Supporting Information

Dynamic Kinetic Resolution for Construction of Three Transannular

Stereocenters of Dihydrobenzofuranols

Lizhen Fang,^{a,*} Fangfei Zhao,^a Shuyu Hu,^a Lili Han,^a Xiaojing Hu,^b Mingyong Wang,^c Qianqian Sun,^a and Huipan Wu^a

^aSchool of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China

^bThe Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China

^cSchool of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China

Table of Contents:

1. NMR Spectra	S2
2. HPLC Analysis Spectra	S31
3. Proposed catalytic mechanism	S39
4. References	S45
5. X-Ray crystallography	S46

1. NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR spectrum for 6a (in CD₃SOCD₃)

¹³C-NMR spectrum for 6a (in CD₃SOCD₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR spectrum for 7a (in CDCl₃)

¹³C-NMR spectrum for 7a (in CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR spectrum for 1a (in CDCl₃)

¹³C-NMR spectrum for 1a (in CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR spectrum for 9 (in CD₃OD)

¹³C-NMR spectrum for 9 (in CD₃OD)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR spectrum for 4b (in CDCl₃)

¹³C-NMR spectrum for 4b (in CDCl₃)

¹H-NMR spectrum for 5b (in CDCl₃)

¹³C-NMR spectrum for 5b (in CDCl₃)

¹H-NMR spectrum for 6b (in CD₃SOCD₃)

¹³C-NMR spectrum for 6b (in CD₃SOCD₃)

¹H-NMR spectrum for 7b (in CDCl₃)

¹³C-NMR spectrum for 7b (in CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR spectrum for 1b (in CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H-NMR spectrum for 5c (in CD₃COCD₃)

¹³C-NMR spectrum for 5c (in CD₃COCD₃)

^{240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

¹H-NMR spectrum for 7c (in CDCl₃)

¹³C-NMR spectrum for 7c (in CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR spectrum for 1c (in CDCl₃)

¹H-NMR spectrum for 13 (in CDCl₃)

¹³C-NMR spectrum for 13 (in CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR spectrum for 14 (in CDCl₃)

¹H-NMR spectrum for 10a (in CDCl₃)

¹H-NMR spectrum for 10b (in CDCl₃)

¹³C-NMR spectrum for 10b (in CDCl₃)

¹H-NMR spectrum for 15c (in CDCl₃)

¹³C-NMR spectrum for 15c (in CDCl₃)

¹H-NMR spectrum for 10c (in CDCl₃)

¹³C-NMR spectrum for 10c (in CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR spectrum for 15d (in CDCl₃)

¹³C-NMR spectrum for 15d (in CDCl₃)

¹H-NMR spectrum for 10d (in CDCl₃)

¹³C-NMR spectrum for 10d (in CDCl₃)

¹H-NMR spectrum for 2a (in CD₃OD)

¹³C-NMR spectrum for 2a (in CD₃OD)

¹H-NMR spectrum for 2b (in CD₃OD)

¹³C-NMR spectrum for 2b (in CD₃OD)

¹H-NMR spectrum for 2c (in CD₃OD)

¹³C-NMR spectrum for 2c (in CD₃OD)

¹H-NMR spectrum for 16a (in CD₃OD)

¹³C-NMR spectrum for 16a (in CD₃OD)

¹H-NMR spectrum for 16b (in CD₃OD)

¹³C-NMR spectrum for 16b (in CD₃OD)

¹H-NMR spectrum for 16c (in CD₃OD)

-0.00

¹³C-NMR spectrum for 16c (in CD₃OD)

¹³C-NMR spectrum for 16d (in CD₃OD)

 $-158.9 \\ -152.4 \\ -132.6 \\ -132.9 \\ -132.9 \\ -127.9 \\ -127.9 \\ -127.9 \\ -127.9 \\ -127.9 \\ -127.9 \\ -127.9 \\ -85.1 \\$

2. HPLC Analysis Spectra

(±)-5-(1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-3-ol

HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =92/8, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

(2*R*,3*S*)-5-((*R*)-1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran -3-ol

HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =92/8, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

Peak No	Peak Name	Result Ret. (ug/ml) Time (min)		Time Offset (min)	Width 1/2 (sec)	Area (counts)
1		98.0277	46.693	0.000	94.8	188381504
2		1.9723	70.744	0.000	116.0	3790177
	Totals	100.0000		0.000		192171680

(±)-6-(1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-3-ol HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =92/8, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

Peak No	Peak Name	Result (ug/ml)	Ret. Time (min)	Time Offset (min)	Width 1/2 (sec)	Area (counts)
1		1.4322	35.192	0.000	0.0	3846354
2		4.0368	40.305	0.000	73.8	10841409
3		28.5422	50.490	0.000	89.2	76653792
4		28.8126	55.151	0.000	0.0	77379920
5		10.6371	66.469	0.000	117.2	28567396
6		9.4622	72.459	0.000	124.3	25411870
7		8.7356	80.350	0.000	129.5	23460666
8		8.3413	93.189	0.000	146.8	22401560
T	otals	100.0000		0.000		268562976

(2*R*,3*S*)-6-((*R*)-1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran -3-ol

HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =92/8, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

(±)-7-(1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-3-ol HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =92/8, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C), ee =95%.

Peak No	Peak Name	Result (ug/ml)	Ret. Time (min)	Time Offset (min)	Width 1/2 (sec)	Area (counts)
1		0.5794	18.743	0.000	39.6	2178767
2		1.0629	19.945	0.000	41.7	3997237
3		1.5914	21.360	0.000	54.1	5984797
4		1.7442	21.968	0.000	53.2	6559319
5		42.8573	28.697	0.000	58.0	161170448
б		39.3099	32.267	0.000	53.1	147829824
7		7.5617	44.225	0.000	68.8	28436694
8		5.2932	52.325	0.000	79.1	19905616
	Totals	100.0000		0.000		376062720

(2*R*,3*S*)-7-((*R*)-1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran -3-ol

HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =92/8, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

 $(\pm) - 5 - (1-hydroxyethyl) - 2-methyl - 2, 3-dihydrobenzofuran - 3-ol$

HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =85/15, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

Peak No	Peak Name	Peak Name Result I (ug/ml) T (1		Time Offset (min)	Width 1/2 (sec)	Area (counts)	
1		22.8547	15.867	0.000	31.4	36535308	
2		27.3350	16.197	0.000	37.5	43697568	
3		31.1687	17.618	0.000	27.1	49826060	
4		18.6416	22.342	0.000	34.1	29800406	
	Totals	100.0000		0.000		159859344	

(2*S*,3*S*)-5-((*R*)-1-hydroxyethyl)-2-methyl-2,3-dihydrobenzofuran-3-ol HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =85/15, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

(±)-5-(1-hydroxyethyl)-2-isopropyl-2,3-dihydrobenzofuran-3-ol

HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =92/8, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

Peak No	Peak Name	Result (ug/ml)	Ret. Time (min)	Time Offset (min)	Width 1/2 (sec)	Area (counts)
1		16.5036	26.054	0.000	50.1	55007024
2		17.7234	27.872	0.000	58.8	59072572
3		23.9139	28.885	0.000	72.2	79705472
4		17.9277	30.864	0.000	65.8	59753456
5		6.8251	32.134	0.000	80.1	22748310
6		8.5600	41.144	0.000	78.5	28530704
7		8.5463	53.887	0.000	100.6	28484880
	Totals	100.0000		0.000		333302400

(2*S*,3*S*)-5-((*R*)-1-hydroxyethyl)-2-isopropyl-2,3-dihydrobenzofuran-3-ol HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =92/8, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

(±)-2-benzyl-5-(1-hydroxyethyl)-2,3-dihydrobenzofuran-3-ol

HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =90/10, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

(2*S*,3*S*)-2-benzyl-5-((*R*)-1-hydroxyethyl)-2,3-dihydrobenzofuran-3-ol HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =90/10, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

(±)-2-(furan-2-ylmethyl)-5-(1-hydroxyethyl)-2,3-dihydrobenzofuran-3-ol HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =85/15, detector:

280 nm, flow rate: 0.5 mL/min, 35 °C)

(2*S*,3*S*)-2-(furan-2-ylmethyl)-5-((*R*)-1-hydroxyethyl)-2,3-dihydrobenzofuran-3-ol HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =85/15, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

3. Proposed catalytic mechanism

Scheme S1. Proposed catalytic cycle (1a as a model)

Explanation:

Based on the reported catalytic mechanism,⁴ we propose that the process of transfer hydrogenation reaction of **1a** probably includes two different stages: the first stage that the furanone part of **1a** was reduced through DKR-ATH process (from I-V), and the second stage that the acetophenone part of **1a** with the same configuration fixed in the first stage was reduced through a ATH process (from V-VIII). The racemization of **1a** was bonded with the compound **1a** and formed the energy favoured transition **TS1** and the energy disfavored transition **TS2** respectively due to the steric hindrance between **1a** and the catalyst, and they then generated the corresponding products major **2a** and **2a**["].

Experiments supplied to study the mechanism:

Scheme S2

Scheme S3

Scheme S4

All reactions were run on a 1.0 mmol scale in a 25 mL sealed flask under the protection of argon. 5.0 mmol sodium formate, 5.0 μ mol catalyst **3a** or **3c** and 0.2 mmol CTAB were added into 4 mL CH₃OH and the mix-ture was stirred at 65 °C for 12 h.

Reduction of **1a** with **3a** and **3c** could give the *cis*-product and the enantiomer respectively with similar yield, %ee and dr (Scheme S2), that means the reduce

system shows high stereoselectivity for the substrates, the stereo configuration of products is closely related to the chiral catalyst. The following reduction of the mono-reduced intermediate (TS-VI) with the 3a and 3c gave the corrosponding products with different yield and dr values (scheme S3), but reduction of the mono-reduced intermediate (**TS-VI**) with **3a** could give the final *cis*- product with almost the same yield and %ee that obtained from the starting material **10a** (scheme S3), it indicated that the substrate and the catalyst probably formed the substrate/metal complexation from the beginning of the reaction as we proposed, it was essential for the stereoselectivity, and the yield and %ee were not affected if the favoured configuration of the complexion could be kept. Moreover, the reaction could go on with the intermediate and gave the similar yield, %ee and dr values at last, this result showed the reaction actually was one pot reaction although it appeared to be a two-step process because of the intermediate obtained. In addition, the acetophenone could be reduced by the cataylst to provide the almost optically pure phenylethanol(scheme S4), it proved that the reduction of acetophenone really via an ATH process as we believed.

NMR Spectra and HPLC analysis for the above products in Scheme S2-S4.

NMR Spectra

HPLC Analysis Spectra

(2S, 3R) - 5 - ((S) - 1 - hydroxyethyl) - 2 - (2 - hydroxypropan - 2 - yl) - 2, 3 - dihydrobenzofuran

-3-ol (The product prepared from 1a with catalyst 3a)

HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =92/8, detector:

280 nm, flow rate: 0.5 mL/min, 35 °C)

(2S,3S)-5-((S)-1-hydroxyethyl)-2-methyl-2,3-dihydrobenzofuran-3-ol (The product

prepared from 17 with catalyst 3c)

HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =92/8, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

Peak No	Peak Name	Result Ret. (ug/ml) Time (min)		Time Width Offset 1/2 (min) (sec)		Area (counts)	
1		13.7892	33.598	0.000	69.6	25308732	
2		81.1963	43.066	0.000	79.8	149027792	
3		5.0145	60.912	0.000	116.2	9203616	
	Totals	100.0000		000.0		183540144	

	(2S)	, 3S)-5-	·((R))-1-ł	iydrox	yeth	yl)	-2-methy	yl-2	,3-dih	ydrobenzo	ofuran-3	8-ol(The	produc
--	------	-------------	------	----------------	-------	--------	------	-----	----------	------	--------	-----------	----------	----------	--------

prepared from 17 with catalyst 3a)

HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =92/8, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

(2S,3S)-5-((R)-1-hydroxyethyl)-2-methyl-2,3-dihydrobenzofuran-3-ol(The product

prepared from 10a with catalyst 3a)

HPLC (DAICEL CHIRALPAK[®] IA column, eluent: Hexanes/i-PrOH =92/8, detector: 280 nm, flow rate: 0.5 mL/min, 35 °C)

4. References

1. Fang, L.-Z.; Liu, S.-S.; Han, L.-L.; Li, H.-H.; Zhao, F.-F. Ruthenium -Catalyzed Synthesis of cis-2,3-Dihydrobenzofuran-3-ols by Aqueous Transfer Hydrogenation

via Dynamic Kinetic Resolution. Organometallics 2017, 36, 1217-1219.

- Fang, L.-Z.; Lyu, Q.-H.; Lu, C.-J.; Li, H.-H.; Liu, S.-S.; Han, L.-L. Synthesis of Chiral Dihydrobenzofurans and Phthalides by Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution: A Strategy for Total Synthesis of Daldinins A, B, and C and Concentricolide. *Adv. Synth. Catal.* **2016**, *358*, 3196-3200.
- Cheng, T.-Y.; Ye, Q.-Q.; Zhao, Q.-K.; Liu, G.-H. Dynamic Kinetic Resolution of Phthalides via Asymmetric Transfer Hydro-genation: A Strategy Constructs 1,3-Distereocentered 3-(2-Hydroxy-2 arylethyl)isobenzofuran-1(3H)-one. Org. Lett. 2015, 17, 4972-4975.

5. X-Ray crystallography

X-Ray crystallography and structural formula of compound 2a

Original data see the cif files.		
Displacement ellipsoids are draw	n at the 40% probabil-ity level.	
Crystal structure at the Cambr	idge Crystallographic Data Co	entre. Deposition
Number:		
CCDC 1506041		
Formula: C ₁₃ H ₁₈ O ₄		
Unit Cell Parameters: a 6.8682(2) b	9.6210(4) c 18.8039(8) P2 ₁ 2 ₁ 2 ₁	
Chemical formula	$C_{13}H_{18}O_4$	
Formula weigh	238.27	
Temperature	293K	
Wavelength	1.54184	
Crystal system	Orthorhombic	
Space group	P 2 ₁ 2 ₁ 2 ₁	
Unit cell dimensions	a=6.8682(2)	α=90°
	b=9.6210(4)	β=90°
	c=18.8039(8)	γ=90°
Volume	1242.55(8)	
Z	4	
Density diffrn	1.274	
Absorpt coefficient	0.771	
F(000)	512	

Theta range for data collection Index ranges R (reflections) wR_2 (reflections) Flack parameter

4.703 to 67.053 -8<=h<=5,-7<=k<11, -22<=l<=21 0.0376 (2062) 0.1024 (2203) -0.233(330) by classical fit to all intensities -0.086(129) from 777 selected quotients (Parsons' method)