Supporting Information

A Synthetic and Computational Study of Tin-Free Reductive Tandem Cyclizations of Neutral Aminyl Radicals

Hansamali S. Sirinimal, ${ }^{\ddagger}$ Sebastien P. Hebert, ${ }^{\ddagger}$ Ganesh Samala, Heng Chen, Gregory J. Rosenhauer, H. Bernard Schlegel,* and Jennifer L. Stockdill*
Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, United States

Table of Contents

General Information.. S2
Experimental Procedures and Spectroscopic Data... S3
Spectra ... S17

General Information. Unless otherwise specified, all commercially available reagents were purchased from Sigma-Aldrich, Oakwood, or Alfa aesar and used without further purification. Grubbs' catalysts for all metathesis reactions were generously provided by Materia. Anhydrous PhMe, DMF, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purchased from Fisher, anhydrous THF was purchased from EMD. These were passed through a commercial solvent purification system (2 columns of alumina) and used without further drying. Triethylamine was distilled over CaH_{2} immediately prior to use. Unless otherwise noted, all reactions were performed in flame-dried glassware under 1 atm of pre-purified anhydrous N_{2} or argon gas at ambient temperature ($24 \pm 1^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Mercury- 400 MHz or a Varian VNMRS-500MHz spectrometer with a multinuclear broadband probe at ambient temperature unless otherwise stated. Chemical shifts are reported in parts per million relative to residual solvent peaks (as established by Stoltz, et. al. in Organometallics 2010, 29, 2176). All ${ }^{13} \mathrm{C}$ spectra are recorded with complete proton decoupling. High-resolution mass spectral analyses were performed by the Lumigen Instrument Center, Wayne State University. All purifications were performed on SiliaFlash® P60 40-63 $\mu \mathrm{m}$ (230-400 mesh) 60A Irregular Silica Gels (cat. \# R12030B) or on a Biotage Isolera IV flash purification system using SNAP cartridges (cat. \# FSKO-1107-XXXX). Thin layer chromatography was performed using glass-backed SilicaPlate ${ }^{\text {TM }}$ TLC Plates (cat. \# TLG-R10011B-323) cut to the desired size then visualized with short-wave UV lamps and KMnO_{4}, CAM, PMA, or Anisaldehyde stains prepared according to standard recipes. All yields refer to chromatographically and spectroscopically pure products. IR data was obtained on a Varian/Digilab Excalibur 3100 High Resolution FT-IR, and optical rotation data was collected on a Perkin-Elmer 341 automated Polarimeter at the concentration noted.

Experimental Procedures and Spectroscopic Data

N -(prop-2-yn-1-yl)pent-4-enamide (SI-02). To a cooled solution ($0^{\circ} \mathrm{C}$) of 5 -pentenoic acid (4.0 $\mathrm{g}, 39.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(133 \mathrm{~mL})$ was added $(\mathrm{COCl})_{2}(6.76 \mathrm{~mL}, 79.9 \mathrm{mmol})$ followed by DMF $(2.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$. The reaction mixture was then warmed up to room temperature, and was stirred for 1 h . upon completion, the solvent was removed under reduced pressure and the product was obtained as colorless oil. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the crude material (4.73 g , 39.95 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (133 mL) was added propargyl amine ($3.3 \mathrm{~mL}, 51.94 \mathrm{mmol}$) drop wise followed by $\mathrm{Et}_{3} \mathrm{~N}(7.2 \mathrm{~mL}, 51.94 \mathrm{mmol})$. The reaction was then brought to room temperature, and was stirred for 6 h . The reaction was quenched with water (50 mL) and the aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the orange crude was purified by column chromatography eluted with 30% EtOAc/Hexanes. Product was isolated as a yellow solid ($5.0 \mathrm{~g}, 91 \%$) $\mathrm{R}_{\mathrm{f}}=0.35$ ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N})$, 5.80 (ddt, $J=16.8,10.22,6.46 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7}$), $5.10-5.03$ (m, 1H, C 8), $5.02-4.96$ (m, 1H, C 8), 4.03, (dd, $J=5.24,2.56 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{3}$), $2.42-2.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5}\right), 2.33-2.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6}\right), 2.21$ (td, J $\left.=2.56,0.73 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{1}\right)$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.02\left(\mathrm{C}_{4}\right), 136.81\left(\mathrm{C}_{7}\right)$, $115.73\left(\mathrm{C}_{8}\right)$, $79.63\left(C_{2}\right), 71.51\left(C_{1}\right), 35.54\left(C_{3}\right), 29.43\left(C_{5}\right), 29.12\left(C_{6}\right)$. Spectral data matches the reported characterization data. ${ }^{1}$

N-(prop-2-yn-1-yl)pent-4-en-1-amine (SI-03). To a cooled ($0^{\circ} \mathrm{C}$) suspension of LiAlH ${ }_{4}(2.0 \mathrm{~g}$, $52.70 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added the amide ($1.8 \mathrm{~g}, 13.13 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(69 \mathrm{~mL})$ under argon. The reaction was allowed to warm to room temperature and was run under argon for 12 h. Upon completion, the reaction was cooled to $0^{\circ} \mathrm{C}$ and water (30 mL) was added carefully drop wise followed by aqueous solution of Rochelle (potassium sodium tartrate) salt (50 mL). The aqueous layer was extracted with EtOAc ($3 \times 60 \mathrm{~mL}$). The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Crude product was purified by column chromatography ($40 \% \mathrm{EtOAc} / \mathrm{Haxane}$). Product was isolated as yellow oil ($1.2 \mathrm{~g}, 70 \%$ yield). $\mathrm{R}_{f}=0.5$ ($5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.80$ (ddt, $J=$ $16.92,10.16,6.66 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7}$), 5.01 (dq, $J=17.12,1.54 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}$), $4.98-4.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{8}\right)$, $3.40\left(\mathrm{~d}, J=2.41 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{3}\right), 2.68\left(\mathrm{t}, J=7.24 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{4}\right), 2.19\left(\mathrm{t}, J=2.42 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{1}\right), 2.10(\mathrm{q}$, $\left.J=6.91 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6}\right), 1.57\left(\mathrm{p}, J=7.36 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right) \delta 138.32\left(\mathrm{C}_{7}\right)$,

[^0]$114.74\left(\mathrm{C}_{8}\right), 82.33\left(\mathrm{C}_{2}\right), 71.23\left(\mathrm{C}_{1}\right), 48.12\left(\mathrm{C}_{3}\right), 38.12\left(\mathrm{C}_{4}\right), 31.41\left(\mathrm{C}_{6}\right), 28.96\left(\mathrm{C}_{5}\right)$. Spectral data matches the reported characterization data. ${ }^{2}$

N-chloro- N -(prop-2-yn-1-yl)pent-4-en-1-amine (3a). To a cooled ($-78{ }^{\circ} \mathrm{C}$) solution of the amine ($200 \mathrm{mg}, 1.62 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$) was added N -chlorosuccinamide ($238.4 \mathrm{mg}, 1.79$ $\mathrm{mmol})$. The reaction mixture was warmed up to $0^{\circ} \mathrm{C}$, over 2 hours. The reaction was diluted with hexanes (15 mL) and passed through a plug of silica ($15 \times 2.5 \mathrm{~cm}$). Product was eluted with $5 \% \mathrm{Et}_{2} \mathrm{O} /$ Hexanes as a colorless oil ($239 \mathrm{mg}, 93 \%$ yield). $\mathrm{R}_{f}=0.5$ ($5 \% \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81$ (ddt, $J=16.90,10.21,6.66 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7}$), 5.04 (dq, J = 17.13, 1.57 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{8}\right), 5.00-4.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{8}\right), 3.82\left(\mathrm{~d}, J=2.38 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{3}\right), 3.00\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{4}\right)$, $2.41\left(\mathrm{t}, J=2.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{1}\right), 2.13\left(\mathrm{q}, J=6.84 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6}\right), 1.74\left(\mathrm{p}, J=7.36 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.83\left(\mathrm{C}_{7}\right), 115.23\left(\mathrm{C}_{8}\right), 77.62\left(\mathrm{C}_{2}\right) 74.71\left(\mathrm{C}_{1}\right), 61.32\left(\mathrm{C}_{3}\right), 52.65$ $\left(\mathrm{C}_{4}\right), 30.73\left(\mathrm{C}_{6}\right), 27.06\left(\mathrm{C}_{5}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NCI}\right]^{+}$: 158.0731; observed: 158.0724; IR 3297, 2938.9, 2844, 1636, 1446, 1088, $985 \mathrm{~cm}^{-1}$.

2-methylenehexahydro-1H-pyrrolizine (4a). To a flame dried microwave vessel under argon was added the chloroamine $3 \mathrm{a}(35.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ and AIBN ($7.3 \mathrm{mg}, 0.044 \mathrm{mmol}$) in THF $(20 \mathrm{~mL})$. Then was added TIPSH ($91.0 \mu \mathrm{~L}, 0.44 \mathrm{mmol}$) to the reaction solution. The microwave tube was sealed and, and the reaction tube was dipped in a hot oil bath $\left(100^{\circ} \mathrm{C}\right)$ and stirred for 3 h . CAUTION: REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. Upon completion the reaction was brought to room temperature and the solvent was removed under reduced pressure and was purified by column chromatograph. Product was eluted with $10 \%\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and obtained as orange oil (23.5 $\mathrm{mg}, 87 \%$ yield). $\mathrm{R}_{f}=0.3\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.19$ (d, $J=1.89 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C}_{1}$), $4.44-4.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{7}\right), 4.22\left(\mathrm{~d}, J=14.76 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}\right), 3.82(\mathrm{dt}, J=11.65,5.90 \mathrm{~Hz}, 1 \mathrm{H}$, C_{4}), 3.48 ($\mathrm{d}, J=14.76 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}$), $2.98-2.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4}\right), 2.84(\mathrm{dt}, J=11.52,7.96 \mathrm{~Hz}, 1 \mathrm{H}$, C_{8}), 2.42 - 2.32 (m, 2H, C ${ }_{8}$ C C_{6}), 2.09 (tt, $J=8.00,5.36 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5}$), 1.70 (dq, $J=13.24,7.77 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{6}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.93\left(\mathrm{C}_{2}\right), 112.62\left(\mathrm{C}_{1}\right), 66.35\left(\mathrm{C}_{3}\right), 57.42\left(\mathrm{C}_{4}\right), 54.91$ $\left(\mathrm{C}_{7}\right), 36.52\left(\mathrm{C}_{8}\right), 31.31\left(\mathrm{C}_{6}\right), 25.02\left(\mathrm{C}_{5}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}\right]^{+}$: 124.1121; observed: 124.115; IR 3426, 3024, 2924, 1605, 1458, 1265, 1034, $735 \mathrm{~cm}^{-1}$.

Reaction on 1 mmol scale: To a 200 mL ChemGlass pressure vessel, heavy wall, round bottom (CG-1880-R-03) under argon was added the chloroamine 3 a ($173.4 \mathrm{mg}, 1.1 \mathrm{mmol}$) and AIBN ($36.1 \mathrm{mg}, 0.22 \mathrm{mmol}$) in THF (70 mL). Then was added TIPSH ($0.45 \mathrm{~mL}, 2.2 \mathrm{mmol}$) to the reaction solution. The vessel was sealed and placed in a hot oil bath $\left(100^{\circ} \mathrm{C}\right)$ and stirred for 3

[^1]h. CAUTION: REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. Upon completion, the reaction was brought to room temperature and the solvent was removed under reduced pressure and was purified by flash column chromatography. Product was eluted with $7 \%\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and obtained as orange oil (109.6 $\mathrm{mg}, 81 \%$ yield). Spectroscopic data were identical to the small-scale reaction above.

(E)-6-bromo-1-methoxyhex-2-ene (SI-06). To a solution of Grubbs' C827 catalyst (69 mg , 0.083 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added the 5 -bromo-1-pentene ($2.46 \mathrm{~g}, 16.64 \mathrm{mmol}$) and allylic ether ($0.6 \mathrm{~g}, 8.32 \mathrm{mmol}$) under argon via syringe. The reaction was refluxed under argon at $40^{\circ} \mathrm{C}$ for 20 h . The reaction was cooled to room temperature, and the solvent was removed under reduced pressure. Crude material was purified by column chromatography eluted with 0 5% Ether/Hexane to afford the product as a dark orange oil ($0.55 \mathrm{~g}, 34 \%$ yield) $\mathrm{R}_{f}=0.45$ (10% EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.70-5.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{4}, \mathrm{C}_{3}\right.$), 3.86 (d, J=4.83 Hz, $2 \mathrm{H}, \mathrm{C}_{2}$), $3.40\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{7}\right.$), $3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{1}\right), 2.21\left(\mathrm{q}, J=6.2,5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5}\right), 1.95(\mathrm{dq}$, $\left.J=8.20,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.11\left(\mathrm{C}_{4}\right), 127.82\left(\mathrm{C}_{3}\right), 73.01\left(\mathrm{C}_{2}\right)$, $57.81\left(\mathrm{C}_{1}\right), 33.14\left(\mathrm{C}_{7}\right), 31.92\left(\mathrm{C}_{5}\right), 30.63\left(\mathrm{C}_{6}\right)$; IR 2930, 2848, 1442, 1239, 1123, $967 \mathrm{~cm}^{-1}$.

(E)-6-methoxy-N-(prop-2-yn-1-yl)hex-4-en-1-amine (SI-07). To a dry round-bottom flask under an atmosphere of argon was added 10 mL DMF, propargyl amine ($0.13 \mathrm{~mL}, 2.0 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.276 \mathrm{~g}, 2.0 \mathrm{mmol})$. After few minutes was added $\mathrm{SI}-06(0.15 \mathrm{~g}, 1.0 \mathrm{mmol})$ and allowed stirred at room temperature for 4 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine solution and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and purified by column chromatography eluted with $0-3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford product as a brown liquid ($128 \mathrm{mg}, 79 \%$ yield) $\mathrm{R}_{f}=0.3\left(3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.70$ (dtt, $J=15.48,6.5 .1 .15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}$), 5.56 (dtt, $J=15.23,6.09,1.26 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{C}_{3}$), 3.85 (d, $J=6.1$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}_{2}$), $3.41\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{8}\right), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{1}\right), 2.69\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{7}\right), 2.19(\mathrm{dq}, J$ $\left.=2.52,1.56, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{10}\right), 2.10\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5}\right), 1.58\left(\mathrm{p}, J=7.61 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6}\right), 1.2(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.03\left(\mathrm{C}_{4}\right)$, $126.63\left(\mathrm{C}_{3}\right), 82.31\left(\mathrm{C}_{9}\right), 73.12\left(\mathrm{C}_{2}\right), 71.23\left(\mathrm{C}_{10}\right)$, $57.73\left(\mathrm{C}_{1}\right), 48.12\left(\mathrm{C}_{8}\right), 38.16\left(\mathrm{C}_{7}\right), 30.07\left(\mathrm{C}_{5}\right), 29.23\left(\mathrm{C}_{6}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for [$\left.\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}\right]^{+}$: 168.1383; observed: 168.1379; IR 3302, 3009, 2963, 2931, 2856, 2824, 1265, 1119, 1018, $972,910 \mathrm{~cm}^{-1}$.

(E)-N-chloro-6-methoxy- N-(prop-2-yn-1-yl)hex-4-en-1-amine (3b). To a cooled ($-78{ }^{\circ} \mathrm{C}$) solution of the amine ($100 \mathrm{mg}, 0.59 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added N-Chlorosuccinamide ($87.8 \mathrm{mg}, 0.66 \mathrm{mmol}$) and was warmed up to $0{ }^{\circ} \mathrm{C}$ over 2 h . upon completion, the reaction was diluted with hexanes (5 mL) and purified by column chromatography. Product was eluted 7.5% $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Hexanes}$ as a colorless oil ($70 \mathrm{mg}, 58 \%$ yield). $\mathrm{R}_{f}=0.4$ ($7.5 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.74-5.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4}\right), 5.59-5.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3}\right), 3.85(\mathrm{dq}, J=5.85,0.94 \mathrm{~Hz}, 2 \mathrm{H}$, C_{2}), $3.80\left(\mathrm{dd}, J=2.4,0.55 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{8}\right.$), $3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{1}\right), 2.98\left(\mathrm{dd}, \mathrm{J}=7.72,6.27 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{7}\right)$, $2.40\left(\mathrm{t}, \mathrm{J}=2.37 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{10}\right), 2.15-2.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5}\right), 1.75-1.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.44\left(\mathrm{C}_{4}\right), 127.06\left(\mathrm{C}_{3}\right), 77.53\left(\mathrm{C}_{9}\right), 74.72\left(\mathrm{C}_{10}\right)$, $73.02\left(\mathrm{C}_{2}\right), 61.33\left(\mathrm{C}_{1}\right), 57.74$ $\left(\mathrm{C}_{8}\right), 52.62\left(\mathrm{C}_{7}\right), 29.27\left(\mathrm{C}_{5}\right), 27.25\left(\mathrm{C}_{6}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NOCl}^{+}\right.$: 202.0993; observed: 202.0991; IR 3297, 2921, 2848, 1442, 1386, 1114, $971,661 \mathrm{~cm}^{-1}$.

1-(methoxymethyl)-2-methylenehexahydro-1 H-pyrrolizine (4b). To a flame dried microwave vessel under argon was added the chloroamine ($60 \mathrm{mg}, 0.30 \mathrm{mmol}$) and AIBN ($9.8 \mathrm{mg}, 0.06$ mmol) in THF (25 mL). Then was added TIPSH ($0.12 \mathrm{~mL}, 0.59$) to the reaction solution. The microwave vessel was sealed and dipped in a hot oil bath ($100{ }^{\circ} \mathrm{C}$) and stirred for 3 h . CAUTION: REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. Solvent was removed under reduced pressure and was purified by column chromatography. Product was eluted with $10 \%\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to obtain the product as orange oil ($42.0 \mathrm{mg}, 84 \%$ yield, $\mathrm{dr} \geq 19: 1$). $\mathrm{R}_{f}=0.4$ ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.23\left(\mathrm{dq}, J=12.13,2.06 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{10}\right), 4.35\left(\mathrm{dd}, J=15.05,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}\right), 4.23(\mathrm{q}, J=$ $\left.6.46 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{C}_{8}\right), 3.87-3.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{7}\right), 3.54-3.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{2}\right), 3.36\left(\mathrm{~d}, \mathrm{~J}=0.61 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{1}\right)$, 3.30 (dt, $J=8.44,5.16,1.22 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7}$), 2.86 (dt, $J=11.65,7.81 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}$), 2.76 (dtd, $J=$ $7.61,5.61,1.73 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}$), 2.38 (dtd, $J=13.28,7.40,5.67 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}$), $2.19-2.10$ (m, 2H, C_{6}), 1.86 (dq, $J=13.79 \mathrm{~Hz}, 1,7.24 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.74\left(\mathrm{C}_{9}\right)$, $112.72\left(\mathrm{C}_{10}\right), 73.33\left(\mathrm{C}_{1}\right), 70.03\left(\mathrm{C}_{2}\right), 59.31\left(\mathrm{C}_{4}\right), 57.42\left(\mathrm{C}_{8}\right), 54.76\left(\mathrm{C}_{7}\right), 48.74\left(\mathrm{C}_{3}\right), 31.02\left(\mathrm{C}_{5}\right)$, $24.81\left(\mathrm{C}_{6}\right)$; HRMS [$\mathrm{M}+\mathrm{H}^{+}$] m/z ES calc'd for [$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}^{+}$: 168.1383; observed: 168.1379; IR $3102,3040,1589,1450,1435,1265,1196,1119,1088,1072 \mathrm{~cm}^{-1}$.

(E)-hex-4-en-3-ol (SI-09). To a cooled ($0^{\circ} \mathrm{C}$) solution of crotonaldehyde ($1.0 \mathrm{~g}, 14.3 \mathrm{mmol}$) in THF (7 mL) was added ethyl magnesium bromide (1 M in THF, $17.1 \mathrm{~mL}, 17.1 \mathrm{mmol}$) dropwise and was stirred for 15 minutes. The reaction was brought to $0^{\circ} \mathrm{C}$ and stirred for additional 1 h . The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(14 \mathrm{ml})$ and the aqueous layer was extracted with

EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Crude product was purified by column chromatography ($20 \% \mathrm{EtOAc} /$ Haxane) to isolate the product as colorless oil (1.35 g , 95% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.62$ (dqd, $J=15.23,6.40,0.85 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}$), 5.44 (ddq, $\left.J=15.27,7.16,1.54 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}\right), 3.92\left(\mathrm{q}, J=6.65 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}\right), 1.86(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 1.67$ (ddd, J $\left.=6.43,1.49,0.53 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{6}\right), 1.60-1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{2}\right), 0.86\left(\mathrm{t}, J=7.46 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{1}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.02\left(\mathrm{C}_{5}\right), 126.80\left(\mathrm{C}_{4}\right), 74.43\left(\mathrm{C}_{3}\right), 30.05\left(\mathrm{C}_{6}\right), 17.63\left(\mathrm{C}_{2}\right), 9.73\left(\mathrm{C}_{1}\right)$. Data matched with the reported data. ${ }^{3}$

(E)-6-hydroxyoct-4-enal (SI-11). To a solution of 4-pentenal ($0.62 \mathrm{~g}, 7.37 \mathrm{mmol}$) and Grubbs' $2^{\text {nd }}$ generation catalyst ($0.12 \mathrm{~g}, 0.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25.4 \mathrm{~mL})$ was added the $\mathrm{SI}-09(1.10 \mathrm{~g}$, 11.06 mmol) drop wise via a syringe pump. The reaction was refluxed at $40^{\circ} \mathrm{C}$ for 18 h . Upon completion, the reaction was cooled to room temperature, and the solvent was removed under reduced pressure. Crude material was purified by column chromatography and the product was eluted with 30% EtOAc/Hexane as orange solid ($322 \mathrm{mg}, 31 \%$ yield). $\mathrm{R}_{f}=0.3(30 \%$ EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77\left(\mathrm{t}, J=1.39 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}\right.$), 5.65 (dt, $J=15.10$, $6.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}$), 5.53 (dd, $J=15.43,6.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}$), $3.97\left(\mathrm{q}, J=6.52 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}\right), 2.56-$ $2.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{7}\right), 2.38\left(\mathrm{q}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6}\right), 1.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.52$ (dtd, $J=17.12,13.66$, $6.38 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{2}$), $0.89\left(\mathrm{t}, \mathrm{J}=7.45 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{1}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.80\left(\mathrm{C}_{8}\right)$, $134.11\left(\mathrm{C}_{5}\right), 129.36\left(\mathrm{C}_{4}\right), 74.10\left(\mathrm{C}_{3}\right), 43.11\left(\mathrm{C}_{6}\right), 30.09\left(\mathrm{C}_{7}\right), 24.67\left(\mathrm{C}_{2}\right), 9.69\left(\mathrm{C}_{1}\right)$. Characterization data matched with the reported data. ${ }^{4}$

(E)-8-(prop-2-yn-1-ylamino)oct-4-en-3-ol (SI-12). To a solution of the SI-11 (322 mg, 2.26 mmol) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added propargylamine ($0.16 \mathrm{~mL}, 2.49 \mathrm{mmol}$) and stirred for 3 h to from the aldimine. Then the reaction mixture was carefully treated with $\mathrm{NaBH}_{4}(137.0 \mathrm{mg}, 3.62$ mmol) and the reaction was run for additional 2 h . Upon completion reaction was quenched with $1 \mathrm{M} \mathrm{NaOH}(15 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 15 \mathrm{~mL})$. The combined organic layer was washed with brine solution (20 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by column chromatography and eluted with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was obtained as yellow oil ($280 \mathrm{mg}, 68 \%$ yield). $\mathrm{R}_{f}=0.3$ ($30 \% \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.66-5.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4}\right), 5.46$ (ddt, $J=15.36,6.99,1.36 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}$), 3.95 (q, J=6.61 Hz, 1H, C3), $3.41\left(\mathrm{~d}, J=2.48 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{9}\right), 2.69\left(\mathrm{t}, J=7.23 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{8}\right), 2.20(\mathrm{t}, J=$

[^2]$2.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{11}$), 2.07 (q, $J=5.61 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6}$), 1.65 (s, 1H, N), 1.53 (ddq, $J=14.18,13.65$, $\left.7.12 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6}, \mathrm{C}_{7}\right), 0.88\left(\mathrm{t}, \mathrm{J}=7.45 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{1}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 133.41\left(\mathrm{C}_{4}\right)$, $131.32\left(\mathrm{C}_{5}\right), 82.01\left(\mathrm{C}_{10}\right)$, $74.31\left(\mathrm{C}_{3}\right), 71.43\left(\mathrm{C}_{11}\right), 48.04\left(\mathrm{C}_{9}\right), 38.03\left(\mathrm{C}_{8}\right), 30.12\left(\mathrm{C}_{6}\right), 29.91\left(\mathrm{C}_{7}\right)$, $29.11\left(\mathrm{C}_{2}\right), 9.84\left(\mathrm{C}_{1}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}^{+}\right.$: 182.1539; observed: 182.1534; IR 3302, 3009, 2963, 2932, 2839, 2250, 1597, 1504, 1481, 1265, 1119, 1003, 972 cm^{-1}.

(E)-8-(chloro(prop-2-yn-1-yl)amino)oct-4-en-3-one (3c). To a cooled ($-78^{\circ} \mathrm{C}$) solution of the amine ($247 \mathrm{mg}, 1.363 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added N -Chlorosuccinamide ($200 \mathrm{mg}, 1.5$ mmol) and was warmed up to $0^{\circ} \mathrm{C}$ over 2 h and run for an additional 1 h . Then to the reaction mixture at $0^{\circ} \mathrm{C}$ was added DMP ($867 \mathrm{mg}, 2 \mathrm{mmol}$) and stirred for 18 h . upon completion, the reaction was purified by column chromatography. Product was eluted $20 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{Hexanes}$ as a colorless oil ($187 \mathrm{mg}, 64 \%$ yield). $\mathrm{R}_{f}=0.6$ ($40 \% \mathrm{Et}_{2} \mathrm{O} /$ Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.81 (dt, $J=15.99,6.84 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}$), 6.11 (d, $J=15.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}$), $3.80(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}$, C_{9}), $2.98\left(\mathrm{t}, J=6.8, \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{8}\right.$), $2.54\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{2}\right), 2.4\left(\mathrm{t}, J=2.4,0.66 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{11}\right)$, $2.31-2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6}\right), 1.81\left(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{7}\right), 1.07\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{1}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.01\left(\mathrm{C}_{3}\right), 145.61\left(\mathrm{C}_{5}\right), 130.52\left(\mathrm{C}_{4}\right), 77.31\left(\mathrm{C}_{10}\right), 74.94\left(\mathrm{C}_{11}\right), 60.87\left(\mathrm{C}_{9}\right), 52.72$ $\left(\mathrm{C}_{8}\right), 33.35\left(\mathrm{C}_{2}\right), 29.34\left(\mathrm{C}_{6}\right), 26.23\left(\mathrm{C}_{7}\right), 8.08\left(\mathrm{C}_{1}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[^{[11} \mathrm{H}_{17} \mathrm{NOCl}^{+}\right.$: 214.0993; observed: 214.0992; IR 3301, 2930, 2844, 1675, 1628, 1446, 1477, 1196, 1100, 968, $661 \mathrm{~cm}^{-1}$.

1-(6-methyl-2,3,5,7a-tetrahydro-1 H-pyrrolizin-7-yl)propan-1-one (4c). To a flame dried microwave vessel under argon was added the chloroamine ($22.0 \mathrm{mg}, 0.103 \mathrm{mmol}$) and AIBN $(3.40 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF (11.4 mL). Then was added TIPSH ($42.2 \mu \mathrm{~L}, 0.206 \mathrm{mmol}$ to the reaction solution. The microwave tube was sealed and, and the reaction tube was dipped in a hot oil bath ($100{ }^{\circ} \mathrm{C}$) and stirred for 3 h . CAUTION: REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. Upon completion solvent was removed under reduced pressure and was purified by column chromatography. Product was eluted with $10 \%\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to obtain the product as orange oil ($16 \mathrm{mg}, 87 \%$ yield). $\mathrm{R}_{f}=0.25\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.21\left(\mathrm{t}, \mathrm{J}=7.88 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}\right)$, 4.62 (d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}$), 3.80 (dd, $J=11.6,5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{9}, \mathrm{C}_{8}$), $2.98-2.92$ (m, 1H, C 8), 2.58 (qt, $J=7.1,1.64 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{2}$), 2.46 ($\mathrm{m}, ~ J=13.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}$), $2.12-2.00\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{11}\right.$, C_{7}), $1.80\left(\mathrm{dq}, J=14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}\right.$), $1.07\left(\mathrm{t}, J=8.69 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{1}\right)$; ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 196.66\left(\mathrm{C}_{3}\right), 142.15\left(\mathrm{C}_{10}\right), 133.59\left(\mathrm{C}_{4}\right), 74.4\left(\mathrm{C}_{5}\right), 64.6\left(\mathrm{C}_{9}\right), 56.4\left(\mathrm{C}_{8}\right), 36.0\left(\mathrm{C}_{2}\right), 31.3$ $\left(\mathrm{C}_{6}\right)$, $25.1\left(\mathrm{C}_{11}\right)$, $14.0\left(\mathrm{C}_{7}\right), 7.3\left(\mathrm{C}_{1}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}\right]^{+}$: 180.1383; observed: 180.1378; IR 3071, 3017, 1612, 1597, 1504, 1481, 1265, $1018 \mathrm{~cm}^{-1}$.

(E)-5-phenylpent-4-enoic acid (SI-15). 4-pentenoic acid ($0.5 \mathrm{~g}, 4.99 \mathrm{mmol}$), and styrene (1.15 $\mathrm{mL}, 9.99 \mathrm{mmol}$) with Grubbs' ${ }^{\text {nd }}$ generation catalyst ($0.085 \mathrm{~g}, 0.10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was heated to reflux for 12 h . Upon completion the reaction mixture was cooled to room temperature and solvent was removed under reduced pressure. The dark green solid crude was dissolved in EtOAc (17 mL) and extracted with $\mathrm{NaHCO}_{3}(3 \times 34 \mathrm{~mL})$. Combined aqueous layer was acidified to pH 1 with $10 \% \mathrm{HCl}$ and then extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic extract was washed with brine and dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure to give a pale yellow solid ($0.53 \mathrm{~g}, 60 \%$ yield). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR matched reported spectra. ${ }^{5}$

(E)-5-phenyl- N -(prop-2-yn-1-yl)pent-4-enamide (SI-16). To a cooled solution of the acid (0.53 $\mathrm{g}, 2.98 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $(\mathrm{COCl})_{2}(0.51 \mathrm{~mL}, 5.97 \mathrm{mmol})$ followed by DMF (2.2 $\mu \mathrm{L}, 0.03 \mathrm{mmol})$. The reaction mixture was then warmed up to room temperature and was stirred for 1 h . upon completion, the solvent was removed under reduced pressure and the product was obtained as green oil. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the crude material in THF (11 mL) was added propargyl amine ($0.29 \mathrm{~mL}, 4.31 \mathrm{mmol}$) drop wise using a $500 \mu \mathrm{~L}$ micro syringe followed by $\mathrm{Et}_{3} \mathrm{~N}$ ($0.60 \mathrm{~mL}, 4.32 \mathrm{mmol}$). The reaction was stirred for 30 minutes, quenched with water and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layer was washed with brine and dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure and the crude material was purified by column chromatography (EtOAc/hexane, 20\% to 80%) to give a yellow solid ($0.69 \mathrm{~g}, 98 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.30(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{11}$), $7.24-7.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{9}\right), 6.44\left(\mathrm{~d}, J=15.83,1 \mathrm{H}, \mathrm{C}_{5}\right), 6.20(\mathrm{dt}, J=15.80,6.88$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{4}\right), 5.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}), 4.06$ (dd, $\left.J=5.24,2.53 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{12}\right), 2.56\left(\mathrm{q}, J=7.39 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{3}\right)$, $2.37\left(\mathrm{t}, \mathrm{J}=2.77 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{2}\right), 2.20\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{14}\right) ;{ }^{13} \mathrm{C}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.81\left(\mathrm{C}_{1}\right)$, $137.32\left(\mathrm{C}_{6}\right), 131.22\left(\mathrm{C}_{7}, \mathrm{C}_{11}\right), 128.51\left(\mathrm{C}_{5}\right), 127.23\left(\mathrm{C}_{8}, \mathrm{C}_{10}\right), 126.11\left(\mathrm{C}_{4}\right), 79.52\left(\mathrm{C}_{13}\right), 71.65\left(\mathrm{C}_{14}\right)$, $36.01\left(\mathrm{C}_{12}\right)$, $29.22\left(\mathrm{C}_{2}\right), 28.80\left(\mathrm{C}_{3}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}\right]^{+}$: 214.1226; observed: 214.1222; IR (neat) 3293, 3029, 2921, 1634, 1542, 966, $690 \mathrm{~cm}^{-1}$.

[^3]
(E)-5-phenyl-N-(prop-2-yn-1-yl)pent-4-en-1-amine (SI-17). To a cooled ($0^{\circ} \mathrm{C}$) suspension of the amide ($0.3 \mathrm{~g}, 1.4 \mathrm{mmol}$) in THF (10 mL) was added $\mathrm{LiAlH}_{4}(0.13 \mathrm{~g}, 3.5 \mathrm{mmol})$ and the reaction was heated to $50^{\circ} \mathrm{C}$ and stirred for 12 h . Upon completion, the reaction was cooled to $0^{\circ} \mathrm{C}$ and water (5 mL) was added drop wise followed by aqueous solution of Rochelle salt (15 mL). The reaction mixture was vigorously stirred at room temperature for 20 minutes. The aqueous layer was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic layer was washed with brine and dried with anhydrous MgSO_{4} and concentrated under reduced pressure. Crude product was purified by column chromatography (EtOAc/hexane containing 1\% triethylamine, 5% to 25%) to isolate the product as yellow oil ($0.152 \mathrm{~g}, 55 \%$ yield). $\mathrm{R}_{f}=0.5$ ($5 \% \mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.31\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{11}\right), 7.25-7.17(\mathrm{~m}, 1 \mathrm{H}$, C_{9}), 6.41 (d, $J=15.82 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}$), 6.22 (dt, $J=15.84,6.85 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}$), $3.44(\mathrm{~d}, J=2.44 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}_{12}\right), 2.75\left(\mathrm{t}, J=7.19 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{1}\right), 2.28\left(\mathrm{q}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{3}\right), 2.21(\mathrm{t}, J=2.45 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{14}\right), 1.67\left(\mathrm{p}, J=7.29 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{2}\right), 1.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz, CDCl $\left.{ }_{3}\right) \delta 137.69\left(\mathrm{C}_{6}\right)$, $130.21\left(\mathrm{C}_{5}\right), 128.49\left(\mathrm{C}_{7}, \mathrm{C}_{11}\right), 128.39\left(\mathrm{C}_{9}\right), 126.90\left(\mathrm{C}_{4}\right), 125.94\left(\mathrm{C}_{8}, \mathrm{C}_{10}\right), 82.31\left(\mathrm{C}_{13}\right), 71.24\left(\mathrm{C}_{14}\right)$, $48.15\left(\mathrm{C}_{12}\right)$, $38.17\left(\mathrm{C}_{1}\right), 30.72\left(\mathrm{C}_{3}\right), 29.46\left(\mathrm{C}_{2}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}\right]^{+}$: 200.1434; observed: 200.1429; IR (neat) 3306, 2931, 2851, 1449, 1125, 964, 741, $630 \mathrm{~cm}^{-1}$.

(E)- N -chloro-5-phenyl- N -(prop-2-yn-1-yl)pent-4-en-1-amine (trans-3d). To a solution of the amine ($0.2 \mathrm{~g}, 1.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen was added N chlorosuccinamide ($0.15 \mathrm{~g}, 1.10 \mathrm{mmol}$) in portions over 5 minutes. The reaction mixture was stirred for 2 hours at the same temperature, and the solvent was evaporated under vacuum. The crude product was purified by column chromatography, product was eluted with $3-5 \%$ EtOAc/Hexanes as a colorless oil ($0.15 \mathrm{~g}, 63 \%$ yield). $\mathrm{R}_{f}=0.7$ ($10 \% \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.25\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{11}\right.$), $7.20\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}\right), 6.42(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}$), 6.21 (dt, $J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}$), 3.84 (d, $J=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{12}$), 3.05 (t, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}_{1}$), $2.41\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{14}\right), 2.30\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{3}\right), 1.83(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$ \& $137.57\left(\mathrm{C}_{6}\right)$, $130.62\left(\mathrm{C}_{5}\right)$, $129.67\left(\mathrm{C}_{4}\right), 128.48\left(\mathrm{C}_{7}, \mathrm{C}_{11}\right), 126.97$ $\left(\mathrm{C}_{9}\right), 125.95\left(\mathrm{C}_{8}, \mathrm{C}_{10}\right), 77.49\left(\mathrm{C}_{13}\right)$, $74.76\left(\mathrm{C}_{14}\right)$, $61.25\left(\mathrm{C}_{12}\right)$, $52.62\left(\mathrm{C}_{1}\right), 29.93\left(\mathrm{C}_{3}\right), 27.48\left(\mathrm{C}_{2}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NCl}^{+}\right.$: 234.1044; observed: 234.1046; IR (neat) 3297, 2926, 1606, 1498, 1446, 1252, 967, $691 \mathrm{~cm}^{-1}$.

(Z)-5-phenyl-N-(prop-2-yn-1-yl)pent-4-en-1-amine (SI-19). To a solution of propargylamine ($0.96 \mathrm{~mL}, 15.0 \mathrm{mmol}$) in DMF (20 mL) under nitrogen was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38$ $\mathrm{g}, 10.0 \mathrm{mmol})$ followed by dropwise addition of $\mathrm{SI}-18(1.12 \mathrm{~g}, 5.0 \mathrm{mmol})$ in DMF (10 mL). The reaction mixture was stirred at room temperature for 6 h . Then the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(25 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with brine solution $(2 \times 25 \mathrm{~mL})$. The separated organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and purified by flash chromatography, the product was eluted with $25-30 \%$ EtOAc/Hexanes as colorless liquid ($0.42 \mathrm{~g}, 52 \%$ yield). $\mathrm{R}_{f}=0.3$ (20% EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.14\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}\right.$), 6.44 (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}$), $5.67\left(\mathrm{dt}, J=11.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}\right), 3.41\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{12}\right), 2.72$ (t, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{1}\right), 2.39\left(\mathrm{qd}, J=7.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{3}\right), 2.20\left(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{14}\right), 1.66(\mathrm{p}, J=$ $\left.7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{2}\right), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.55\left(\mathrm{C}_{6}\right), 132.23$ $\left(\mathrm{C}_{5}\right), 129.28\left(\mathrm{C}_{9}\right), 128.71\left(\mathrm{C}_{7}, \mathrm{C}_{11}\right), 128.13\left(\mathrm{C}_{8}, \mathrm{C}_{10}\right), 126.53\left(\mathrm{C}_{4}\right), 82.25\left(\mathrm{C}_{13}\right), 71.19\left(\mathrm{C}_{14}\right), 48.20$ $\left(\mathrm{C}_{12}\right), 38.14\left(\mathrm{C}_{1}\right), 30.07\left(\mathrm{C}_{3}\right), 26.30\left(\mathrm{C}_{2}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}\right]^{+}$: 200.1434; observed: 200.1433; IR (neat) 3300, 2922, 1493, 1441, 1115, 917, $698 \mathrm{~cm}^{-1}$.

(Z)-N-chloro-5-phenyl-N-(prop-2-yn-1-yl)pent-4-en-1-amine (cis-3d). To a solution of the amine ($0.2 \mathrm{~g}, 1.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen was added N chlorosuccinamide ($0.15 \mathrm{~g}, 1.10 \mathrm{mmol}$) in portions over 5 minutes. The reaction mixture was stirred for 2 hours at the same temperature, and the solvent was evaporated under vacuum. The crude product was purified by column chromatography, product was eluted with 3-5\% EtOAc/Hexanes as a colorless oil ($0.17 \mathrm{~g}, 72 \%$ yield). $\mathrm{R}_{f}=0.7$ (10% EtOAc/Hexane). H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.17\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}\right), 6.46\left(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}\right), 5.66$ (dt, $\left.J=11.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}\right), 3.80\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{12}\right), 3.01\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{1}\right), 2.47-$ $2.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{3}, \mathrm{C}_{14}\right), 1.80\left(\mathrm{p}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.45\left(\mathrm{C}_{6}\right)$, $131.71\left(\mathrm{C}_{5}\right), 129.64\left(\mathrm{C}_{9}\right), 128.72\left(\mathrm{C}_{7}, \mathrm{C}_{11}\right), 128.16\left(\mathrm{C}_{8}, \mathrm{C}_{10}\right), 126.60\left(\mathrm{C}_{4}\right), 77.44\left(\mathrm{C}_{13}\right), 74.77\left(\mathrm{C}_{14}\right)$, $61.42\left(\mathrm{C}_{12}\right), 52.57\left(\mathrm{C}_{1}\right), 28.14\left(\mathrm{C}_{3}\right), 25.68\left(\mathrm{C}_{2}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} \mathrm{ES} \mathrm{calc'd} \mathrm{for}\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NCl}\right]^{+}$: 234.1044; observed: 234.1042; IR (neat) 3292, 2930, 2861, 1606, 1498, 1446, 1330, 1071, 959 cm^{-1}.

2-methylene-1-phenylhexahydro-1H-pyrrolizine (4d). To a flame dried microwave vessel under argon was added trans-3d ($23.3 \mathrm{mg}, 0.1 \mathrm{mmol}$) and AIBN ($3.3 \mathrm{mg}, 0.02 \mathrm{mmol}$) in THF $(12 \mathrm{~mL})$. Then was added TIPSH ($41.2 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) to the reaction solution. The microwave vessel was sealed and, and the reaction tube was dipped in a hot oil bath $\left(100^{\circ} \mathrm{C}\right)$ and stirred for 2 h . CAUTION: REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME

HOOD BEHIND A BLAST SHIELD. Upon completion solvent was removed under reduced pressure and was purified by column chromatograph. Product was eluted with $3-4 \%$ ($\mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to obtain the product as colorless oil ($13.8 \mathrm{mg}, 69 \%$ yield, dr 95:5). $\mathrm{R}_{\mathrm{f}}=0.35$ (10% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.13\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}\right.$), $5.01(\mathrm{~d}, \mathrm{~J}$ $\left.=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{14}\right), 4.60\left(\mathrm{q}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{14}\right), 3.92\left(\mathrm{dd}, J=15.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{12}\right), 3.60-3.53$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{4}\right), 3.52\left(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{12}\right), 3.33\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}\right), 3.15(\mathrm{tt}, J=7.6,4.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}_{1}$), 2.74-2.60(m,1H, C 1), $2.07-1.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{2}, \mathrm{C}_{3}\right), 1.72\left(\mathrm{tt}, J=7.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.90\left(\mathrm{C}_{6}\right), 141.54\left(\mathrm{C}_{13}\right), 128.66\left(\mathrm{C}_{8}, \mathrm{C}_{10}\right), 128.50\left(\mathrm{C}_{7}, \mathrm{C}_{11}\right)$, $126.53\left(\mathrm{C}_{9}\right), 107.17\left(\mathrm{C}_{14}\right), 73.71\left(\mathrm{C}_{4}\right), 59.45\left(\mathrm{C}_{12}\right), 55.97\left(\mathrm{C}_{5}\right), 54.85\left(\mathrm{C}_{1}\right), 29.74\left(\mathrm{C}_{3}\right), 25.02\left(\mathrm{C}_{2}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}\right]^{+}$: 200.1434; observed: 200.1430; IR (neat) 3026, 2962, 1453, 1097, 890, 750, 696, $518 \mathrm{~cm}-1$.

2-methylene-1-phenylhexahydro-1H-pyrrolizine (4d). To a flame dried microwave vessel under argon was added the cis-3d ($46.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and AIBN ($6.6 \mathrm{mg}, 0.04 \mathrm{mmol}$) in THF (16 mL). Then was added TIPSH ($82.3 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) to the reaction solution. The microwave vessel was sealed and, and the reaction tube was dipped in a hot oil bath ($100^{\circ} \mathrm{C}$) and stirred for 2 h . CAUTION: REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. Upon completion solvent was removed under reduced pressure and was purified by column chromatograph. Product was eluted with $3-4 \%$ ($\mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to obtain the product as colorless oil ($34.4 \mathrm{mg}, 86 \%$ yield, dr 91:9). Experimental data matches with 4d obtained from trans-3d (trans-3d and cis-3d produced same diastereomer as major product).

N-(prop-2-yn-1-yl)hex-5-en-1-amine (SI-21). To a solution of propargylamine ($1.65 \mathrm{~mL}, 30.0$ mmol) in DMF (30 mL) under nitrogen was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20.0 \mathrm{mmol})$ followed by dropwise addition of SI-20 ($1.62 \mathrm{~g}, 10.0 \mathrm{mmol}$) in DMF (10 mL). The reaction mixture was stirred at room temperature for 6 h . Then the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic layer was washed with brine solution $(2 \times 25 \mathrm{~mL})$. The separated organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and purified by flash chromatography, the product was eluted with $20-25 \%$ $\mathrm{EtOAc} /$ Hexanes as colorless liquid ($0.66 \mathrm{~g}, 49 \%$ yield). $\mathrm{R}_{f}=0.3$ ($20 \% \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.80\left(\mathrm{ddt}, J=16.9,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}\right), 5.05-4.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{9}\right), 3.42(\mathrm{~d}, \mathrm{~J}$ $=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{3}$), $2.69\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{4}\right), 2.20\left(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{1}\right), 2.07(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C}_{7}$), $1.55-1.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{5}, \mathrm{C}_{6}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.67\left(\mathrm{C}_{8}\right), 114.51\left(\mathrm{C}_{9}\right)$, $82.33\left(\mathrm{C}_{2}\right)$, $71.11\left(\mathrm{C}_{1}\right), 48.48\left(\mathrm{C}_{3}\right), 38.16\left(\mathrm{C}_{4}\right), 33.57\left(\mathrm{C}_{7}\right), 29.27\left(\mathrm{C}_{5}\right), 26.53\left(\mathrm{C}_{6}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right]$ m / z ES calc'd for $\left[\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}\right]^{+}$: 138.1277; observed: 138.1272; IR (neat) 3303, 3076, 2928, 1640, 1117, 910, $631 \mathrm{~cm}^{-1}$.

N-chloro- \mathbf{N}-(prop-2-yn-1-yl)hex-5-en-1-amine (9). To a stirred solution of SI-21 (0.41 g, 3.00 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen was added N -chlorosuccinamide ($0.44 \mathrm{~g}, 3.30$ mmol) in portions over 10 minutes. The reaction mixture was stirred at same temperature for 2 hours, and the solvent was evaporated under vacuum. The crude product was purified by column chromatography, product was eluted with 4-8\% EtOAc/Hexanes as a colorless oil (0.41 $\mathrm{g}, 81 \%$ yield). $\mathrm{R}_{f}=0.8$ ($10 \% \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83-5.79$ (m, 1H, C_{8}), $5.07-4.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{9}\right), 3.81\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{3}\right), 3.00\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{4}\right), 2.41(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{1}$), $2.10\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{7}\right), 1.68-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5}\right), 1.48-1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.43\left(\mathrm{C}_{8}\right), 114.74\left(\mathrm{C}_{9}\right), 77.52\left(\mathrm{C}_{2}\right), 74.71\left(\mathrm{C}_{1}\right), 61.80\left(\mathrm{C}_{3}\right), 52.54$ $\left(\mathrm{C}_{4}\right)$, $33.41\left(\mathrm{C}_{7}\right), 27.35\left(\mathrm{C}_{5}\right), 25.91\left(\mathrm{C}_{6}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} \mathrm{ES}$ calc'd for $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NCI}^{+}\right.$: 172.0880; observed: 172.0888; IR (neat) 3300, 2931, 2853, 1613, 1454, 917, $638 \mathrm{~cm}^{-1}$.

(E)-6-phenyl-N-(prop-2-yn-1-yl)hex-5-en-1-amine (SI-23). To a stirred solution of propargylamine ($0.64 \mathrm{~mL}, 10.00 \mathrm{mmol}$) in DMF (20 mL) under nitrogen was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38$ $\mathrm{g}, 10.0 \mathrm{mmol}$) followed by dropwise addition of $\mathbf{S I - 2 2}(1.43 \mathrm{~g}, 5.00 \mathrm{mmol})$ in of DMF (10 mL). The reaction mixture was stirred at room temperature for 6 h . Then the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic layer was washed with Brine solution ($2 \times 15 \mathrm{~mL}$). The separated organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and purified by column chromatography eluted with 10$15 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to afford product as light yellow liquid ($0.64 \mathrm{~g}, 60 \%$ yield). $\mathrm{R}_{f}=0.3$ (20\% EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31$ (dt, $J=15.18,7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{14}, \mathrm{C}_{15}$), 7.19 (t, $\left.J=7.14 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{C}_{13}\right), 6.39\left(\mathrm{~d}, J=15.84 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}\right), 6.22(\mathrm{dt}, J=15.79,6.86 \mathrm{~Hz}, 1 \mathrm{H}$, C_{8}), $3.43\left(\mathrm{~d}, J=2.38 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{3}\right), 2.72\left(\mathrm{t}, J=6.62 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{4}\right), 2.26-2.20\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{7}, \mathrm{C}_{1}\right), 1.58$ $-1.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{5}, \mathrm{C}_{6}\right), 1.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.77\left(\mathrm{C}_{10}\right), 130.61\left(\mathrm{C}_{13}\right)$, $130.05\left(\mathrm{C}_{9}\right)$, $128.45\left(\mathrm{C}_{11}, \mathrm{C}_{15}\right), 126.81\left(\mathrm{C}_{8}\right), 125.90\left(\mathrm{C}_{12}, \mathrm{C}_{14}\right), 82.32\left(\mathrm{C}_{2}\right), 71.18\left(\mathrm{C}_{1}\right), 48.49\left(\mathrm{C}_{3}\right)$, $38.17\left(\mathrm{C}_{4}\right), 32.82\left(\mathrm{C}_{7}\right), 29.36\left(\mathrm{C}_{5}\right), 26.99\left(\mathrm{C}_{6}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}\right]^{+}$: 214.1591; observed: 214.1590; IR 3301, 2923, 2856, 1605, 1454, 1256, 962, $743 \mathrm{~cm}^{-1}$.

(E)-N-chloro-6-phenyl- N -(prop-2-yn-1-yl)hex-5-en-1-amine (12). To a stirred solution of $\mathrm{SI}-23$ $(0.85 \mathrm{~g}, 4.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen was added N -chlorosuccinamide $(0.53 \mathrm{~g}, 4.00 \mathrm{mmol})$ in portions over 10 minutes. The reaction mixture was stirred at same
temperature for 2 h , and the solvent was evaporated under vacuum. The crude product was purified by column chromatography, product was eluted with $3-5 \%$ EtOAc/Hexanes as a colorless oil ($0.79 \mathrm{~g}, 80.7 \%$ yield). $\mathrm{R}_{f}=0.7$ ($10 \% \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.37-7.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}\right), 7.20\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{13}\right), 6.40\left(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}\right)$, 6.22 ($\mathrm{td}, J=11.67,7.28 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}$), $3.83\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{3}\right), 3.03\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{4}\right)$, $2.41\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{1}\right), 2.25\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{7}\right), 1.70\left(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6}\right), 1.60-$ $1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.72\left(\mathrm{C}_{10}\right), 130.35\left(\mathrm{C}_{9}\right), 130.20\left(\mathrm{C}_{13}\right), 128.47$ $\left(\mathrm{C}_{11}, \mathrm{C}_{15}\right), 126.86\left(\mathrm{C}_{8}\right), 125.92\left(\mathrm{C}_{12}, \mathrm{C}_{14}\right), 77.33\left(\mathrm{C}_{2}\right), 74.73\left(\mathrm{C}_{1}\right), 61.79\left(\mathrm{C}_{3}\right), 52.52\left(\mathrm{C}_{4}\right), 32.67$ $\left(\mathrm{C}_{7}\right), 27.38\left(\mathrm{C}_{6}\right), 26.37\left(\mathrm{C}_{5}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} \mathrm{ES}$ calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NCl}\right]^{+}: 248.1201$; observed: 248.1200; IR 3292, 2938, 2857, 1601, 1446, 1256, 971, $635 \mathrm{~cm}^{-1}$.

2-methylene-1-phenyloctahydroindolizine (13). To a flame dried microwave vessel under argon was added the chloroamine ($61.8 \mathrm{mg}, 0.25 \mathrm{mmol}$) and AIBN ($8.2 \mathrm{mg}, 0.05 \mathrm{mmol}$) in THF $(18.0 \mathrm{~mL})$. Then was added TIPSH ($0.10 \mathrm{~mL}, 0.50 \mathrm{mmol}$) to the reaction solution. The vessel was sealed and was dipped in a hot oil bath $\left(100^{\circ} \mathrm{C}\right)$ and stirred for 2 h . CAUTION: REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. The reaction mixture was evaporated and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ and was subjected to acetylation (for the ease of separation of reduced product and 13) (with 0.028 mL of $\mathrm{Ac}_{2} \mathrm{O}$ and 0.08 mL of $\mathrm{Et}_{3} \mathrm{~N}$, for about 0.5 h). The reaction mixture was evaporated, was added $10 \% \mathrm{HCl}(4 \mathrm{~mL})$. The aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 6 \mathrm{~mL})$, the separated aqueous layer was basified to $\mathrm{pH} \sim 9$ using 6 N NaOH and the cyclized product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 8 \mathrm{~mL}$). Combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and excess solvent was removed under reduced pressure. Crude product was purified by column chromatograph (basic alumina) (6-10\% EtOAc/Hexanes to obtain as colorless oil ($21.5 \mathrm{mg}, 40 \%$ yield: dr 95:5). $\mathrm{R}_{f}=$ 0.35 ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.14\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}\right.$, C_{16}), $5.03\left(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{10}\right), 4.67-4.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{10}\right), 3.81\left(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7}\right), 3.34$ (dd, $\left.J=10.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}\right), 3.17-3.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{7}, \mathrm{C}_{3}\right), 2.14-1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{3}, \mathrm{C}_{5}\right), 1.76(\mathrm{td}, J$ $\left.=11.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}\right), 1.70-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{2}\right), 1.33-1.12\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6}, \mathrm{C}_{1}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.25\left(\mathrm{C}_{11}\right), 141.21\left(\mathrm{C}_{8}\right), 129.14\left(\mathrm{C}_{12}, \mathrm{C}_{16}\right), 128.24\left(\mathrm{C}_{13}, \mathrm{C}_{15}\right), 126.48\left(\mathrm{C}_{14}\right), 106.96$ $\left(\mathrm{C}_{10}\right), 72.40\left(\mathrm{C}_{5}\right), 60.43\left(\mathrm{C}_{7}\right), 56.91\left(\mathrm{C}_{9}\right), 53.12\left(\mathrm{C}_{3}\right), 29.31\left(\mathrm{C}_{6}\right), 25.54\left(\mathrm{C}_{1}\right), 24.05\left(\mathrm{C}_{2}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}\right]^{+}$: 214.1590; observed: 214.1595; IR (neat) 2928, 1496, 1449, 1376, 1131, 750.
(E)-N-(6-phenylhex-5-en-1-yl)-N-(prop-2-yn-1-yl)acetamide (14). The combined $\mathrm{Et}_{2} \mathrm{O}$ layer from above was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed under reduced pressure. Crude product was purified by column chromatograph (10-15\% EtOAc/Hexanes to obtain as colorless oil ($28.1 \mathrm{mg}, 44 \%$ yield; mixture of rotamers $\mathrm{A} \& \mathrm{~B}$). $\mathrm{R}_{f}=0.50$ (40% EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.37-7.25\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{11}, \mathrm{C}_{12}\right.$), $7.22-7.16(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C}_{10}$), 6.39 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}$), $6.27-6.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5}\right), 4.20\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1.26 \mathrm{H}, \mathrm{C}_{13}\right.$ of rotamer A), 3.99 (d, $J=2.3 \mathrm{~Hz}, 0.81 \mathrm{H}, \mathrm{C}_{13}$ of rotamer B), $3.44\left(\mathrm{dt}, J=15.6,7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{1}\right.$), 2.31

- $2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{4}\right), 2.17\left(\mathrm{~d}, J=2.17 \mathrm{~Hz}, 1.66 \mathrm{H}, \mathrm{C}_{17}, \mathrm{C}_{15}\right.$ of rotamer A), $2.11\left(\mathrm{~s}, 1.75 \mathrm{H}, \mathrm{C}_{17}, \mathrm{C}_{15}\right.$ of rotamer B), $1.72-1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{2}\right), 1.57-1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers A, B) $\delta 170.2,169.9\left(\mathrm{C}_{16}\right)$, 137.60, $137.48\left(\mathrm{C}_{7}\right)$, 130.60, $130.44\left(\mathrm{C}_{6}\right), 130.15$, 129.77 (C_{10}), 128.52, $128.45\left(\mathrm{C}_{8}, \mathrm{C}_{12}\right)$, 127.04, $126.83\left(\mathrm{C}_{5}\right), 125.92\left(\mathrm{C}_{9}, \mathrm{C}_{11}\right)$, 79.27, $78.72\left(\mathrm{C}_{14}\right)$, 72.42, $71.49\left(\mathrm{C}_{15}\right)$, 47.94, $45.98\left(\mathrm{C}_{13}\right)$, 38.32, $34.07\left(\mathrm{C}_{1}\right)$, 32.68, 32.58 ($\left.\mathrm{C}_{4}\right)$, 27.85, $27.06\left(\mathrm{C}_{17}\right)$, 26.52, $26.43\left(\mathrm{C}_{3}\right), 21.77,21.37\left(\mathrm{C}_{2}\right)$; HRMS $\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NONa}\right]^{+}$: 278.1515; observed: 278.1505; IR 3353, 3292, 2956, 2926, 1640, 1485, 1282, $967 \mathrm{~cm}^{-1}$.

(Z)-N-(but-3-yn-1-yl)-5-phenylpent-4-en-1-amine (SI-24). To a solution of 1-amino-3butyne ($0.66 \mathrm{~mL}, 8.0 \mathrm{mmol}$) in DMF (20 mL) under nitrogen was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{~g}, 8.0 \mathrm{mmol}$) followed by dropwise addition of $\mathbf{S I - 1 8}(0.89 \mathrm{~g}, 4.0 \mathrm{mmol})$ in DMF (5 mL). The reaction mixture was stirred at room temperature for 6 h . Then the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layer was washed with brine solution $(2 \times 25 \mathrm{~mL})$. The separated organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and purified by flash chromatography, the product was eluted with 25-30\% EtOAc/Hexanes as colorless liquid ($0.34 \mathrm{~g}, 42 \%$ yield). $\mathrm{R}_{f}=0.3$ (20% EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.17$ (m,5H, $\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}$), 6.43 (d, J $=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}$), $5.66\left(\mathrm{dt}, J=11.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}\right), 2.75\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{1}\right), 2.64(\mathrm{t}, \mathrm{J}=$ $7.24 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{12}$), $2.43-2.31\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{3}, \mathrm{C}_{13}\right), 2.01-1.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{15}\right), 1.64(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, C_{2}), $1.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.56\left(\mathrm{C}_{6}\right), 132.29\left(\mathrm{C}_{5}\right), 129.25\left(\mathrm{C}_{9}\right), 128.71$ $\left(\mathrm{C}_{7}, \mathrm{C}_{11}\right), 128.12\left(\mathrm{C}_{8}, \mathrm{C}_{10}\right), 126.51\left(\mathrm{C}_{4}\right), 82.49\left(\mathrm{C}_{14}\right), 69.42\left(\mathrm{C}_{15}\right), 48.83\left(\mathrm{C}_{12}\right), 47.91\left(\mathrm{C}_{1}\right), 30.25$ $\left(\mathrm{C}_{13}\right), 26.28\left(\mathrm{C}_{3}\right), 19.55\left(\mathrm{C}_{2}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}\right]^{+}$: 214.1590; observed: 214.1584; IR (neat) 3305, 2930, 1498, 1450, 1127, 769, $700 \mathrm{~cm}^{-1}$.

(Z)-N-(but-3-yn-1-yl)-N-chloro-5-phenylpent-4-en-1-amine (15). To a solution of the amine ($0.21 \mathrm{~g}, 1.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen was added N chlorosuccinamide ($0.15 \mathrm{~g}, 1.10 \mathrm{mmol}$) in portions over 5 minutes. The reaction mixture was stirred for 2 hours at the same temperature, and the solvent was evaporated under vacuum. The crude product was purified by column chromatography, product was eluted with 3-5\% EtOAc/Hexanes as a colorless oil ($0.19 \mathrm{~g}, 77 \%$ yield). $\mathrm{R}_{f}=0.8$ (10% EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.13\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}\right), 6.45\left(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}\right), 5.65$ (dt, $\left.J=11.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}\right), 3.08\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{12}\right), 2.97\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{1}\right), 2.56(\mathrm{td}, J$ $\left.=7.3,2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{3}\right), 2.40\left(\mathrm{qd}, J=7.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{13}\right), 1.97\left(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{15}\right), 1.83(\mathrm{p}, J$ $\left.=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.46\left(\mathrm{C}_{6}\right), 131.78\left(\mathrm{C}_{5}\right), 129.63\left(\mathrm{C}_{9}\right), 128.71$ $\left(\mathrm{C}_{7}, \mathrm{C}_{11}\right), 128.15\left(\mathrm{C}_{8}, \mathrm{C}_{10}\right), 126.58\left(\mathrm{C}_{4}\right), 81.40\left(\mathrm{C}_{14}\right), 69.43\left(\mathrm{C}_{15}\right), 63.53\left(\mathrm{C}_{12}\right), 62.35\left(\mathrm{C}_{1}\right), 27.97$
$\left(\mathrm{C}_{3}\right), 25.64\left(\mathrm{C}_{13}\right), 17.80\left(\mathrm{C}_{2}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NCl}\right]^{+}$: 248.1201 ; observed: 248.1199; IR (neat) 3300, 2935, 2836, 1493, 1445, 1106, 763, $703 \mathrm{~cm}^{-1}$.

7-methylene-8-phenyloctahydroindolizine (16). To a flame dried microwave vessel under argon was added the chloroamine 15 ($99.1 \mathrm{mg}, 0.40 \mathrm{mmol}$) and AIBN ($13.14 \mathrm{mg}, 0.08 \mathrm{mmol}$) in THF (22 mL). Then was added TIPSH ($0.16 \mathrm{~mL}, 0.80 \mathrm{mmol}$) to the reaction solution. The vessel was sealed and was dipped in a hot oil bath $\left(100^{\circ} \mathrm{C}\right)$ and stirred for 2 h . CAUTION: REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. The reaction mixture was evaporated and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) and was subjected to acetylation (for the ease of separation of reduced product and 16) (with 0.045 mL of $\mathrm{Ac}_{2} \mathrm{O}$ and 0.11 mL of $\mathrm{Et}_{3} \mathrm{~N}$, for about 0.5 h). The reaction mixture was evaporated, was added $10 \% \mathrm{HCl}(4 \mathrm{~mL})$. The aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 8 \mathrm{~mL})$, the separated aqueous layer was basified to $\mathrm{pH} \sim 9$ using 6 N NaOH and the cyclized product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and excess solvent was removed under reduced pressure. Crude product was purified by column chromatograph (basic alumina) ($6-9 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to obtain as colorless oil ($33.3 \mathrm{mg}, 39 \%$ yield: dr 77:23). $\mathrm{R}_{f}=0.30\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.10(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}$), $4.79\left(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}\right), 4.13\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}\right), 3.22$ (ddd, $J=$ $10.5,5.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{1}$), $3.19-3.08$ (m, 2H, C C_{5} C $)$, $2.64-2.51$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{7}$), 2.41 (dt, J=13.7, $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7}$), $2.27-2.13\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{8}, \mathrm{C}_{4}\right), 1.88-1.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3}\right), 1.68-1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{3}, \mathrm{C}_{2}\right)$, 1.40 - $1.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2}\right) ;{ }^{3} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.71\left(\mathrm{C}_{10}\right), 140.12\left(\mathrm{C}_{6}\right), 129.26\left(\mathrm{C}_{12}\right.$, $\left.\mathrm{C}_{14}\right), 128.12\left(\mathrm{C}_{11}, \mathrm{C}_{15}\right), 126.46\left(\mathrm{C}_{13}\right), 110.04\left(\mathrm{C}_{9}\right), 69.06\left(\mathrm{C}_{4}\right), 55.42\left(\mathrm{C}_{5}\right), 54.20\left(\mathrm{C}_{1}\right), 53.00\left(\mathrm{C}_{8}\right)$, $35.30\left(\mathrm{C}_{7}\right), 29.87\left(\mathrm{C}_{2}\right), 24.05\left(\mathrm{C}_{3}\right)$; HRMS $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ ES calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}\right]^{+}$: 214.1590; observed: 214.1585; IR (neat) 3305, 2921, 1498, 1450, 1105, 773, 635.
(Z)-N-(but-3-yn-1-yl)-N-(5-phenylpent-4-en-1-yl)acetamide (17). The combined $\mathrm{Et}_{2} \mathrm{O}$ layer from above was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed under reduced pressure. Crude product was purified by column chromatograph (12-15\% EtOAc/Hexanes to obtain as colorless oil (35.7 mg , 35% yield; mixture of rotamers $\mathrm{A} \& \mathrm{~B}$). $\mathrm{R}_{f}=0.50$ (40% EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.35-7.15$ (m,5H, $\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}$), 6.48 (d, J= $11.6 \mathrm{~Hz}, 0.57 \mathrm{H}, \mathrm{C}_{5}$ of rotamer A), $6.43\left(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 0.41 \mathrm{H}, \mathrm{C}_{5}\right.$ of rotamer B), $5.70-5.55(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C}_{4}$), 3.40 (dt, J = 14.2, $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{12}$), $3.36-3.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{1}\right), 2.49-2.27\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{3}\right.$, C_{13}), 2.11 ($\mathrm{s}, 1.23 \mathrm{H}, \mathrm{C}_{17}$ of rotamer B), 2.04 ($\mathrm{s}, 1.86 \mathrm{H}, \mathrm{C}_{17}$ of rotamer A), 2.01 (t, $\mathrm{J}=2.54 \mathrm{~Hz}$, $0.36 \mathrm{H}, \mathrm{C}_{15}$ of rotamer B), 1.94 (d, $J=2.58 \mathrm{~Hz}, 0.51 \mathrm{H}, \mathrm{C}_{15}$ of rotamer A), 1.77 - 1.63 (m, 2H, C 2); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers A, B) $\delta 170.35\left(\mathrm{C}_{16}\right)$, 137.43, $137.17\left(\mathrm{C}_{6}\right)$, $131.74,130.82\left(\mathrm{C}_{5}\right), 130.25,129.52\left(\mathrm{C}_{9}\right)$, 128.70, $128.64\left(\mathrm{C}_{7}, \mathrm{C}_{11}\right)$, 128.24, $128.14\left(\mathrm{C}_{8}, \mathrm{C}_{10}\right)$, 126.83, 126.58 (C_{4}), 82.05, $80.42\left(\mathrm{C}_{14}\right)$, 70.84, $69.56\left(\mathrm{C}_{15}\right), 49.30,47.25\left(\mathrm{C}_{12}\right), 45.30,45.07$ $\left(\mathrm{C}_{1}\right), 29.07,27.82\left(\mathrm{C}_{17}\right), 25.97,25.65\left(\mathrm{C}_{3}\right), 21.70,21.42\left(\mathrm{C}_{13}\right), 18.82,17.64\left(\mathrm{C}_{2}\right)$; HRMS $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$ m / z ES calc'd for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}\right]^{+}: 256.1696$; observed: 256.1697; IR 3342, 2945, 2910, 1636, $1456,1145,958 \mathrm{~cm}^{-1}$.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR Spectra

以及


```
HSS-IV-018_13C_PURE
C13-STANDARD
                O
                O
-115.70
Mmm
%M=
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}
```


HSS-V-034_13C_PURE Carbon spectrum

| 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
| :--- |

HSS-V-043_13C_PURE

 C13-STANDARD| |
| :---: |

M
笱
0
0
$+2$

| 30 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
| :--- |

| 30 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 |
| :--- |
| $f 1(\mathrm{ppm})$ | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |

KSS-V气0 Protohto

3b

$$
68
$$

$\begin{array}{c}B(m) \\ 5.57\end{array}$
$A(m)$
5.68

$\begin{gathered} D(d d) \\ 3.80 \\ J(2.40,0.55) \end{gathered}$		$\begin{gathered} \mathrm{G}(\mathrm{td}) \\ 2.40 \\ \mathrm{~J}(2.37,0.56) \\ \hline \end{gathered}$	
$\begin{gathered} C(d q) \\ 3.85 \\ \mathrm{~J}(5.85,0.94) \end{gathered}$	$\begin{gathered} F(d d) \\ 2.98 \\ J(7.72,6.27) \end{gathered}$	$H(m)$ 2.12	I (m) 1.72

—

$$
\begin{array}{|r|c}
\hline \text { E } & (d) \\
3 & 30 \\
\hline
\end{array}
$$

$$
\begin{gathered}
3.30 \\
J(0.56)
\end{gathered}
$$

为

.

	7.5	7.0	6.5

HSS-III-060_CRUDE_13C C13-STANDARD

| \circ | |
| :--- | :--- | :--- |
| $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |
| $\stackrel{\circ}{\circ}$ | |

$\begin{array}{llllllllllllllllllllllllllllllllllll}30 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

HSS太,

C13-STANDARD

ㅋํํํํ
ヘiN

1	1	1	1	1	1	1	1	1	1	1	1		1	,	,	,	,						
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

GS-1-090-13C
 C13-StANDARD

(

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

GS-I-092-13C
 C13-STANDARD

${\underset{1}{i}}_{\substack{\text { y }}}^{\underset{\sim}{n}}$
$\overbrace{1}^{ \pm} \overbrace{i}^{\infty}$

GS-I-095-NOE-3.3
 gradient 1d noe

GS-I-013-13C
 C13-STANDARD

(

1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	,	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

GJR-11-008_1H
Proton

SI-23

CS-I-063-13C
SI-23

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

Variable temperature ${ }^{1} \mathrm{H}$-NMR of compound 14

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

1	1		1	,		1		1	1		1	1		1	1	1	1	1	1	I	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

GS-II-072-1H-AC-65

GS-II-072-1H-Ac-50

GS-II-072-1H-Ac-35

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	\bigcirc
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{gathered} 4.0 \\ \mathrm{f} 1(\mathrm{pom}) \end{gathered}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

Variable temperature ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 17

[^0]: ${ }^{1}$ Poh, J.; Makai, S.; Keutz, T.; Tran, D. C.; Battilocchio, C.; Pasau, P.; Ley, A. V. Rapid Asymmetric Synthesis of Disubstituted Allenes by Coupling of Flow-Generated Diazo Coumpounds and Propargylated Amines. Angew. Chem. Int. Ed. 2017, 56, 1864-1868.

[^1]: ${ }^{2}$ Li, Y.; Marks. T. J. Organolanthanide-Catalyzed Intra- and Intermolecular Tandem C-N and C-C BondForming Processes of Aminodialkenes, Aminodialkynes, Aminoalkeneynes, and Aminoalkynes. New Regiospecific Approaches to Pyrrolizidine, Indolizidine, Pyrrole, and Pyrazine Skeletons. J. Am. Chem. Soc. 1998, 120, 1757-1771.

[^2]: ${ }^{3}$ Chen, M. Z.; Mclaughlin, M.; Takahashi, M.; Tarselli, M. A.; Yang, D.; Umemura, S.; Micalizio, G. C. Preparation of Stereodefined Homoallylic Amines from the Reductive Cross-Coupling of Allylic Alcohols with Imines. J. Org. Chem. 2010, 75, 8048-8059.
 ${ }^{4}$ Dérien, S.; Ropartz, L.; Le Paih, J.; Dixneul, P. H, Synthesis of 2-Alkoxy-5-methylenetetrahydropyrans: A Regioselective Ruthenium-Catalyzed C-C Coupling Reaction of Prop-2-yn-1-ols with Allyl Alcohol. J. Org. Chem. 1999, 64, 3524-3531.

[^3]: ${ }^{5}$ Cottrell, I. F.; Cowley, A. R.; Croft, L. J.; Hymns, L.; Moloney, M. G.; Nettleton, E. J.; Kirsty Smithies, H.; Thompson, A. L. Acyloxylactonisations Mediated by Lead Tetracarboxylates. Tetrahedron. 2009, 65, 2537-2550

