Supporting Information

Self-reporting Colorimetric Analysis of Drug Release by Molecular Imprinted Structural Color Contact Lens

Jingzhe Deng,^{1,2} Shan Chen,² Jialun Chen,² Hailong Ding,² Dawei Deng,^{1,*}
Zhuoying Xie^{2,*}

¹Department of Biomedical Engineering, China Pharmaceutical University, Nanjing

211198, China

²State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096,

China

* Corresponding author: <u>dengdawei@cpu.edu.cn</u>

* Corresponding author: zyxie@seu.edu.cn

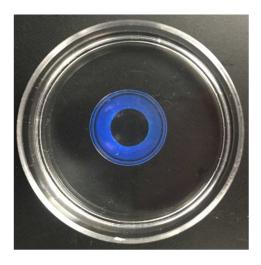


Figure S1. Digital photograph of structural color contact lens.

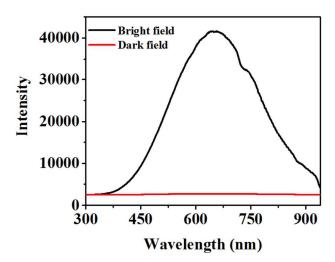
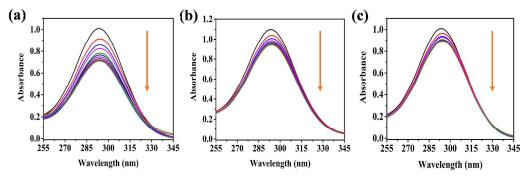
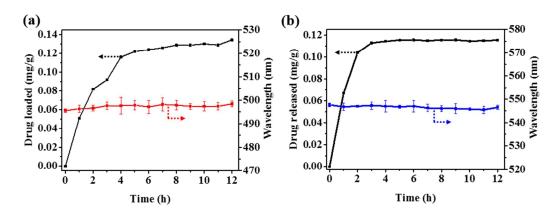





Figure S2. The bright field and the dark field of the fiber optic spectrometer.

Figure S3. The change of absorbance of a) pH 6.5 and b) pH 5.5 loading solution for imprinted lens. c) The change of absorbance of pH 6.5 loading solution for non-imprinted lens. Both lenses were monitored from 0h to 12h and once every hour.

Figure S4. a) The accumulative loading and the reflection peak during non-imprinted lens loading in pH6.5 solution. b) The accumulative release and the reflection peak during non-imprinted lens releasing in artificial tear fluid. The error bars represent the standard deviations of measurements carried out in triplicate.

Figure S5. High-frequency monitoring of the reflection peak of the lens within the first hour of the lens immersed in artificial tear fluid.