Self-assembly of Metallacages into Multidimensional Suprastructures

with Tunable Emissions

Yan Sun,^{*,†,‡,‡} Yong Yao,^{†,‡} Heng Wang,[§] Wenxin Fu,^{//} Chongyi Chen,^{\perp} Manik Lal Saha,[†] Mingming Zhang,[†] Sougata Datta,[†] Zhixuan Zhou,[†] Huaxu Yu,[†] Xiaopeng Li,[§] and Peter. J. Stang^{*,†}

[†] Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States

[‡] School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China

[§]Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States

["]Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China

¹Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China

These authors contributed equally to this work.

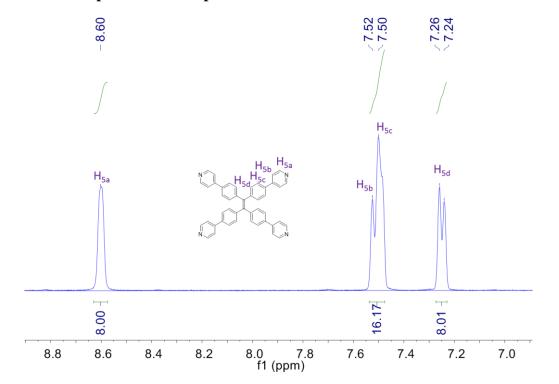
To whom correspondence should be addressed. Email address: <u>sunyan@yzu.edu.cn;</u> stang@chem.utah.edu

Supporting Information

1. Synthesis

1.1 ¹ H NMR spectrum of compound 5	S 4
1.2 ¹ H NMR and ³¹ P { ¹ H} spectra of compound 6	S5
1.3 ¹ H NMR spectrum of ligand 7	S 6
1.4 ³¹ P { ¹ H} spectrum of metallacage 1	S 6
1.5 ¹ H NMR spectrum of metallacage 1	S 7
1.6 ${}^{31}P$ { ${}^{1}H$ } spectrum of metallacage 2	S 8
1.7 ¹ H NMR spectrum of metallacage 2	S 8
1.8 ¹ H NMR spectrum of ligand 8	S9
1.9 ³¹ P { ¹ H} spectrum of metallacage 3	S 10
1.10 ¹ H NMR spectrum of metallacage 3	S 10
1.11 ¹ H NMR spectrum of ligand 9	S11
1.12 ³¹ P { ¹ H} spectrum of metallacage 4	S12
1.13 ¹ H NMR spectrum of metallacage 4	S12
1.14 ¹ H NMR spectrum of ligand 10	S13
1.15 ESI -TOF-MS spectrum of metallacage 1	S13
1.16 ESI -TOF-MS spectrum of metallacage 2	S14
1.17 ESI -TOF-MS spectrum of metallacage 3	S14
1.18 ESI -TOF-MS spectrum of metallacage 4	S15

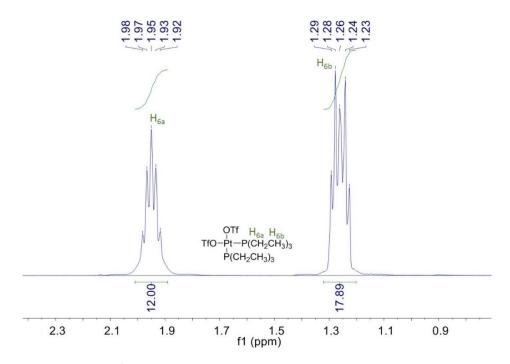
2. Optical properties


2.1 UV-vis spectra of the four cages in different solvents	S15
2.2 Fluorescence spectra of the four cages in different solvents	S 16
2.3 31 P{ 1 H} NMR spectra of the four metallacages in dichloromethane	S 16
2.4 ³¹ P{ 1 H} NMR spectra of the four metallacages in methanol	S 16
2.5 ³¹ P{ 1 H} NMR spectra of the two metallacages in ethanol	S17
2.6 Fluorescence spectra of TPE in dioxane, ethyl acetate, and tetrahydrofuran	S17

Supporting information

3. Self-assembly of Metallacages	
3.1 Fluorescence spectrum of cage 1 in water	S17
3.2 Scheme of the self-assembly of cage 1	S18
3.3 Fluorescence spectrum of cage 2 in tetrahydrofuran	S18
3.4 Scheme of cage 2-based microplates	S18
3.5 Cage 2-based microfilm	S19
3.6 Fluorescence spectrum of cage 2	S20
3.7 Cage 4-based microleaves	S20
3.8 Fluorescence spectrum of cage 4	S21
3.9 Fluorescence spectrum of cage 3	S21
3.10 Scheme of the self-assembly of cage 3	S21
3. 11Fluorescence spectrum of cage 1 in ethanol	S22
3.12 Cage 1-based microspheres in ethanol	S22
3.13 Fluorescence spectrum of cage 3 in tetrahydrofuran	S23
3.14 Cage 1-based microspheres in tetrahydrofuran	S23
3.15 31 P{ 1 H} NMR spectra of the cage 1 in ethanol for seven days	S24
3.16 31 P{ 1 H} NMR spectra of the cage 2 in ethanol for seven days	S24
3.17 ³¹ P{ 1 H} NMR spectra of the cage 1 in water for seven days	S25
3.18 31 P{ 1 H} NMR spectra of the cage 1 in THF for seven days	S25
3.19 31 P{ 1 H} NMR spectra of the cage 2 in THF for seven days	S26
3.20 31 P{ 1 H} NMR spectra of the cage 3 in THF for seven days	S26
3.21 31 P{ 1 H} NMR spectra of the cage 4 in THF for seven days	S27

1. Synthesis


Synthesis of cage **1**. Tetra(4-pyridylphenyl)ethylene compound **5** (3.20 mg, 5.00 µmol, **Fig. S1**), *cis*-Pt(PEt₃)₂(OTf)₂ **6** (14.60 mg, 20.00 µmol, **Fig. S2-3**), and sodium sulfate-functionalized carboxylate ligand **7** (3.12 mg, 10.00 µmol, **Fig. S4**) were placed in a 2-dram vial, followed by the addition of H₂O (0.40 mL) and acetone (1.20 mL). After heating at 70 °C for 24 h, all the solvent was removed by a N₂ flow, and the solid was dried under vacuum. Acetone (1.00 mL) was then added to the resultant mixture, and the solution was stirred for 30 min at room temperature. Then, the mixture was filtered to remove insoluble materials. The resulting tetragonal cage **1** was precipitated with diethyl ether, isolated and dried under reduced pressure and dissolved in CD₂Cl₂ for characterization. ³¹P {¹H} NMR (CD₂Cl₂, room temperature, 121.4 MHz) δ (ppm): 6.07 ppm (d, ²J_{P-P}= 19.4 Hz), -0.09 ppm (d, ²J_{P-P}= 19.4 Hz). The ¹H NMR spectrum of tetragonal cage **1** is shown in **Fig. S6**. ¹H NMR (CD₂Cl₂, room temperature, 400 MHz) δ (ppm): 8.66 (d, 16H), 8.36 (s, 8H), 7.97 (s, 4H), 7.68 (d, 16H), 7.17 (d, 16H), 7.15 (d, 16H).

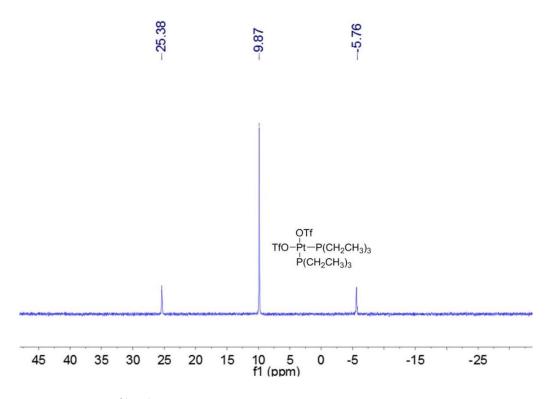

1.1 ¹H NMR spectrum of compound 5

Figure S1. ¹H NMR spectrum (400 MHz, CD₂Cl₂) recorded for 5.

1.2 ¹H NMR and ³¹P {¹H} spectra of compound 6

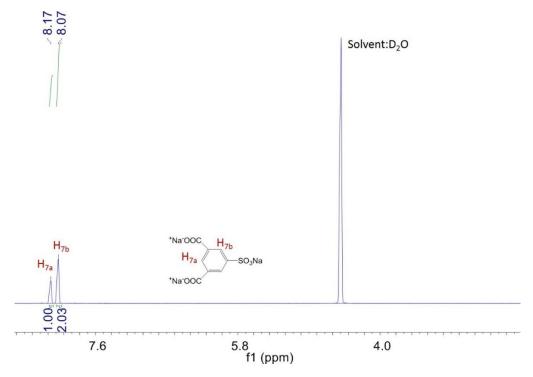


Figure S2. ¹H NMR spectrum (400 MHz, CD₂Cl₂) recorded for **6**.

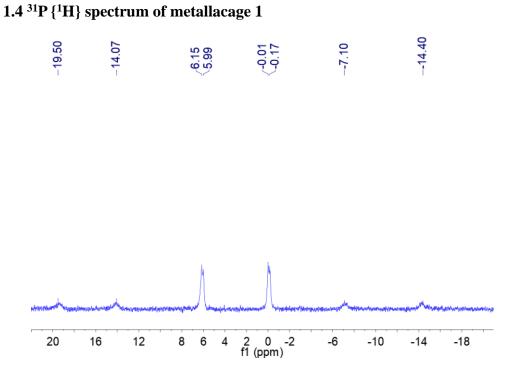


Figure S3. ³¹P{¹H } NMR spectrum (300 MHz, CD₂Cl₂) recorded for **6**.

1.3 ¹H NMR spectrum of ligand 7

Figure S4. ¹H NMR spectrum (400 MHz, D₂O) recorded for ligand 7.

Figure S5. ³¹P{¹H } NMR spectrum (CD₂Cl₂) recorded for cage **1.**

1.5¹H NMR spectrum of metallacage 1

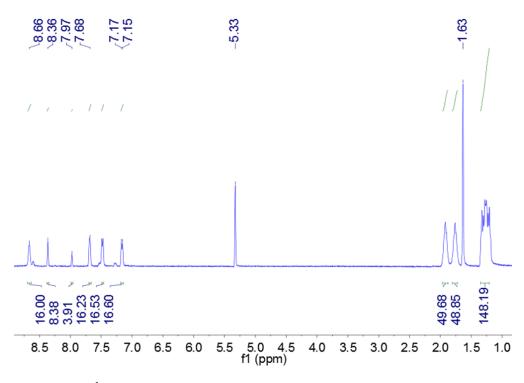
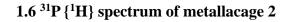
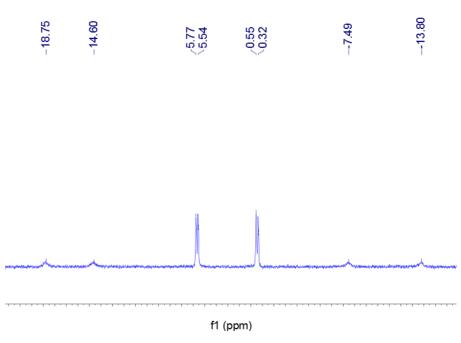
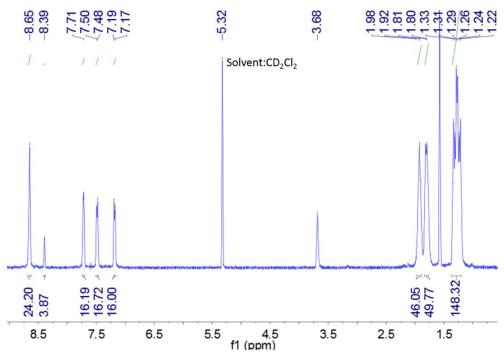
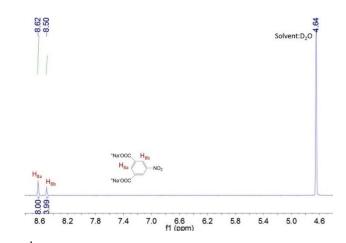




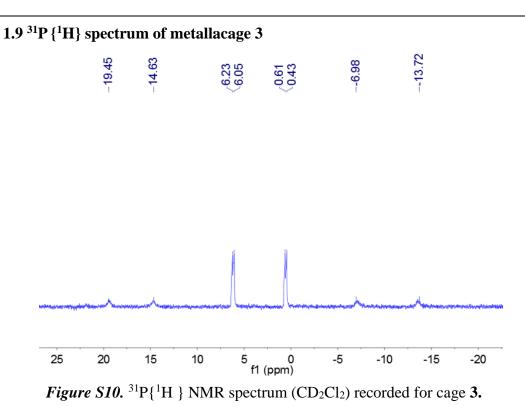
Figure S6. ¹H NMR spectrum (400 MHz, CD₂Cl₂) recorded for cage 1.

Synthesis of cage **2**. Tetra(4-pyridylphenyl)ethylene compound **5** (3.20 mg, 5.00 µmol), *cis*-Pt(PEt₃)₂(OTf)₂ **6** (14.60 mg, 20.0 µmol), and nitro-functionalized carboxylate ligand **8** (2.60 mg, 10.0 µmol) were placed in a 2-dram vial, followed by the addition of H₂O (0.40 mL) and acetone (1.20 mL). After heating at 70 °C for 24 h, all the solvent was removed by a N₂ flow, and the solid was dried under vacuum. Acetone (1.00 mL) was then added to the resultant mixture, and the solution was stirred for 30 min at room temperature. Then, the mixture was filtered to remove insoluble materials. The resulting tetragonal cage **2** was precipitated with diethyl ether, isolated and dried under reduced pressure and dissolved in CD₂Cl₂ for characterization. The ³¹P {¹H} NMR spectrum of tetragonal cage **2** is shown in **Fig. S7**. ³¹P {¹H} NMR (CD₂Cl₂, room temperature, 121.4 MHz) δ (ppm): 5.66 ppm (d, ²J_{P-P}= 27.9 Hz), 0.44 ppm (d, ²J_{P-P}= 27.9 Hz). The ¹H NMR spectrum of tetragonal cage **2** is shown in **Fig. S8**. ¹H NMR (CD₂Cl₂, room temperature, 400 MHz) δ (ppm): 8.65 (d, 24H), 8.39 (s, 4H), 7.71 (d, 16H), 7.50 (d, 16H), 7.19 (d, 16H). The ¹H NMR spectrum of ligand **8** is shown in **Fig. S9**.


Supporting information


Figure S7. ³¹P{¹H } NMR spectrum (CD₂Cl₂) recorded for cage **2.**

1.7 ¹H NMR spectrum of metallacage 2


Figure S8. ¹H NMR spectrum (400 MHz, CD₂Cl₂) recorded for cage **2**.

1.8 ¹H NMR spectrum of ligand 8

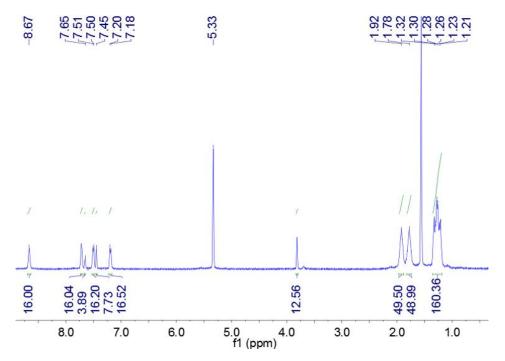
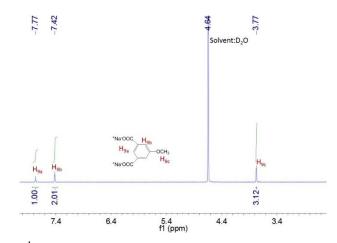


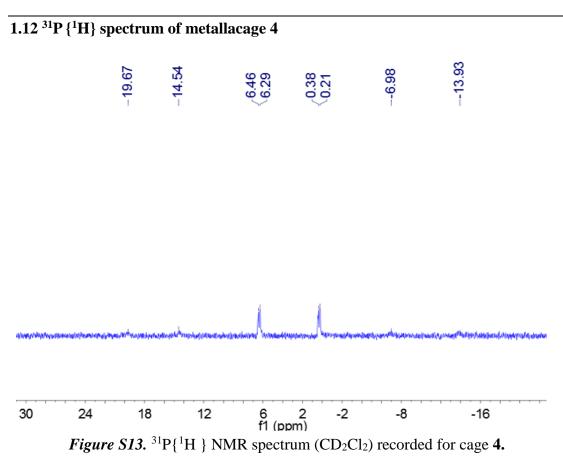
Figure S9. ¹H NMR spectrum (400 MHz, D₂O) recorded for ligand 8.

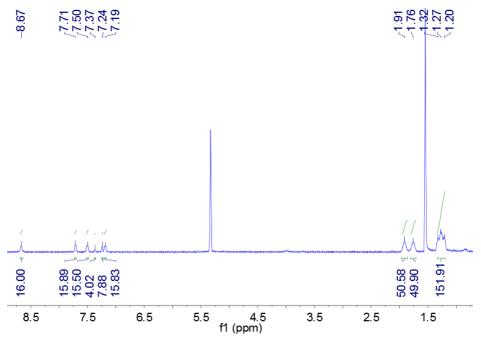
Synthesis of cage 3. Tetra(4-pyridylphenyl)ethylene compound 5 (3.20 mg, 5.00 µmol), cis-Pt(PEt₃)₂(OTf)₂ 6 (14.60 mg, 20.0 µmol), and methoxyl-functionalized carboxylate ligand 9 (2.40 mg, 10.00 μ mol) were placed in a 2-dram vial, followed by the addition of H₂O (0.40 mL) and acetone (1.20 mL). After heating at 70 $\,^\circ C$ for 24 h, all the solvent was removed by a N₂ flow, and the solid was dried under vacuum. Acetone (1.00 mL) was then added to the resultant mixture, and the solution was stirred for 30 min at room temperature. Then, the mixture was filtered to remove insoluble materials. The resulting tetragonal cage 3 was precipitated with diethyl ether, isolated and dried under reduced pressure and dissolved in CD₂Cl₂ for characterization. The ³¹P {¹H} NMR spectrum of tetragonal cage 3 is shown in Fig. S10. ³¹P {¹H} NMR (CD₂Cl₂, room temperature, 121.4 MHz) δ (ppm): 6.14 ppm (d, ²J_{P-P}= 21.8 Hz), 0.52 ppm (d, ²J_{P-P}= 21.8 Hz). The ¹H NMR spectrum of tetragonal cage 3 is shown in Fig. S11. ¹H NMR (CD₂Cl₂, room temperature, 400 MHz) δ (ppm): 8.67 (d, 16H), 7.65 (d, 16H), 7.51 (s, 4H), 7.45 (d, 16H), 7.20 (s, 8H), 7.18 (d, 16H), 3.82 (s, 12H). The ¹H NMR spectrum of ligand 9 is shown in Fig. S12. The ${}^{31}P{}^{1}H{}$ spectrum of cage 3 show two doublets of approximately equal intensity with concomitant ¹⁹⁵Pt satellite peaks corresponding to two distinct phosphorous environments (Fig.1e, Fig. S10). In the ¹H NMR spectrum of cage 3 (Fig. 1j, Fig. S11), the protons of the pyridyl groups are shifted downfield $(\Delta\delta[H_{5a}] = 0.07 \text{ ppm}; \Delta\delta[H_{5b}] = 0.13 \text{ ppm})$ relative to those of ligand 5, consistent with the coordination of the N atoms to the platinum centers. The protons corresponding to dicarboxylate ligand 9 are observed at $\delta = 7.51$ and 7.45 ppm (Fig. S12).



1.10 ¹H NMR spectrum of metallacage 3

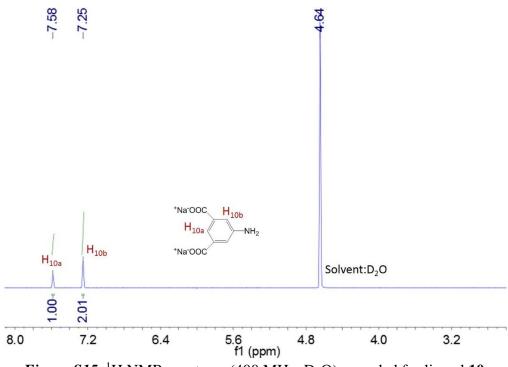
Figure S11. ¹H NMR spectrum (400 MHz, CD₂Cl₂,) recorded for cage **3**.


1.11 ¹H NMR spectrum of ligand 9


Figure S12. ¹H NMR spectrum (400 MHz, D₂O) recorded for ligand 9.

Synthesis of cage 4. Tetra(4-pyridylphenyl)ethylene compound 5 (3.20 mg, 5.00 µmol), cis-Pt(PEt₃)₂(OTf)₂ 6 (14.60 mg, 20.0 µmol), and amine-functionalized carboxylate ligand 10 (2.25 mg, $10.00 \,\mu\text{mol}$) were placed in a 2-dram vial, followed by the addition of H₂O (0.40 mL) and acetone (1.20 mL). After heating at 70 $\,^{\circ}$ C for 24 h, all the solvent was removed by a N₂ flow, and the solid was dried under vacuum. Acetone (1.00 mL) was then added to the resultant mixture, and the solution was stirred for 30 min at room temperature. Then, the mixture was filtered to remove insoluble materials. The resulting tetragonal cage 4 was precipitated with diethyl ether, isolated and dried under reduced pressure and dissolved in CD₂Cl₂ for characterization. The ³¹P {¹H} NMR spectrum of tetragonal cage 4 is shown in Fig. S13. ³¹P {¹H} NMR (CD₂Cl₂, room temperature, 121.4 MHz) δ (ppm): 6.38 ppm (d, ²J_{P-P}= 20.6 Hz), 0.30 ppm (d, ²J_{P-P}= 20.6 Hz). The ¹H NMR spectrum of tetragonal cage 4 is shown in Fig. S14. ¹H NMR (CD₂Cl₂, room temperature, 400 MHz) δ (ppm): 8.67 (d, 16H), 7.71 (d, 16H), 7.50 (d, 16H), 7.37 (s, 4H), 7.24 (s, 8H), 7.19 (d, 16H). The ¹H NMR spectrum of ligand **10** is shown in **Fig. S15**. The ${}^{31}P{}^{1}H{}$ spectrum of cage **4** show two doublets of approximately equal intensity with concomitant ¹⁹⁵Pt satellite peaks corresponding to two distinct phosphorous environments (Fig. 1f, Fig. S13). In the ¹H NMR spectrum of cage 4 (Fig. 1k, Fig. S14), the protons of the pyridyl groups are shifted downfield ($\Delta\delta[H_{5a}] = 0.07$ ppm; $\Delta\delta[H_{5b}]$ = 0.19 ppm) relative to those of ligand 5, consistent with the coordination of the N atoms to the platinum centers. The protons corresponding to dicarboxylate ligand 10 are observed at $\delta = 7.37$ and 7.24 ppm (Fig. 1k, Fig. S15). The well-defined signals in both the ${}^{31}P{}^{1}H{}$ and ${}^{1}HNMR$ spectra indicate a discrete structure was the sole assembly product. 11 / 27

Supporting information



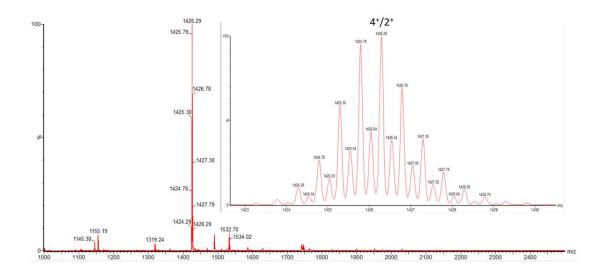
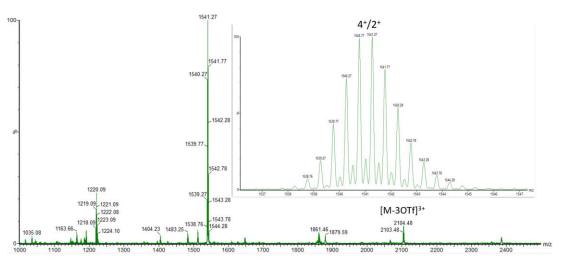
1.13 ¹H NMR spectrum of metallacage 4

Figure S14. ¹H NMR spectrum (400 MHz, CD₂Cl₂) recorded for cage **4**.

1.14 ¹H NMR spectrum of ligand 10

Figure S15. ¹H NMR spectrum (400 MHz, D₂O) recorded for ligand **10**.

1.15 ESI -TOF-MS spectrum of metallacage 1

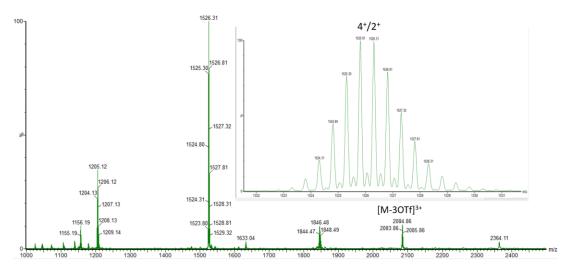

Figure S16. ESI -TOF-MS spectrum of cage 1.

Figure S17. ESI – TOF-MS spectrum of cage 2.

1.17 ESI -TOF-MS spectrum of metallacage 3

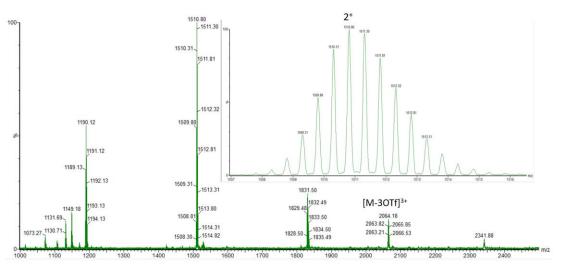
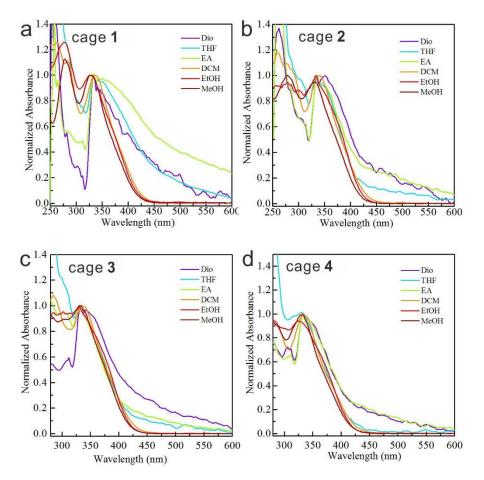
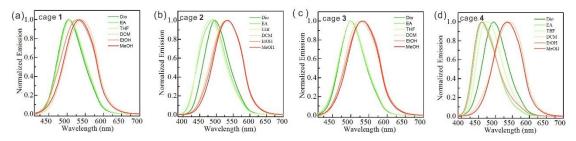
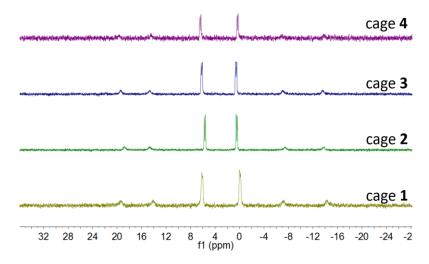



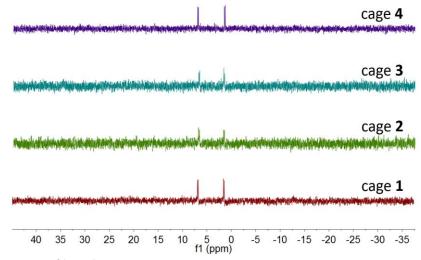
Figure S19 ESI-TOF-MS spectrum of cage 4.


2. Optical properties

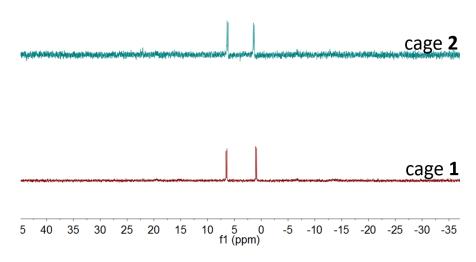
2.1 UV-Vis spectra of the four cages in different solvents


Figure S20. UV-Vis spectra of the four cages in different solvents ($c = 25.0 \mu M$).

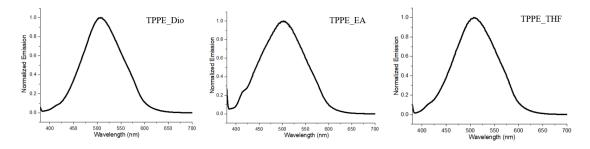
2.2 Fluorescence spectra of the four cages in different solvents


Figure S21. Fluorescence spectra of the four cages in different solvents. ($\lambda_{ex} = 365$ nm, $c = 25.0 \ \mu\text{M}$).

2.3 ³¹ P{ ¹ H} NMR spectra of the four metallacages in dichloromethane


Figure S22. ³¹ P{ ¹ H} NMR spectra of the four metallacages in dichloromethane.

2.4 31 P{ 1 H} NMR spectra of the four metallacages in methanol


Figure S23. ³¹ P{ ¹ H} NMR spectra of the four metallacages in methanol.

2.5³¹ P{¹ H} NMR spectra of the two metallacages in ethanol

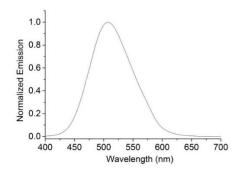
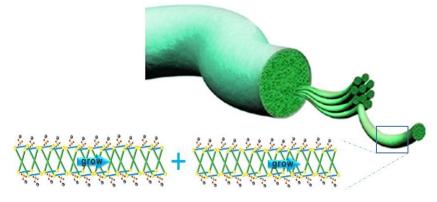
Figure S24. ³¹ P{ ¹ H} NMR spectra of the two metallacages in ethanol

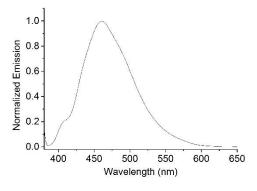
2.6 Fluorescence spectra of TPE in dioxane, ethyl acetate, and tetrahydrofuran

Figure S25. Fluoresence spectra of TPE in dioxane (Dio), ethyl acetate (EA), and tetrahydrofuran (THF).

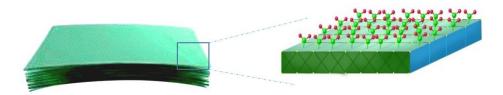
3. Self-assembly of Metallacages

3.1 Fluorescence spectrum of cage 1 in water

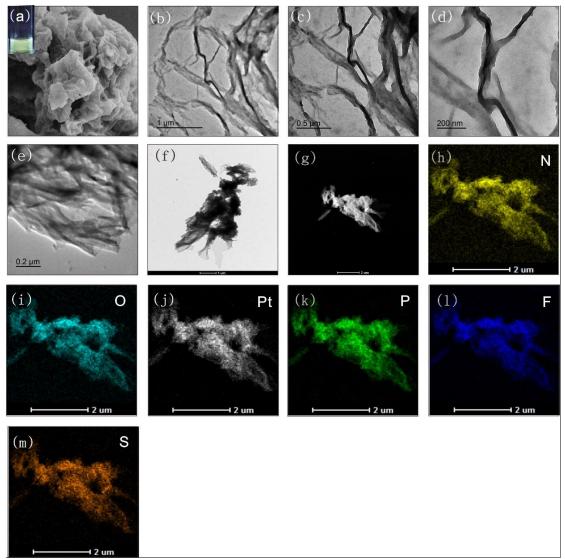




Figure S26. Fluorescence spectrum of cage 1 in water.

3.2 Scheme of the self-assembly of cage 1


Figure S27. Scheme of the self-assembly of cage **1** in water (the illustrations are not drawn to scale).

3.3 Fluorescence spectrum of cage 2 in tetrahydrofuran


Figure S28. Fluorescence spectrum of cage 2 in tetrahydrofuran.

3.4 Scheme of cage 2-based microplates

Figure S29. Scheme of the self-assembly of cage **2** in tetrahydrofuran (the illustrations are not drawn to scale).

3.5 Cage 2-based microfilm

Figure S30. (a) SEM image of the cage 2-based microfilm (inset: digital photo of the cage 2 solution); (b-e) TEM images of the microfilm at different magnifications; (f-g) TEM and STEM images of the microfilm. EDX mapping images of the cage 2-based microfilm: the elemental distributions of (h) N, (i) O, (j) Pt, (k) P, (l) F, and (m) S.

3.6 Fluorescence spectrum of cage 2

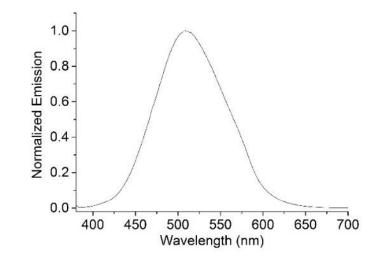
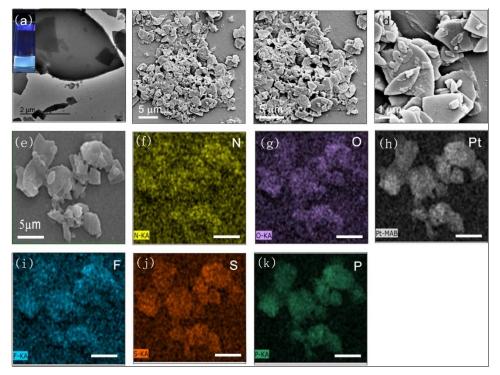



Figure S31. Fluorescence spectrum of cage 2 in ethanol.

3.7 Cage 4-based microleaves

Figure S32. (a) TEM image of the cage 4-based micro-leaves (inset: digital photo of the cage 4 solution); (b-e) SEM images of the cage 4-based micro-leaves in tetrahydrofuran at different magnifications; corresponding EDX mapping images of the cage 4-based micro-leaves: the elemental distributions of (f) N, (g) O, (h) Pt, (i) F, (j) S, and (k) P (scale bar: 5μ m).

3.8 Fluorescence spectrum of cage 4

Figure S33. Fluorescence spectrum of cage 4 in tetrahydrofuran.

3.9 Fluorescence spectrum of cage 3

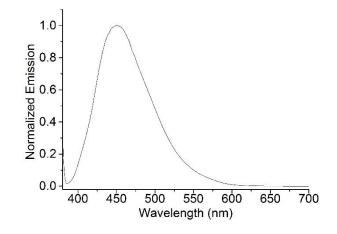
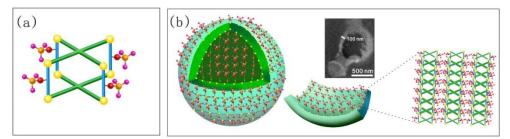
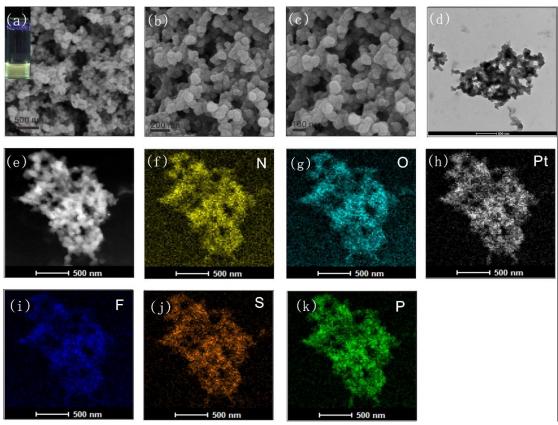




Figure S34. Fluorescence spectrum of cage 3 in tetrahydrofuran.

3.10 Scheme of the self-assembly of cage 3

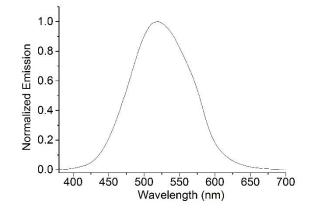
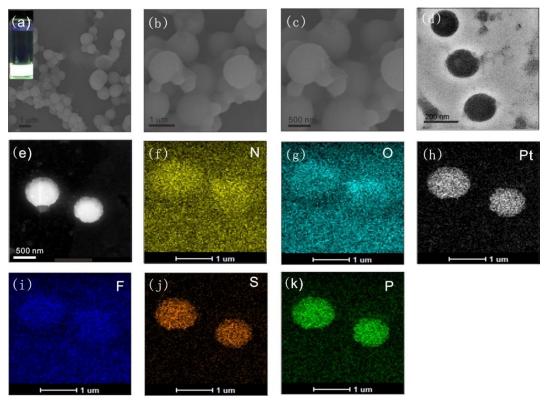
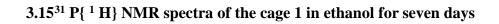

Figure S35. (a) A diagrammatic sketch of cage **3**; (b) scheme of the self-assembly of cage **3** in tetrahydrofuran (inset: SEM image of hollow sphere).

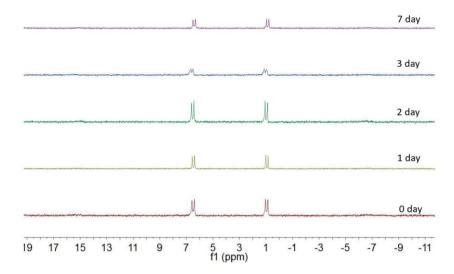
3.11 Fluorescence spectrum of cage 1 in ethanol

3.12 Cage 1-based microspheres in ethanol

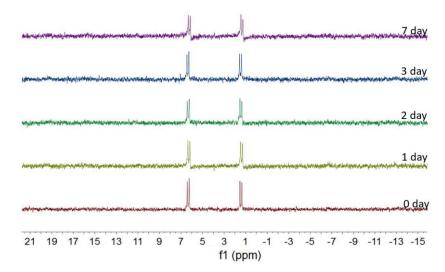
Figure S37. (a) SEM images of the cage 1-based microspheres in ethanol; (b-c) SEM images of microspheres at different magnifications; (d) TEM image of the microspheres (scale bar: 500 nm); (e) STEM image of the microspheres; corresponding EDX mapping images of the cage 1 based microspheres: the elemental distributions of (f) N, (g) O, (h) Pt, (i) F, (j) S, and (k) P.

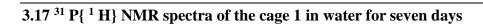
3.13 Fluorescence spectrum of cage 3 in tetrahydrofuran

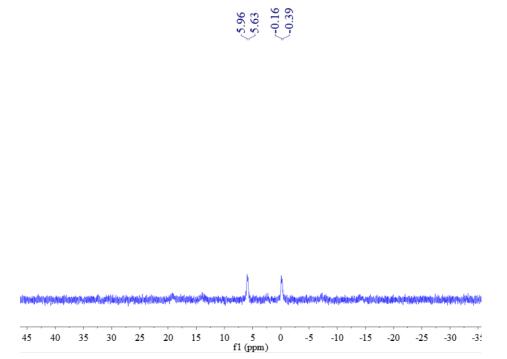





Figure S38. Fluorescence spectrum of cage 1 in tetrahydrofuran.

3.14 Cage 1-based microspheres in tetrahydrofuran

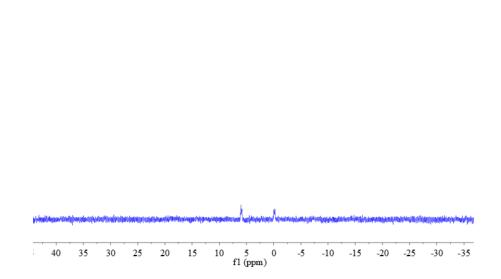

Figure S39. (a) SEM images of the cage 1-based microspheres in tetrahydrofuran (inset: digital photo of the **cage 1** in tetrahydrofuran); (b-c) SEM images of microspheres at different magnifications; (d) TEM image of the microspheres; (e) STEM image of the microspheres; EDX mapping images of the cage 1-based microspheres: the elemental distributions of (f) N, (g) O, (h) Pt, (i) F, (j) S, and (k) P.

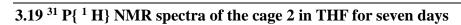


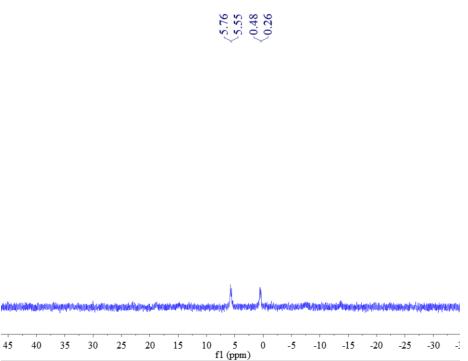

Figure S40. Partial ³¹ P{ ¹ H} NMR spectra of cage **1** in ethanol for seven days.

3.16 31 P{ 1 H} NMR spectra of the cage 2 in ethanol for seven days

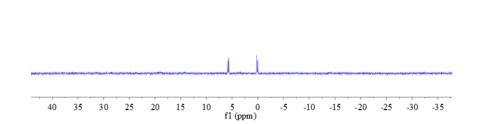
Figure S41. Partial ³¹ P{ ¹ H} NMR spectra of cage **2** in ethanol for seven days.

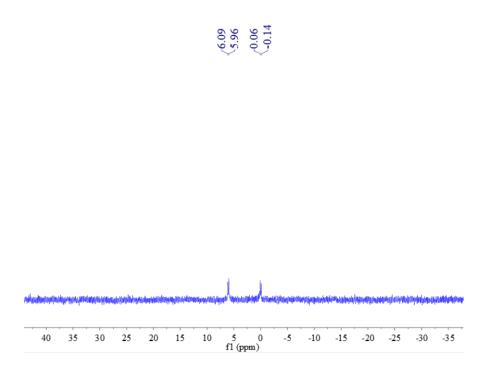



Figure S42. ³¹ P $\{^1$ H $\}$ NMR spectra of cage 1 based aggregates formed in water for seven days (resuspended in DCM).


(6.00 (5.79 (-0.03 (-0.26

3.18 ³¹ P{ ¹ H} NMR spectra of the cage 1 in THF for seven days


Figure S43. ³¹ P{¹ H} NMR spectra of cage 1 based aggregates formed in THF for seven days (resuspended in DCM).


Figure S44. ³¹ P{¹ H} NMR spectra of cage 2 based aggregates formed in THF for seven days (resuspended in DCM).

3.20 ³¹ P{ ¹ H} NMR spectra of the cage 3 in THF for seven days

Figure S45. ³¹ P{¹ H} NMR spectra of cage **3** based aggregates formed in THF for seven days (resuspended in DCM).

3.21 ³¹ P{ ¹ H} NMR spectra of the cage 4 in THF for seven days

Figure S46. ³¹ P $\{^1$ H $\}$ NMR spectra of cage **4** based aggregates formed in THF for seven days (resuspended in DCM).