Hizal^b, Ebru Haciosmanoglu^c, Ayhan Unlu^d, Nilgun Karatepe^e, F. Seniha Güner^a

^aDepartment of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey ^bDepartment of Chemistry, Istanbul Technical University, Istanbul, Turkey ^cDepartment of Physiology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey ^dDepartment of Biophysics, Faculty of Medicine, Trakya University, Edirne, Turkey ^eEnergy Institute, Renewable Energy Division, Istanbul Technical University, Istanbul, Turkey

Corresponding Authors

Prof. Dr. F. Seniha Guner Tel: +90 212 285 68 36 guners@itu.edu.tr

Asst. Prof. Dr. Ozge Kurkcuoglu Tel: +90 212 285 35 23 olevitas@itu.edu.tr

Table of contents

Molecular Dynamics Results

-Figure S1. Dynamics of PEG chains on SWNTs and coating of the SWNT by four PEG₂₀₀₀ chains in different conformations (from M₄)

-Figure S2. (a) π - π interactions between SWNTs (yellow) from neighboring box in simulation (a) M₂ and (b) M₃. (c) SWNTs from neighboring simulation boxes do not interact in simulation M₆. Water molecules are not shown for clarity.

SWNT Synthesis

- Figure S3. Raman spectra of SWNTs synthesized at 800 °C

Thermogravimetric analysis of SWNTs coated with Pyr-PEG₅₀₀₀

- Figure S4. Thermogravimetric results of PEG_{5000} , short SWNT and short SWNT coated with Pyr-PEG₅₀₀₀

Cell Viability Results

- Figure S5. Cell viability percentages for the fabricated short and long SWNT. Double asterisk ($\Box \Box$) denotes a statistically significant difference between fabricated short and long SWNT treatment groups according to one-way ANNOVA (p \leq 0.01).

- Figure S6. Cell viability percentages for the fabricated short and long SWNT. The asterisk (\Box) denotes a statistically significant difference between long SWNT and short SWNT coated with Pyr-PEG₂₀₀₀ treatment groups according to Student's t-test (p ≤ 0.05).

- Figure S7. Cell viability percentages for the fabricated short and long SWNT. The asterisk (\Box) denotes a statistically significant difference between long SWNT and

short SWNT coated with Pyr-PEG_{5000} treatment groups according to Student's t-test (p ≤ 0.05).

Molecular Dynamics Results

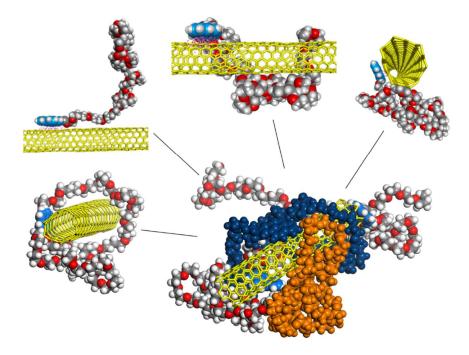


Figure S1. Dynamics of PEG chains on SWNTs and coating of the SWNT by four PEG₂₀₀₀

chains in different conformations (from M₄)

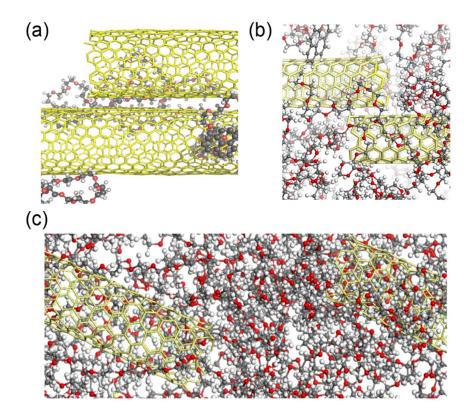


Figure S2. (a) π-π interactions between SWNTs (yellow) from neighboring box in simulation
(a) M₂ and (b) M₃. (c) SWNTs from neighboring simulation boxes do not interact in simulation M₆. Water molecules are not shown for clarity.

SWNT Synthesis

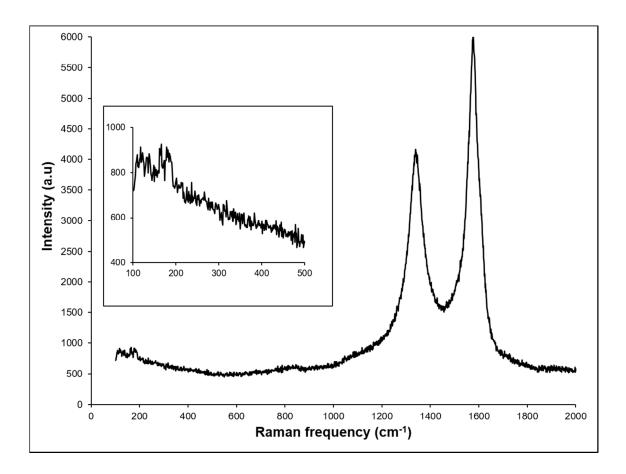


Figure S3. Raman spectra of SWNTs synthesized at 800 °C

Thermogravimetric analysis of SWNTs coated with Pyr-PEG₅₀₀₀

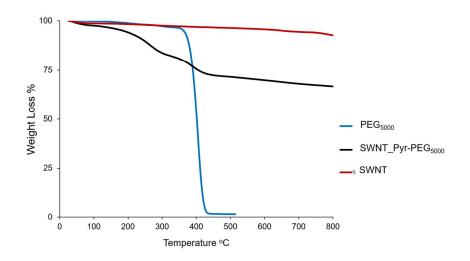
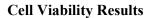
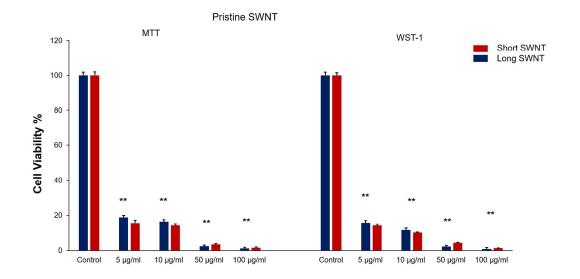
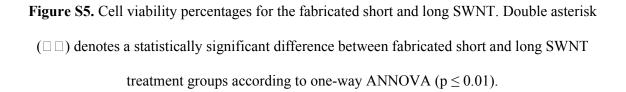





Figure S4. Thermogravimetric results of PEG₅₀₀₀, short SWNT and short SWNT coated with

Pyr-PEG₅₀₀₀

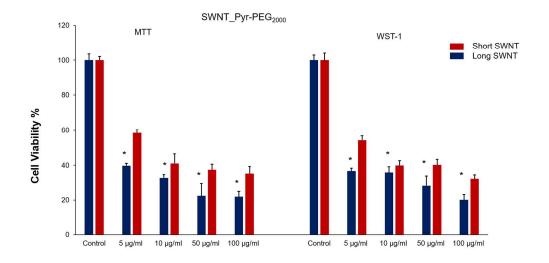


Figure S6. Cell viability percentages for the fabricated short and long SWNT. The asterisk (\Box) denotes a statistically significant difference between long SWNT and short SWNT coated with Pyr-PEG₂₀₀₀ treatment groups according to Student's t-test (p \leq 0.05).

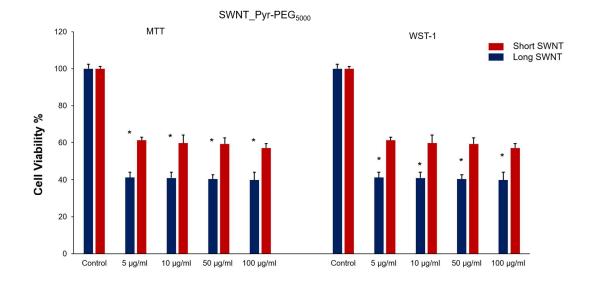


Figure S7. Cell viability percentages for the fabricated short and long SWNT. The asterisk (\Box) denotes a statistically significant difference between long SWNT and short SWNT coated with Pyr-PEG₅₀₀₀ treatment groups according to Student's t-test (p \leq 0.05).