Supporting Information

Dynamic Kinetic Resolution for Construction of Three Transannular
Stereocenters of Dihydrobenzofuranols
Lizhen Fang, ${ }^{\text {a, }}$ * Fangfei Zhao, ${ }^{\text {a }}$ Shuyu Hu, ${ }^{\text {a }}$ Lili Han, ${ }^{\text {a }}$ Xiaojing Hu, ${ }^{\text {b }}$ Mingyong Wang, ${ }^{\text {c }}$ Qianqian Sun, ${ }^{a}$ and Huipan Wu ${ }^{\text {a }}$
${ }^{a}$ School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
${ }^{b}$ The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
${ }^{\text {c Sch }}$ chool of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
Table of Contents:

1. NMR Spectra S2
2. HPLC Analysis Spectra S31
3. Proposed catalytic mechanism S39
4. References S45
5. X-Ray crystallography S46

1. NMR Spectra

${ }^{1} \mathrm{H}$-NMR spectrum for $\mathbf{5 a}$ (in CDCl_{3})

${ }^{13}$ C-NMR spectrum for 5 a (in CDCl_{3})

$\begin{array}{llllllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & \mathrm{fl}(\mathrm{ppm})\end{array}$
${ }^{1}$ H-NMR spectrum for $\mathbf{6 a}$ (in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$)

${ }^{13} \mathrm{C}$-NMR spectrum for $\mathbf{6 a}\left(\right.$ in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$)

${ }^{1} \mathrm{H}$-NMR spectrum for 7a (in CDCl_{3})

${ }^{13}$ C-NMR spectrum for 7 a (in CDCl_{3})

${ }^{1} \mathrm{H}$－NMR spectrum for $\mathbf{1 a}$（in CDCl_{3} ）

势示
$\stackrel{\stackrel{7}{+}}{\stackrel{+}{1}}$
$\stackrel{N}{\text { in }} \stackrel{\text { in }}{1}$
$\stackrel{\text { ？}}{1}$

\qquad

${ }^{13}$ C－NMR spectrum for 1 a （in CDCl_{3} ）

这

[^0]${ }^{1} \mathrm{H}$-NMR spectrum for 9 (in $\mathrm{CD}_{3} \mathrm{OD}$)

$\underset{\sim}{\alpha}$
$\dot{1}$ $\stackrel{\vec{n}}{\stackrel{n}{n}} \stackrel{n}{n}$

${ }^{13}$ C-NMR spectrum for 9 (in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathrm{H}$-NMR spectrum for $\mathbf{4 b}$ (in CDCl_{3})

${ }^{13} \mathrm{C}$-NMR spectrum for $\mathbf{4 b}$ (in CDCl_{3})

```
&0
N~N
```


$\left.\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

${ }^{1}$ H-NMR spectrum for 5 b (in CDCl_{3})

${ }^{13}$ C-NMR spectrum for $\mathbf{5 b}$ (in CDCl_{3})

[^1]
${ }^{1} \mathrm{H}$-NMR spectrum for 6b (in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$)

$\stackrel{\text { n }}{\underset{\sim}{7}}$

${ }^{13} \mathrm{C}$-NMR spectrum for 6 b (in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$)
$\stackrel{+}{\stackrel{+}{\circ}}$

욱 컥
$\underbrace{n}_{1} \underbrace{n=0}$

6b OH

[^2]${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for 7 b (in CDCl_{3})

${ }^{13} \mathrm{C}$-NMR spectrum for $\mathbf{7 b}$ (in CDCl_{3})
品

$\left.\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for $\mathbf{1 b}$（in CDCl_{3} ）

${ }^{13} \mathrm{C}$－NMR spectrum for $\mathbf{1 b}$（in CDCl_{3} ）
シे
$\stackrel{\text { むे }}{~}$
花
a

$\left.\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

${ }^{1} \mathrm{H}$-NMR spectrum for 5 c (in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$)

${ }^{13} \mathrm{C}$-NMR spectrum for 5 c (in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$)

$\begin{array}{lllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
${ }^{1} \mathrm{H}$-NMR spectrum for $\mathbf{7 c}$ (in CDCl_{3})

${ }^{13} \mathrm{C}$-NMR spectrum for 7 c (in CDCl_{3})
11
$\stackrel{\text { T }}{\stackrel{\text { ® }}{3}}$
$\stackrel{\sim}{\sim}$

$\stackrel{ \pm}{\underset{i}{i}}$

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
${ }^{1} \mathrm{H}$-NMR spectrum for $\mathbf{1 c}$ (in CDCl_{3})

${ }^{13} \mathrm{C}$-NMR spectrum for $\mathbf{1 c}$ (in CDCl_{3})
드룽
$\stackrel{m}{\stackrel{m}{1}}$
$\stackrel{\infty}{\infty}$

$\stackrel{\sim}{n}$

1c 0

$\left.\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$-NMR spectrum for 13 (in CDCl_{3})

${ }^{13}$ C-NMR spectrum for 13 (in CDCl_{3})

${ }^{1} \mathrm{H}$-NMR spectrum for 14 (in CDCl_{3})

${ }^{13}$ C-NMR spectrum for 14 (in CDCl_{3})
~

${ }^{1} \mathrm{H}$-NMR spectrum for $\mathbf{1 0 a}$ (in CDCl_{3})

$$
\underbrace{\infty}
$$

$$
\stackrel{\infty}{i}
$$

${ }^{13}$ C-NMR spectrum for $10 a\left(\right.$ in CDCl_{3})

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for $\mathbf{1 5 b}$ (in CDCl_{3})

${ }^{13}$ C-NMR spectrum for 15 b (in CDCl_{3})

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$
${ }^{1} \mathrm{H}$-NMR spectrum for 10 b (in CDCl_{3})

${ }^{13}$ C-NMR spectrum for 10 b (in CDCl_{3})
둠

$\underset{\sim}{\sim} \stackrel{\circ}{\circ} \stackrel{\circ}{\infty} \stackrel{\infty}{\sim}$

${ }^{1} \mathrm{H}$-NMR spectrum for $\mathbf{1 5 c}$ (in CDCl_{3})

${ }^{13}$ C-NMR spectrum for 15 c (in CDCl_{3})

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for $\mathbf{1 0 c}$ (in CDCl_{3})

${ }^{13}$ C-NMR spectrum for 10 c (in CDCl_{3})
NiO.

N-N
$\stackrel{\text { N }}{\stackrel{n}{i}} \stackrel{n}{\sim}$

${ }^{1} \mathrm{H}$-NMR spectrum for $\mathbf{1 5 d}$ (in CDCl_{3})

${ }^{13}$ C-NMR spectrum for $15 d$ (in CDCl_{3})

$\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

${ }^{1} \mathrm{H}$-NMR spectrum for 10 d (in CDCl_{3})

${ }^{13}$ C-NMR spectrum for 10 d (in CDCl_{3})

$\left.\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

${ }^{1} \mathrm{H}$-NMR spectrum for $\mathbf{2 a}$ (in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13}$ C-NMR spectrum for 2 a (in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathrm{H}$-NMR spectrum for $\mathbf{2 b}$ (in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13}$ C-NMR spectrum for 2 b (in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathrm{H}$-NMR spectrum for $2 \mathrm{c}\left(\right.$ in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13}$ C-NMR spectrum for 2 c (in $\mathrm{CD}_{3} \mathrm{OD}$)
il

${ }^{1} \mathrm{H}$-NMR spectrum for 16 a (in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13}$ C-NMR spectrum for $16 a\left(\right.$ in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathrm{H}$-NMR spectrum for $\mathbf{1 6 b}$ (in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13} \mathrm{C}$-NMR spectrum for $\mathbf{1 6 b}$ (in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathrm{H}$-NMR spectrum for $\mathbf{1 6 c}$ (in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13}$ C-NMR spectrum for 16 c (in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathrm{H}$-NMR spectrum for 16 d (in $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13} \mathrm{C}$-NMR spectrum for 16 d (in $\mathrm{CD}_{3} \mathrm{OD}$)

2. HPLC Analysis Spectra

(\pm)-5-(1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-3-ol
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes/i-PrOH $=92 / 8$, detector:
280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

(2R,3S)-5-((R)-1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran -3-01

HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes/i-PrOH $=92 / 8$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

Peak No	Peak Name	Result (ug/ml)	Ret. Time (min)	Time Offset (min)	$\begin{gathered} \text { Width } \\ 1 / 2 \\ \text { (sec) } \end{gathered}$	Area (counts)
1		98.0277	46.693	0.000	94.8	188381504
2		1.9723	70.744	0.000	116.0	3790177
		100.0000		0.000		192171680

(\pm)-6-(1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-3-ol
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes $/ \mathrm{i}-\mathrm{PrOH}=92 / 8$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

(2R,3S)-6-((R)-1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran -3-01

HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes $/ \mathrm{i}-\mathrm{PrOH}=92 / 8$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

(\pm)-7-(1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-3-ol
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes $/ \mathrm{i}-\mathrm{PrOH}=92 / 8$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$), ee $=95 \%$.

(2R,3S)-7-((R)-1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran -3-ol

HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes/i-PrOH $=92 / 8$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

Peak No	Peak Name	Result (ug/ml)	Ret. Time (min)	Time Offset (min)	Width 1/2 (sec)	Area (counts)
1		2.4327	29.140	0.000	54.1	4431853
2		97.5673	32.640	0.000	65.6	177747408
		100.0000		0.000		182179264

(\pm)-5-(1-hydroxyethyl)-2-methyl-2,3-dihydrobenzofuran-3-ol
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes $/ i-\mathrm{PrOH}=85 / 15$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

Peak No	Peak Name	Result (ug/ml)	Ret. Time (min)	Time Offset (min)	Width $\mathbf{1 / 2}$ (sec)	Area (counts)
1	22.8547	15.867	0.000	31.4	36535308	
2	27.3350	16.197	0.000	37.5	43697568	
3	31.1687	17.618	0.000	27.1	49826060	
4						
		18.6416	22.342	0.000	34.1	29800406
		$\mathbf{1 0 0 . 0 0 0 0}$		$\mathbf{0 . 0 0 0}$		$\mathbf{1 5 9 8 5 9 3 4 4}$

(2S,3S)-5-((R)-1-hydroxyethyl)-2-methyl-2,3-dihydrobenzofuran-3-ol

HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes/i-PrOH $=85 / 15$, detector:
280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

(\pm)-5-(1-hydroxyethyl)-2-isopropyl-2,3-dihydrobenzofuran-3-ol
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes $/ \mathrm{i}-\mathrm{PrOH}=92 / 8$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

Peak No	Peak Name	Result (ug/ml)	Ret. Time $(\mathbf{m i n})$	Time Offset (min)	Width $\mathbf{1 / 2}$ (sec)	Area (counts)
1	16.5036	26.054	0.000	50.1	55007024	
2	17.7234	27.872	0.000	58.8	59072572	
3	23.9139	28.885	0.000	72.2	79705472	
4	17.9277	30.864	0.000	65.8	59753456	
5	6.8251	32.134	0.000	80.1	22748310	
6	8.5600	41.144	0.000	78.5	28530704	
7		8.5463	53.887	0.000	100.6	28484880
	Totals	$\mathbf{1 0 0 . 0 0 0 0}$		$\mathbf{0 . 0 0 0}$		$\mathbf{3 3 3 3 0 2 4 0 0}$

(2S,3S)-5-((R)-1-hydroxyethyl)-2-isopropyl-2,3-dihydrobenzofuran-3-ol

HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes $/ \mathrm{i}-\mathrm{PrOH}=92 / 8$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

(土)-2-benzyl-5-(1-hydroxyethyl)-2,3-dihydrobenzofuran-3-ol
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes $/ i-\mathrm{PrOH}=90 / 10$, detector:
280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

(2S,3S)-2-benzyl-5-((R)-1-hydroxyethyl)-2,3-dihydrobenzofuran-3-ol
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes/i-PrOH $=90 / 10$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

(\pm)-2-(furan-2-ylmethyl)-5-(1-hydroxyethyl)-2,3-dihydrobenzofuran-3-ol
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes/i-PrOH $=85 / 15$, detector:

280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

Peak No	Peak Name	Result (ug/ml)	Ret. Time $(\mathbf{m i n})$	Time offset $(\mathbf{m i n})$	Width $\mathbf{l / 2}$ $(\mathbf{s e c})$	Area (counts)
1	13.3756	21.545	0.000	34.2	201672112	
2	37.1583	22.751	0.000	60.6	560257472	
3	13.2637	24.212	0.000	41.7	199984064	
4	12.4919	29.628	0.000	46.0	188347872	
5		12.1911	33.298	0.000	57.0	183812544
6						
		11.5194	43.301	0.000	67.8	173684304
					$\mathbf{0 . 0 0 0}$	

(2S,3S)-2-(furan-2-ylmethyl)-5-((R)-1-hydroxyethyl)-2,3-dihydrobenzofuran-3-ol HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes $/ i-\mathrm{PrOH}=85 / 15$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

3. Proposed catalytic mechanism

Scheme S1. Proposed catalytic cycle (1a as a model)

Explanation:

Based on the reported catalytic mechanism, ${ }^{4}$ we propose that the process of transfer hydrogenation reaction of 1a probably includes two different stages: the first stage that the furanone part of $\mathbf{1 a}$ was reduced through DKR-ATH process (from I-V), and the second stage that the acetophenone part of $\mathbf{1 a}$ with the same configuration fixed in the first stage was reduced through a ATH process (from V-VIII). The racemization of 1a was occurred through keto-enol tautomerism as shown as follows. The catalyst 3a was bonded with the compound 1a and formed the energy favoured transition TS1 and the energy disfavored transition TS2 respectively due to the steric hindrance between 1a and the catalyst, and they then generated the corresponding products major 2a and 2a".

Experiments supplied to study the mechanism:

Scheme S2

Scheme S3

Scheme S4

All reactions were run on a 1.0 mmol scale in a 25 mL sealed flask under the protection of argon. 5.0 mmol sodium formate, $5.0 \mu \mathrm{~mol}$ catalyst $\mathbf{3 a}$ or $\mathbf{3 c}$ and 0.2 mmol CTAB were added into $4 \mathrm{mLCH}_{3} \mathrm{OH}$ and the mix-ture was stirred at $65^{\circ} \mathrm{C}$ for 12 h .
Reduction of 1a with 3a and 3c could give the cis-product and the enantiomer respectively with similar yield, \%ee and dr (Scheme S2), that means the reduce
system shows high stereoselectivity for the substrates, the stereo configuration of products is closely related to the chiral catalyst. The following reduction of the mono-reduced intermediate (TS-VI) with the 3a and 3c gave the corrosponding products with different yield and dr values (scheme S3), but reduction of the mono-reduced intermediate (TS-VI) with 3a could give the final cis- product with almost the same yield and \%ee that obtained from the starting material 10a (scheme S3), it indicated that the substrate and the catalyst probably formed the substrate/metal complexation from the beginning of the reaction as we proposed, it was essential for the stereoselectivity, and the yield and \%ee were not affected if the favoured configuration of the complexion could be kept. Moreover, the reaction could go on with the intermediate and gave the similar yield, \%ee and dr values at last, this result showed the reaction actually was one pot reaction although it appeared to be a two-step process because of the intermediate obtained. In addition, the acetophenone could be reduced by the cataylst to provide the almost optically pure phenylethanol(scheme S4), it proved that the reduction of acetophenone really via an ATH process as we believed.

NMR Spectra and HPLC analysis for the above products in Scheme S2-S4.

NMR Spectra

HPLC Analysis Spectra

(2S,3R)-5-((S)-1-hydroxyethyl)-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran
-3-ol (The product prepared from 1a with catalyst 3a)
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes $/ \mathrm{i}-\mathrm{PrOH}=92 / 8$, detector:

280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

Peak No	Peak Name	Result (ug/ml)	Ret. Time (min)	Time Offset (min)	$\begin{gathered} \text { Width } \\ 1 / 2 \\ \text { (sec) } \end{gathered}$	Area (counts)
1		89.8709	45.079	0.000	96.0	393176416
2		10.1291	53.083	0.000	125.6	44313944
		100.0000		0.000		437490368

(2S,3S)-5-((S)-1-hydroxyethyl)-2-methyl-2,3-dihydrobenzofuran-3-ol (The product prepared from 17 with catalyst 3c)
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes/i-PrOH $=92 / 8$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

Peak No	Peak Name	Result (ug/ml)	Ret. Time (min)	Time Offset (min)	$\begin{gathered} \text { Width } \\ 1 / 2 \\ \text { (sec) } \end{gathered}$	Area (counts)
1		13.7892	33.598	0.000	69.6	25308732
2		81.1963	43.066	0.000	79.8	149027792
3		5.0145	60.912	0.000	116.2	9203616
		100.0000		0.000		183540144

(2S,3S)-5-((R)-1-hydroxyethyl)-2-methyl-2,3-dihydrobenzofuran-3-ol(The product prepared from 17 with catalyst 3a)
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes/i-PrOH $=92 / 8$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

(2S,3S)-5-((R)-1-hydroxyethyl)-2-methyl-2,3-dihydrobenzofuran-3-ol(The product prepared from 10a with catalyst 3a)
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes $/ \mathrm{i}-\mathrm{PrOH}=92 / 8$, detector: 280 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

Peak No	Peak Name	Result (ug/ml)	Ret. Time (min)	Time Offset (min)	Width $\mathbf{1 / 2}$ $(\mathbf{s e c})$	Area (counts)
1	84.9049	33.533	0.000	65.1	90049528	
2	2.1341	37.093	0.000	0.0	2263414	
3	6.7177	43.665	0.000	87.7	7124721	
4						
		6.2433	46.157	0.000	91.5	6621650
		$\mathbf{1 0 0 . 0 0 0 0}$		$\mathbf{0 . 0 0 0}$		$\mathbf{1 0 6 0 5 9 3 1 2}$

(\boldsymbol{R})-1-phenylethanol(The product prepared from $\mathbf{1 9}$ with catalyst 3a)
HPLC (DAICEL CHIRALPAK ${ }^{\circledR}$ IA column, eluent: Hexanes $/ \mathrm{i}-\mathrm{PrOH}=98 / 2$, detector: 254 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$)

4. References

1. Fang, L.-Z.; Liu, S.-S.; Han, L.-L.; Li, H.-H.; Zhao, F.-F. Ruthenium -Catalyzed Synthesis of cis-2,3-Dihydrobenzofuran-3-ols by Aqueous Transfer Hydrogenation
via Dynamic Kinetic Resolution. Organometallics 2017, 36, 1217-1219.
2. Fang, L.-Z.; Lyu, Q.-H.; Lu, C.-J.; Li, H.-H.; Liu, S.-S.; Han, L.-L. Synthesis of Chiral Dihydrobenzofurans and Phthalides by Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution:A Strategy for Total Synthesis of Daldinins A, B, and C and Concentricolide. Adv. Synth. Catal. 2016, 358, 3196-3200.
3. Cheng, T.-Y.; Ye, Q.-Q.; Zhao, Q.-K.; Liu, G.-H. Dynamic Kinetic Resolution of Phthalides via Asymmetric Transfer Hydro-genation: A Strategy Constructs 1,3-Distereocentered 3-(2-Hydroxy-2 arylethyl)isobenzofuran-1(3H)-one. Org. Lett. 2015, 17, 4972-4975.

5. X-Ray crystallography

X-Ray crystallography and structural formula of compound 2a

Original data see the cif files.
Displacement ellipsoids are drawn at the $\mathbf{4 0 \%}$ probabil-ity level.
Crystal structure at the Cambridge Crystallographic Data Centre. Deposition
Number:
CCDC 1506041
Formula: $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$
Unit Cell Parameters: a 6.8682(2) b 9.6210(4) c 18.8039(8) P2 $1_{1} 2_{1} 2_{1}$
Chemical formula $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$

Formula weigh 238.27
Temperature 293K
Wavelength 1.54184
Crystal system Orthorhombic
Space group
Unit cell dimensions

Volume
P $21{ }_{2}{ }_{1} 2_{1}$

Z
$\mathrm{a}=6.8682$ (2)
$\alpha=90^{\circ}$
$\mathrm{b}=9.6210$ (4)
$\beta=90^{\circ}$
$\mathrm{c}=18.8039(8) \quad \gamma=90^{\circ}$
1242.55(8)

Density diffrn
4

Absorpt coefficient
1.274
$\mathrm{F}(000) \quad 512$

Theta range for data collection Index ranges R (reflections)
$w R_{2}$ (reflections)
Flack parameter
4.703 to 67.053
$-8<=\mathrm{h}<=5,-7<=\mathrm{k}<11,-22<=1<=21$
0.0376 (2062)
0.1024 (2203)
-0.233(330)
by classical fit to all intensities
-0.086(129)
from 777 selected quotients (Parsons' method)

[^0]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array} 90$

[^1]:

[^2]:

