Supporting Information File 1: Polymer Identification of Plastic Debris Ingested by Pelagic-phase Sea Turtles in the Central Pacific

Melissa R. Jung, George H. Balazs, Thierry M. Work, T. Todd Jones, Sara V. Orski, Viviana Rodriguez C., Kathryn L. Beers, Kayla C. Brignac, K. David Hyrenbach, Brenda A. Jensen, and Jennifer M. Lynch

Table of Contents

Table S2. Summary statistics of the mass of ingested polymerspage S6Table S3. Summary statistics of the composition of ingested polymerspage S7Table S4. Estimated catenary hook depths of individual turtlespage S8Figure S1. Sorted ingested plastic debrispage S9Figure S2. Hook depths corrected for shoalingpage S10Figure S3. Histogram of hook depths corrected for shoalingpage S12-S17Figure S4. Percent ingested mass of polymers versus hook depthpage S12-S17Figure S5. Percent composition of polymers in olive ridleys by sexpage S18Figure S7. Percent composition of polymers in olive ridleys by yearpage S19Figure S8. Olive ridley % ingested mass of polymers versus SCLpage S20-S24Figure S10. Olive ridley % ingested mass of polymers versus latitudepage S25-S28Figure S11. Olive ridley % ingested mass of polymers versus latitudepage S34-S39Figure S12. Green % ingested mass of polymers versus latitudepage S34-S42Figure S13. Green % ingested mass of polymers versus latitudepage S34-S46	Hook Depth Protocol	page S2-S4
Table S3. Summary statistics of the composition of ingested polymerspage S7Table S4. Estimated catenary hook depths of individual turtlespage S8Figure S1. Sorted ingested plastic debrispage S9Figure S2. Hook depths corrected for shoalingpage S10Figure S3. Histogram of hook depths corrected for shoalingpage S11Figure S4. Percent ingested mass of polymers versus hook depthpage S12-S17Figure S5. Percent composition of polymers in olive ridleys by sexpage S18Figure S6. Percent composition of polymers in olive ridleys by age classpage S19Figure S8. Olive ridley % ingested mass of polymers versus SCLpage S20-S24Figure S9. Green % ingested mass of polymers versus latitudepage S25-S28Figure S10. Olive ridley % ingested mass of polymers versus latitudepage S34-S39Figure S12. Green % ingested mass of polymers versus latitudepage S34-S34Figure S13. Green % ingested mass of polymers versus latitudepage S34-S46Figure S13. Green % ingested mass of polymers versus latitudepage S34-S46	Table S1. Sag ratios and catenary angles for hook depth	page S5
Table S4. Estimated catenary hook depths of individual turtlespage S8Figure S1. Sorted ingested plastic debrispage S9Figure S2. Hook depths corrected for shoalingpage S10Figure S3. Histogram of hook depths corrected for shoalingpage S11Figure S4. Percent ingested mass of polymers versus hook depthpage S12-S17Figure S5. Percent composition of polymers in olive ridleys by sexpage S18Figure S6. Percent composition of polymers in olive ridleys by yearpage S19Figure S8. Olive ridley % ingested mass of polymers versus SCLpage S20-S24Figure S9. Green % ingested mass of polymers versus latitudepage S29-S34Figure S11. Olive ridley % ingested mass of polymers versus latitudepage S34-S39Figure S12. Green % ingested mass of polymers versus latitudepage S34-S34Figure S13. Green % ingested mass of polymers versus latitudepage S39-S42Figure S13. Green % ingested mass of polymers versus latitudepage S34-S46	Table S2. Summary statistics of the mass of ingested polymers	page S6
Figure S1. Sorted ingested plastic debrispage S9Figure S2. Hook depths corrected for shoalingpage S10Figure S3. Histogram of hook depths corrected for shoalingpage S11Figure S4. Percent ingested mass of polymers versus hook depthpage S12-S17Figure S5. Percent composition of polymers in olive ridleys by sexpage S17Figure S6. Percent composition of polymers in olive ridleys by age classpage S18Figure S7. Percent composition of polymers in olive ridleys by yearpage S19Figure S8. Olive ridley % ingested mass of polymers versus SCLpage S20-S24Figure S9. Green % ingested mass of polymers versus SCLpage S25-S28Figure S10. Olive ridley % ingested mass of polymers versus latitudepage S34-S39Figure S12. Green % ingested mass of polymers versus latitudepage S34-S39Figure S13. Green % ingested mass of polymers versus latitudepage S39-S42Figure S13. Green % ingested mass of polymers versus latitudepage S39-S42Figure S13. Green % ingested mass of polymers versus latitudepage S39-S42Figure S13. Green % ingested mass of polymers versus latitudepage S39-S42Figure S13. Green % ingested mass of polymers versus latitudepage S39-S42Figure S13. Green % ingested mass of polymers versus latitudepage S39-S42Figure S13. Green % ingested mass of polymers versus latitudepage S43-S46	Table S3. Summary statistics of the composition of ingested polymers	page S7
Figure S2. Hook depths corrected for shoalingpage S10 Figure S3. Histogram of hook depths corrected for shoalingpage S11 Figure S4. Percent ingested mass of polymers versus hook depthpage S12-S17 Figure S5. Percent composition of polymers in olive ridleys by sexpage S17 Figure S6. Percent composition of polymers in olive ridleys by age classpage S18 Figure S7. Percent composition of polymers in olive ridleys by yearpage S19 Figure S8. Olive ridley % ingested mass of polymers versus SCLpage S20-S24 Figure S9. Green % ingested mass of polymers versus SCLpage S25-S28 Figure S10. Olive ridley % ingested mass of polymers versus latitudepage S29-S34 Figure S11. Olive ridley % ingested mass of polymers versus latitudepage S34-S39 Figure S12. Green % ingested mass of polymers versus latitudepage S39-S42 Figure S13. Green % ingested mass of polymers versus latitudepage S39-S42	Table S4. Estimated catenary hook depths of individual turtles	page S8
Figure S3. Histogram of hook depths corrected for shoalingpage S11 Figure S4. Percent ingested mass of polymers versus hook depthpage S12-S17 Figure S5. Percent composition of polymers in olive ridleys by sexpage S17 Figure S6. Percent composition of polymers in olive ridleys by age classpage S18 Figure S7. Percent composition of polymers in olive ridleys by yearpage S19 Figure S8. Olive ridley % ingested mass of polymers versus SCLpage S20-S24 Figure S9. Green % ingested mass of polymers versus SCLpage S25-S28 Figure S10. Olive ridley % ingested mass of polymers versus latitudepage S29-S34 Figure S11. Olive ridley % ingested mass of polymers versus latitudepage S34-S39 Figure S12. Green % ingested mass of polymers versus latitudepage S39-S42 Figure S13. Green % ingested mass of polymers versus latitudepage S39-S42	Figure S1. Sorted ingested plastic debris	page S9
Figure S4. Percent ingested mass of polymers versus hook depthpage S12-S17 Figure S5. Percent composition of polymers in olive ridleys by sexpage S17 Figure S6. Percent composition of polymers in olive ridleys by age classpage S18 Figure S7. Percent composition of polymers in olive ridleys by yearpage S19 Figure S8. Olive ridley % ingested mass of polymers versus SCLpage S20-S24 Figure S9. Green % ingested mass of polymers versus SCLpage S25-S28 Figure S10. Olive ridley % ingested mass of polymers versus latitudepage S29-S34 Figure S11. Olive ridley % ingested mass of polymers versus latitudepage S34-S39 Figure S12. Green % ingested mass of polymers versus latitudepage S39-S42 Figure S13. Green % ingested mass of polymers versus latitudepage S39-S42	Figure S2. Hook depths corrected for shoaling	page S10
Figure S5. Percent composition of polymers in olive ridleys by sexpage S17 Figure S6. Percent composition of polymers in olive ridleys by age classpage S18 Figure S7. Percent composition of polymers in olive ridleys by yearpage S19 Figure S8. Olive ridley % ingested mass of polymers versus SCLpage S20-S24 Figure S9. Green % ingested mass of polymers versus SCLpage S25-S28 Figure S10. Olive ridley % ingested mass of polymers versus latitudepage S29-S34 Figure S11. Olive ridley % ingested mass of polymers versus longitudepage S34-S39 Figure S12. Green % ingested mass of polymers versus latitudepage S39-S42 Figure S13. Green % ingested mass of polymers versus latitudepage S39-S42	Figure S3. Histogram of hook depths corrected for shoaling	page S11
Figure S6. Percent composition of polymers in olive ridleys by age classpage S18 Figure S7. Percent composition of polymers in olive ridleys by yearpage S19 Figure S8. Olive ridley % ingested mass of polymers versus SCLpage S20-S24 Figure S9. Green % ingested mass of polymers versus SCLpage S25-S28 Figure S10. Olive ridley % ingested mass of polymers versus latitudepage S29-S34 Figure S11. Olive ridley % ingested mass of polymers versus longitudepage S34-S39 Figure S12. Green % ingested mass of polymers versus latitudepage S39-S42 Figure S13. Green % ingested mass of polymers versus longitudepage S43-S46	Figure S4. Percent ingested mass of polymers versus hook depth	page S12-S17
Figure S7. Percent composition of polymers in olive ridleys by yearpage S19 Figure S8. Olive ridley % ingested mass of polymers versus SCLpage S20-S24 Figure S9. Green % ingested mass of polymers versus SCLpage S25-S28 Figure S10. Olive ridley % ingested mass of polymers versus latitudepage S29-S34 Figure S11. Olive ridley % ingested mass of polymers versus longitudepage S34-S39 Figure S12. Green % ingested mass of polymers versus latitudepage S39-S42 Figure S13. Green % ingested mass of polymers versus longitudepage S43-S46	Figure S5. Percent composition of polymers in olive ridleys by sex	page S17
Figure S8. Olive ridley % ingested mass of polymers versus SCLpage S20-S24 Figure S9. Green % ingested mass of polymers versus SCLpage S25-S28 Figure S10. Olive ridley % ingested mass of polymers versus latitudepage S29-S34 Figure S11. Olive ridley % ingested mass of polymers versus longitudepage S34-S39 Figure S12. Green % ingested mass of polymers versus latitudepage S39-S42 Figure S13. Green % ingested mass of polymers versus longitudepage S43-S46	Figure S6. Percent composition of polymers in olive ridleys by age class	page S18
Figure S9. Green % ingested mass of polymers versus SCLpage S25-S28 Figure S10. Olive ridley % ingested mass of polymers versus latitudepage S29-S34 Figure S11. Olive ridley % ingested mass of polymers versus longitudepage S34-S39 Figure S12. Green % ingested mass of polymers versus latitudepage S39-S42 Figure S13. Green % ingested mass of polymers versus longitudepage S43-S46	Figure S7. Percent composition of polymers in olive ridleys by year	page S19
Figure S10. Olive ridley % ingested mass of polymers versus latitudepage S29-S34 Figure S11. Olive ridley % ingested mass of polymers versus longitudepage S34-S39 Figure S12. Green % ingested mass of polymers versus latitudepage S39-S42 Figure S13. Green % ingested mass of polymers versus longitudepage S43-S46	Figure S8. Olive ridley % ingested mass of polymers versus SCL	page S20-S24
Figure S11. Olive ridley % ingested mass of polymers versus longitudepage S34-S39 Figure S12. Green % ingested mass of polymers versus latitudepage S39-S42 Figure S13. Green % ingested mass of polymers versus longitudepage S43-S46	Figure S9. Green % ingested mass of polymers versus SCL	page S25-S28
Figure S12. Green % ingested mass of polymers versus latitudepage S39-S42 Figure S13. Green % ingested mass of polymers versus longitudepage S43-S46	Figure S10. Olive ridley % ingested mass of polymers versus latitude	page S29-S34
Figure S13. Green % ingested mass of polymers versus longitudepage S43-S46	Figure S11. Olive ridley % ingested mass of polymers versus longitude	page S34-S39
	Figure S12. Green % ingested mass of polymers versus latitude	page S39-S42
Referencespage S47	Figure S13. Green % ingested mass of polymers versus longitude	page S43-S46
	References	page S47

See **Supporting Information File 2** for a spreadsheet containing the ATR FT-IR spectral data for all analyzed ingested debris pieces.

Disclaimer

This is an official contribution of the National Institute of Standards and Technology, and is not subject to copyright in the United States. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Hook Depths Protocol from Bigelow et al.¹

- 1. Obtain NOAA observer report for individual turtle
- 2. Enter the following information from the observer reports into separate columns in a spreadsheet:
 - Vessel Documentation No.
 - Trip No.
 - Set No.
 - Hook Type
 - Target Species
 - Target Depth (m)
 - Length of Mainline* (m)
 - No. of Floats
 - Begin Set Lat and Long Coordinates
 - End Set Lat and Long Coordinates
 - $H_a =$ Length of Branchline (m)
 - H_b = Length of Floatline (m)
 - j=Hook Number Turtle was Caught
 - N=Hooks Between Floats +1 (add 1 to the value taken from the observer report)

*Make sure to convert values into meters. i.e., Length of mainline is given in nautical miles.

- 3. Calculate L=Length of Mainline Between floats (m)
 - Calculated by length of mainline (m)/ number of floats in a set
- 4. Calculate H=Great Circle Distance (km)
 - Calculated by the lat/long coordinates at the start and end of each **SET**, not the haul
 - Use <u>http://www.movable-type.co.uk/scripts/latlong.html</u> to
- calculate the great circle distance by inputting the coordinates 5. Calculate S=sag ratio=L/H
 - Calculated by length of mainline (m)/ great circle distance (m)
 - The smaller and larger values correspond to lesser and greater sag ratios, respectively
 - Used for illustrative purposes
- 6. Calculate S=sag ratio=H/L
 - Calculated by great circle distance (m)/ length of mainline (m)
 - Used for the R code
 - Plug this value into the last line of the code i.e.,- sagrate.angle2(0.65)

Hook Depths R Code

```
#### Function for calculating angle from sag ratio finer estimation
angle <- 1:2
names(angle) <- c("angle", "convergence")
angle <- data.frame(angle)
sagrate.angle2 <- function(sagrate)
for(i in 1:length(sagrate))
ł
    print(i)
    print(sagrate[i])
    tmp4 <- 1
# consider sagrates from 0.28 to 0.96
    for(j in 28000:96000)
     ł
    k <- j/1000.0
    tmp <- tan(k*pi/180)
    tmp2 <- sinh(tmp*sagrate[i])
    tmp3 <- abs(tmp-tmp2)
    if(tmp3<0.01)
     ł
       if(tmp3<tmp4 && k<85 && k>27.999)
       ł
       tmp4 <- tmp3
       angle$angle[i]<-k
       angle$convergence[i]<-tmp3
# print(tmp4)
       ł
     3
ł
return(angle)
ł
sagrate.angle2(0.65) → value in ( ) from sag ratio
```

7. Retrieve Catenary Angle (given in degrees)

```
• This value is produced by the R code

R Code Format: sagrate.angle2(0.65)

[1] 1

[1] 0.65

angle convergence

angle 68.802 1.384423e-05

convergence 2.000 9.971286e-03

Answers for each possible two-decimal place sag ratio are shown in Table S1 below,
```

which eliminates the need for using R.

- 8. Calculate D_i =theoretical depth of catenary hook
 - Calculated with equation below
 - This is the theoretical value of the depth

 $\begin{array}{l} Google \ Spreadsheet \ Formula: \\ D_{i} = Ha + Hb + (L/2)*((1+COT(RADIANS(CatAngle))^{2})^{0.5}-((1-2*(j/N))^{2}+COT(RADIANS(CatAngle))^{2})^{0.5}) \end{array}$

- 9. Percent shoaling must be applied to theoretical depth of catenary hook
 - This generates the estimated actual depth of the hook
 - This compensates for environmental factors (wind stress, current velocity, etc.) that will affect the theoretical depth as the longline sways through the water column

Important Notes

Use % Shoaling (Positive Only) From Bigelow et al (2006): Deep set, Method 1

Mean, S.D., median and range (in parentheses): 39.1 % ± 19.3 %, 39.8 % (1 %-85 %, *n* = 141)

Method 1 was used instead of Method 2. Method 2 requires the speed of the line thrower, which was not provided in the observer reports.

Shallow vs Deep Set:

Swordfish gear (shallow) is characterized as the 'Gulf of Mexico' style ² which typically **deploys four HBF** (hooks between floats) and is kept relatively taut to **target the upper 30–90 m of water column** ³. **Tuna (deep)** fishing uses a line thrower to put sag in the longline and **deploys a greater number of HBF to reach depths of** 400 m⁴.

Estimations made when certain data were missing for a turtle:

- (1) If the calculated sag ratio was < 0.28, the catenary angles was set to 84.838° .
- (2) If the calculated sag ratio was > 0.96, the catenary angle was set to 28° .
- (3) If the length of the mainline deployed was missing, the length of the mainline from the same vessel for a different turtle was used.

Sag ratio	Catenary Angle (degrees)	Sag ratio	Catenary Angle (degrees)
0.28	84.838	0.62	70.728
0.29	84.564	0.63	70.104
0.30	84.284	0.64	69.462
0.31	83.998	0.65	68.802
0.32	83.704	0.66	68.122
0.33	83.404	0.67	67.423
0.34	83.096	0.68	66.702
0.35	82.782	0.69	65.959
0.36	82.460	0.70	65.193
0.37	82.130	0.71	64.402
0.38	81.793	0.72	63.586
0.39	81.447	0.73	62.743
0.40	81.094	0.74	61.871
0.41	80.733	0.75	60.968
0.42	80.363	0.76	60.033
0.43	79.984	0.77	59.064
0.44	79.596	0.78	58.058
0.45	79.199	0.79	57.013
0.46	78.793	0.80	55.925
0.47	78.377	0.81	54.793
0.48	77.950	0.82	53.612
0.49	77.514	0.83	52.378
0.50	77.067	0.84	51.087
0.51	76.609	0.85	49.733
0.52	76.139	0.86	48.309
0.53	75.658	0.87	46.810
0.54	75.165	0.88	45.225
0.55	74.659	0.89	43.544
0.56	74.141	0.90	41.756
0.57	73.609	0.91	39.842
0.58	73.063	0.92	37.783
0.59	72.502	0.93	35.552
0.60	71.927	0.94	33.112
0.61	71.336	0.95	30.411
		0.96	28.000

Table S1. R outputs from code shown above to calculate catenary angle from sag ratios.

Table S2. Mean, median, range, one standard deviation (SD), and percent occurrence of the mass (g) of high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), unknown polyethylene (unknown PE), polyurethane, nylon, PE/PP mixture, unknown, grouped floating, and grouped sinking plastic fragments ingested by olive ridley (n = 37), green (n = 9), and loggerhead (n = 4) sea turtles. Resin codes are shown in parenthesis. Minimum mass of all pieces analyzed was 0.00097 g.

parenthesis. Mi				eu was o.u	10097 g.
	IV	lass of ingested	1 (0)		
	1.	Olive Ri	2	(CD)	A /
Polymer	Mean	Median	Range	SD	% occurrence
HDPE (#2)	0.377	0		0.770	40.5
PVC (#3)	0.377	0			2.70
LDPE (#4)	2.72	0.900		4.30	91.9
PP (#5)	2.64			4.30	89.2
PS (#6)	0.020		0 0.0 00	0.060	13.5
Unknown PE	0.550			0.670	64.9
Polyurethane (#7)	0.180	0		0.850	8.11
Nylon (#7)	0.030	0		0.160	2.70
PE/PP Mixture	0.080	0		0.190	29.7
Unknown	0.100	0		0.560	13.5
Floating	6.38	3.99	0.018 - 36.1	7.59	100
Sinking	0.365	0	0 - 5.03	1.03	37.8
		Gree	n		
Polymer	Mean	Median	Range	SD	% occurrence
HDPE (#2)	1.50	0.390	0 - 5.76	2.08	66.7
PVC (#3)	0	0	0	0	0
LDPE (#4)	10.2	9.91	0.068 - 28.8	9.10	100
PP (#5)	3.55	3.05	0.309 - 11.2	3.62	100
PS (#6)	0.050	0	0 - 0.309	0.110	22.2
Unknown PE	3.34	1.56	0.132 - 13.1	4.22	100
Polyurethane (#7)	0.210	0	0 - 1.89	0.630	11.1
Nylon (#7)	0	0	0	0	0
PE/PP Mixture	2.73	0.250	0 - 11.2	3.81	77.8
Unknown	0.070	0	0 - 0.582	0.190	22.2
Floating	21.3	17.9	0.859 - 44.2	16.4	100
Sinking	0.326	0	0 - 1.89	0.633	44.4
_	•	Loggerł	nead	•	
Polymer	Mean	Median	Range	SD	% occurrence
HDPE (#2)	0.560	0.300	0 - 1.64	0.780	50.0
PVC (#3)	0	0	0	0	0
LDPE (#4)	27.5	23.8	2.18 - 60.3	27.6	100
PP (#5)	5.60	3.37	0 - 15.7	7.35	75.0
PS (#6)	0	0	0	0	0
Unknown PE	2.06	1.08	0 - 6.07	2.73	75.0
Polyurethane (#7)	0.110	0	0 - 0.447	0.220	25.0
Nylon (#7)	0	0	0	0	0
PE/PP Mixture	0.840	0.800	0 - 1.75	0.760	75.0
Unknown	0.090	0.010		0.160	50.0
Floating	36.5			34.1	100
Sinking	0.199			0.223	75.0

Table S3. Mean, median, range, and one standard deviation (SD) of the percent mass of high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), unknown polyethylene (unknown PE), polyurethane, nylon, PE/PP mixture, unknown, grouped floating, and grouped sinking plastic pieces ingested by olive ridley (n = 37), green (n = 9), and loggerhead (n = 4) sea turtles.

and loggerhead	· · · ·	f ingested plas	tics		
	0	live Ridley			
Polymer	Mean	Median	Range	SD	
HDPE (#2)	6.09	0	0 - 54.9	12.6	
PVC (#3)	1.52	0	0 - 56.2	9.24	
LDPE (#4)	41.9	35.6	0 - 100	30.4	
PP (#5)	35.2	31.0	0 - 100	29.4	
PS (#6)	0.240	0	0 - 4.02	0.850	
Unknown PE	8.96	4.61	0 - 37.9	10.7	
Polyurethane (#7)	1.66	0	0 - 37.1	7.14	
Nylon (#7)	2.32	0	0 - 85.8	14.1	
PE/PP Mixture	1.17	0	0 - 12.3	2.77	
Unknown	0.950	0	0 - 30.5	5.01	
Floating	93.3	100	14.2 - 100	18.4	
Sinking	6.69	0	0 - 85.8		
	•	Green			
Polymer	Mean	Median	Range	SD	
HDPE (#2)	5.66	3.50	0 - 17.1	6.36	
PVC (#3)	0	0	0	0	
LDPE (#4)	44.4	40.3	5.61 - 70.7	21.6	
PP (#5)	18.2	17.0	1.11 - 26.5	8.47	
PS (#6)	2.88	0	0 - 25.6	8.53	
Unknown PE	17.5	15.0	1.93 - 35.3	24.1	
Polyurethane (#7)	0.620	0	0 - 5.61	1.87	
Nylon (#7)	0	0	0	0	
PE/PP Mixture	10.6	9.81	0 - 37.2	12.0	
Unknown	0.160	0	0 - 1.30	0.430	
Floating	96.3	100	74.4 - 100	8.44	
Sinking	3.67	0	0 - 25.6	8.44	
Loggerhead					
Polymer Mean		Median	Range	SD	
HDPE (#2)	11.4	2.76	0 - 40.2	19.4	
PVC (#3)	0	0	0	0	
LDPE (#4)	67.9	65.8	53.2 - 86.9	14.1	
PP (#5)	10.1	7.70	0 - 24.9	10.6	
PS (#6)	0	0	0	0	
Unknown PE	5.84	5.42	0 - 12.5	6.20	
Polyurethane (#7)	1.04	0	0 - 4.15	2.07	
Nylon (#7)	0	0	0	0	
PE/PP Mixture	3.42	1.64	0 - 10.4	4.78	
Unknown	0.260	0.260	0 - 0.53	0.300	
Floating	98.7	99.5	95.9 - 100	1.91	
Sinking	1.30	0.526	0 - 4.15	1.91	

Table S4. Estimated catenary hook depths, catenary hook depths corrected for shoaling, and notes on estimations made for missing data for olive ridley (n = 37), green (n = 9), and loggerhead (n = 4) sea turtles caught as bycatch by Pacific longline fisheries.

- 0 -	institutios.		<u> </u>	
			Catenary	
		Predicted	depth with	
		catenary	39.1%	
Turtle ID	Species	depth (m)	shoaling (m)	Estimations
LL445715	Lepidochelys olivacea	145	88.3	
LL444515	Lepidochelys olivacea	449	274	sag ratio <0.28, so set cat. angle to 84.838
LL441507	Lepidochelys olivacea	192	117	
LL431606	Lepidochelys olivacea	72.9	44.4	sag ratio >0.96, so set cat. angle to 28
LL431609	Lepidochelys olivacea	72.0		sag ratio >0.96 , so set cat. angle to 28
AS013413	Lepidochelys olivacea	322	196	sugratio > 0.90, so set cat. angle to 20
A5015415	Lepidocherys olivacea	322	190	
				main line length missing, used average of all
				trips; hook number was missing, estimated
				shallowest as hook $\# 1 = 53.69432131$,
				deepest as hook $\#15 = 248.300886$, can't
LL450502	Lepidochelys olivacea	0	0	estimate depth
LL452515	Lepidochelys olivacea	0	0	missing too much, can't calculate depth
LL458504	Lepidochelys olivacea	98.9	60.2	
LL461308	Lepidochelys olivacea	76.2	46.4	sag ratio >0.96, so set cat. angle to 28
LL460203	Lepidochelys olivacea	62.9		sag ratio >0.96 , so set cat. angle to 28
LL468213	Lepidochelys olivacea	44.9		sag ratio >0.96 , so set cat. angle to 28
LL469204	Lepidochelys olivacea	208	126	ang 1440 - 0.20, 50 500 041. angle to 20
			43.4	
LL477006	Lepidochelys olivacea	71.3		$\sim -\infty $
LL481001	Lepidochelys olivacea	101		sag ratio >0.96 , so set cat. angle to 28
LL489701	Lepidochelys olivacea	173	106	
LL490008	Lepidochelys olivacea	71.6		sag ratio >0.96, so set cat. angle to 28
LL492013	Lepidochelys olivacea	103	62.5	sag ratio >0.96 , so set cat. angle to 28
LL514915	Lepidochelys olivacea	149	90.5	
LL515309	Lepidochelys olivacea	107	64.9	sag ratio >0.96, so set cat. angle to 28
LL517203	Lepidochelys olivacea	34.9	21.3	
LL519305	Lepidochelys olivacea	247	150	
LL525509	Lepidochelys olivacea	48.9	29.8	
LL527602	Lepidochelys olivacea	75.4		sag ratio >0.96, so set cat. angle to 28
LL528412	Lepidochelys olivacea	32.8	20.0	
LL530504	Lepidochelys olivacea	44.3		sag ratio >0.96 , so set cat. angle to 28
LL531413	Lepidochelys olivacea	80.7		sag ratio >0.96 , so set cat. angle to 28
LL531416	Lepidochelys olivacea	49.6	30.2	
LL532410	Lepidochelys olivacea	87.5		sag ratio >0.96, so set cat. angle to 28
LL543605	Lepidochelys olivacea	72.1		sag ratio >0.96, so set cat. angle to 28
LL554318	Lepidochelys olivacea	78.6		sag ratio >0.96, so set cat. angle to 28
LL556214	Lepidochelys olivacea	65.1		sag ratio >0.96, so set cat. angle to 28
LL550302	Lepidochelys olivacea	113		sag ratio >0.96, so set cat. angle to 28
LL552302	Lepidochelys olivacea	113	69.0	sag ratio >0.96, so set cat. angle to 28
LL556106	Lepidochelys olivacea	130	79.1	
LL445510	Lepidochelys olivacea	47.1	28.7	sag ratio >0.96, so set cat. angle to 28
LL474511	Lepidochelys olivacea	94.2		sag ratio >0.96 , so set cat. angle to 28
LL476104	Chelonia mydas	104	63.4	
LL480011	Chelonia mydas	179	109	
AS015316	Chelonia mydas	120.4	73.3	
	Chelonia mydas			sag ratio < 0.28 , so set cat. angle to 84.838
AS015728	2	100	108	sag 1010 ~0.20, so set cat. angle to 84.838
AS015808	Chelonia mydas	177		
LL493312	Chelonia mydas agassizii	104		sag ratio >0.96, so set cat. angle to 28
LL513310	Chelonia mydas	55.6	33.8	
AS019908	Chelonia mydas	76.1	46.4	
LL547906	Chelonia mydas agassizii	51.8	31.6	sag ratio >0.96, so set cat. angle to 28
				main line length missing, found length on same
				vessel 3 years later, sag ratio >1 so used max
LL456601	Caretta caretta	45.7	27.8	cat angle
LL520119	Caretta caretta	49.2		sag ratio >0.96 , so set cat. angle to 28
LL544407	Caretta caretta	46.4		sag ratio >0.96 , so set cat. angle to 28
LL554807	Caretta caretta	51.4		sag ratio >0.96 , so set cat. angle to 28
LLJJ+007	Carcua carcua	51.4	51.5	sug 1000 - 0.70, so set cal. aligie to 20

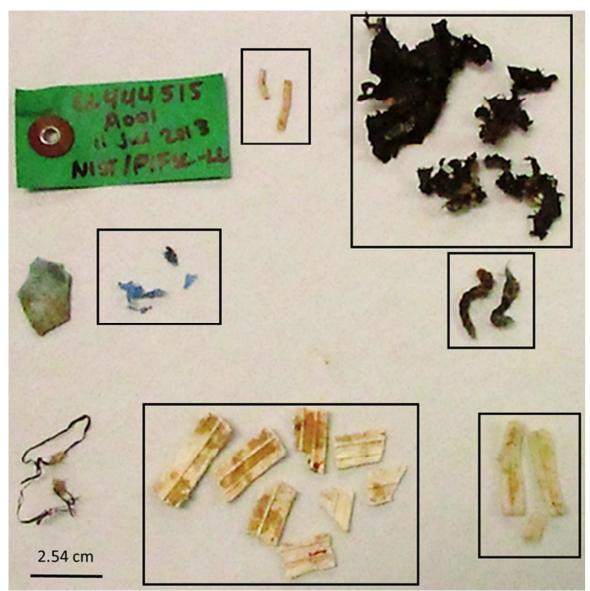


Figure S1. Recognizable groups of ingested plastics assumed to have come from the same larger item based on color, thickness, and texture from an olive ridley turtle. Groups are shown inside black rectangles.

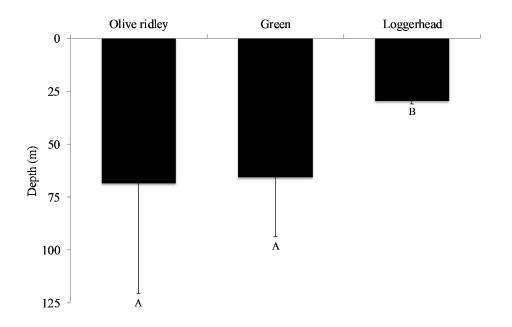
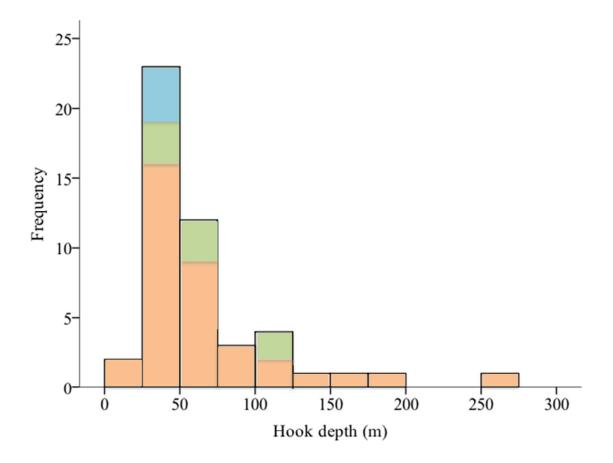
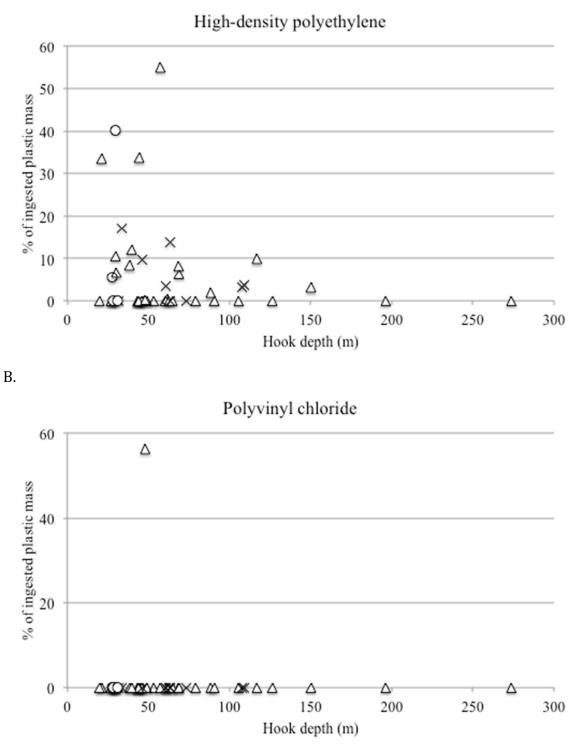
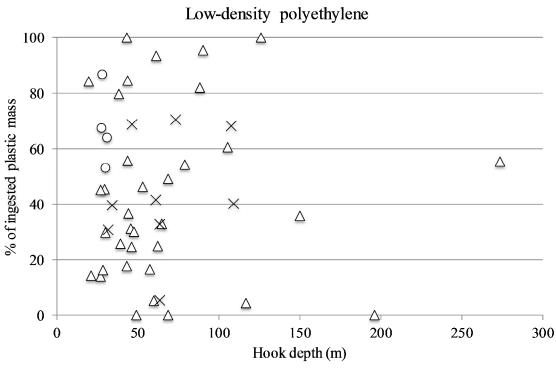
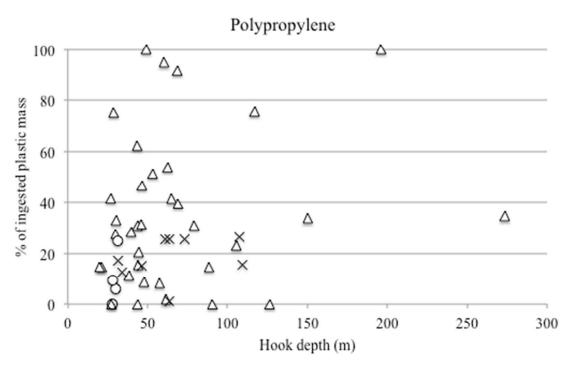
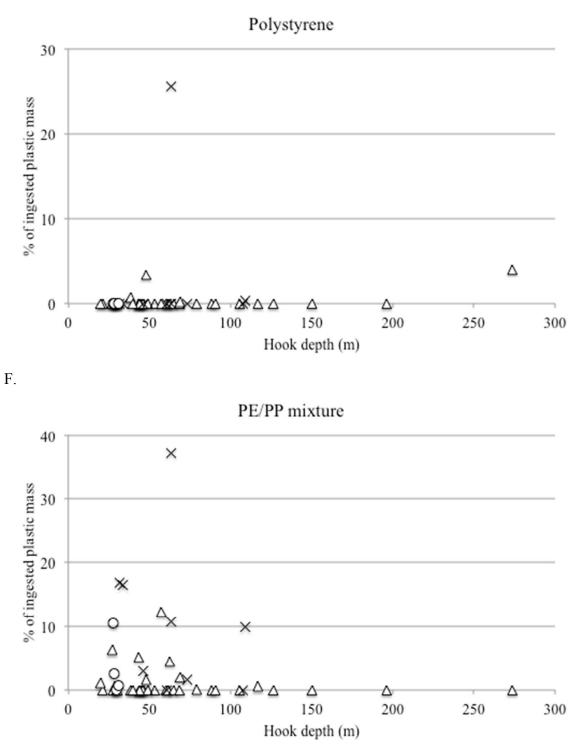
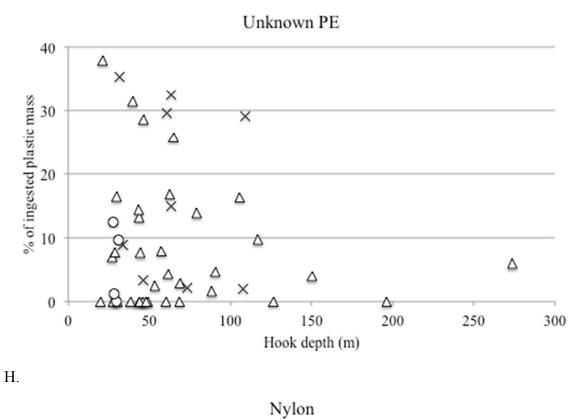


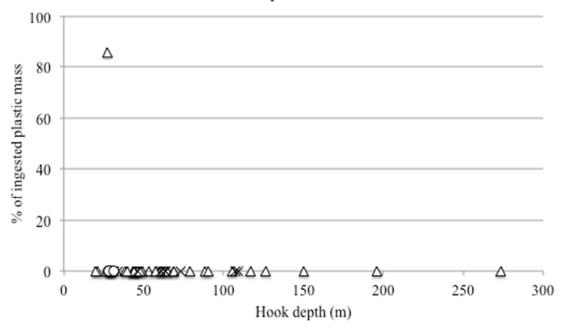
Figure S2. Mean and standard deviation of hook depths (m) corrected for shoaling for olive ridley (n = 35), green (n = 9), and loggerhead (n = 4) turtles caught as bycatch in Pacific longline fisheries. Different letters below bars indicate statistically significant differences among species (p<0.05); olive ridley and green turtles dive deeper than loggerhead turtles.


Figure S3. Histogram of hook depths (m) corrected for shoaling for olive ridley (n = 35, orange), green (n = 9, green), and loggerhead (n = 4, blue) turtles caught as bycatch in Pacific deep-set longline fisheries. Hook depths estimated using method 1 from Bigelow et al. (2006).


A.


D.



S13

E.

S15

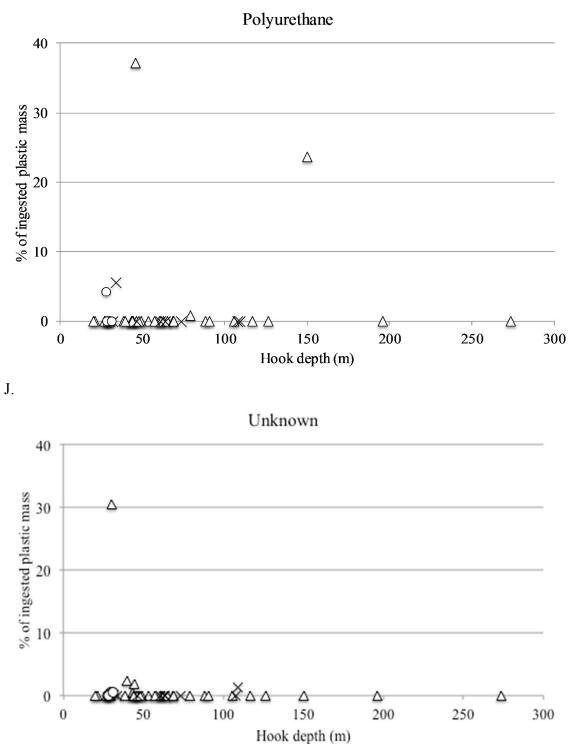
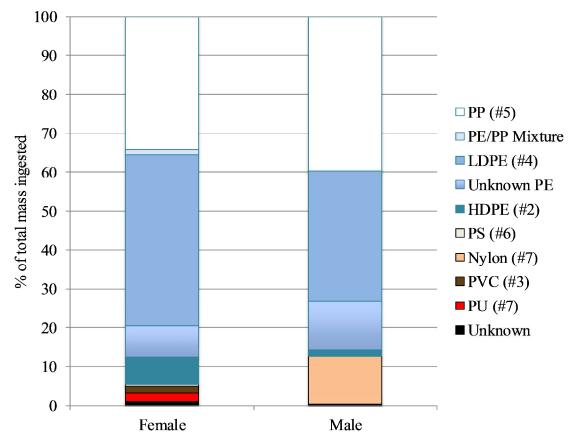



Figure S4. Percent of ingested plastic mass of a) high-density polyethylene (HDPE), b) polyvinyl chloride (PVC), c) low-density polyethylene (LDPE), d) polypropylene (PP), e) polystyrene (PS), f) PE/PP mixture, g) unknown polyethylene (PE), h) nylon, i)

polyurethane, and j) unknown in olive ridley (Δ , n = 35), green (X, n = 9), and loggerhead (O, n = 4) sea turtles captured at different hook depths (m).

Figure S5. Average percent mass of ingested polymers by female (n = 30) and male (n = 7) olive ridley sea turtles. Based solely on chemical density, polymers that would float in seawater are bordered in blue, those that would sink in black. No significant difference was observed with MRPP (p = 0.571). Error bars are not shown. Polypropylene (PP), PE/PP mixture, low-density polyethylene (LDPE), unknown polyethylene (unknown PE), high-density polyethylene (HDPE), polystyrene (PS), nylon, polyvinyl chloride (PVC), polyurethane (PU), and unknown plastic pieces.

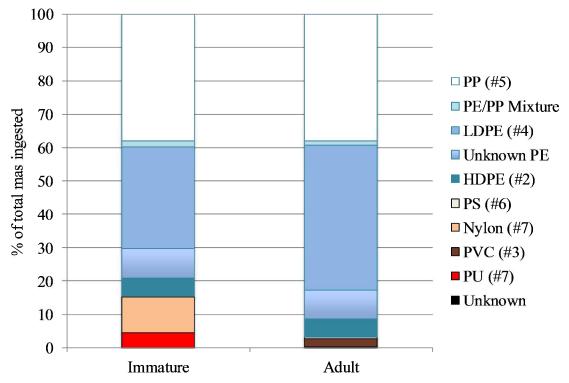


Figure S6. Average percent mass of ingested polymers by immature (n = 8) and adult (n = 22) olive ridley sea turtles. Based solely on chemical density, polymers that would float in seawater are bordered in blue, those that would sink in black. No significant difference was observed with MRPP (p = 0.479). Error bars are not shown. Polypropylene (PP), PE/PP mixture, low-density polyethylene (LDPE), unknown polyethylene (unknown PE), high-density polyethylene (HDPE), polystyrene (PS), nylon, polyvinyl chloride (PVC), polyurethane (PU), and unknown plastic pieces.

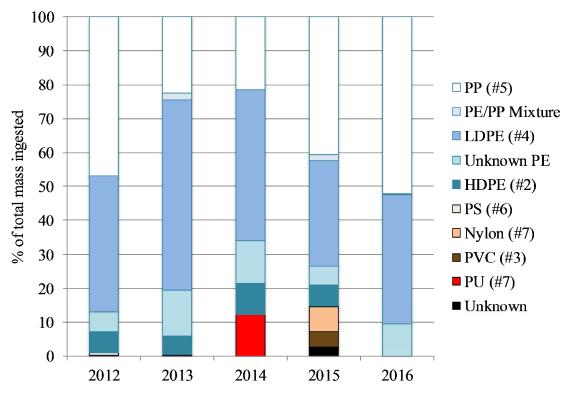
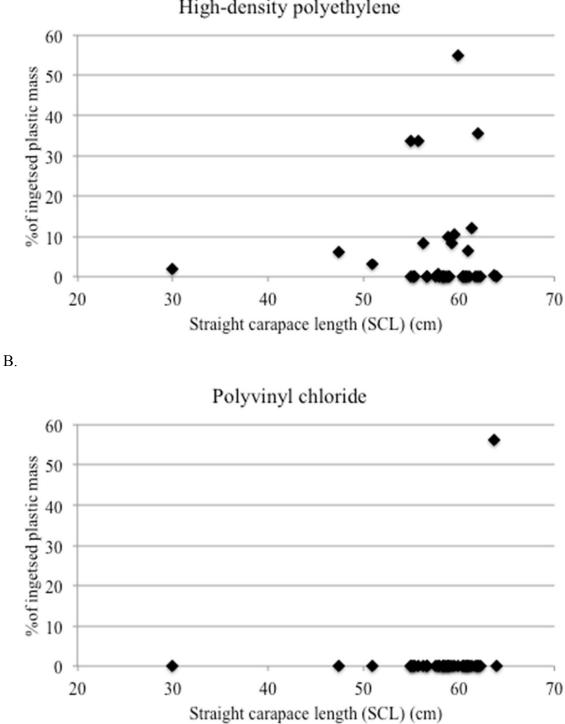
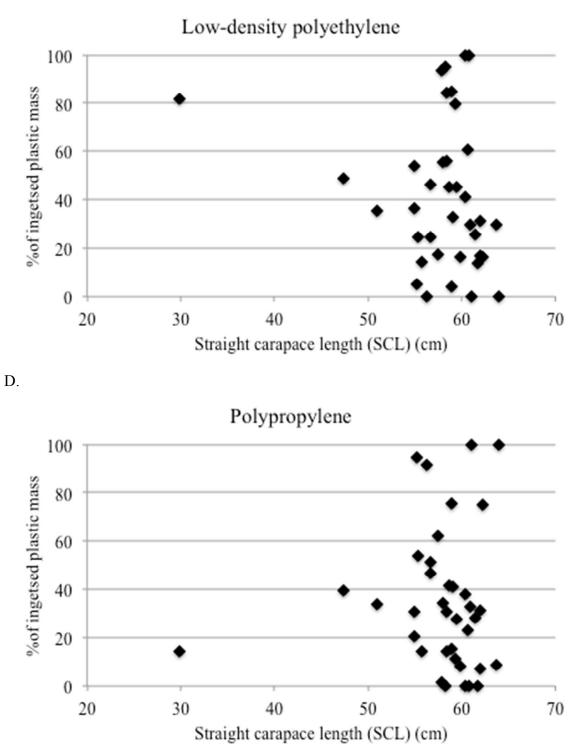
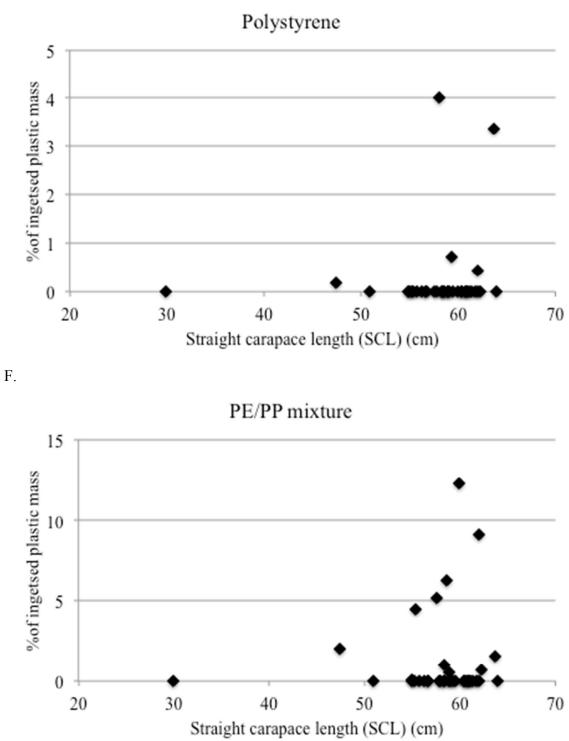
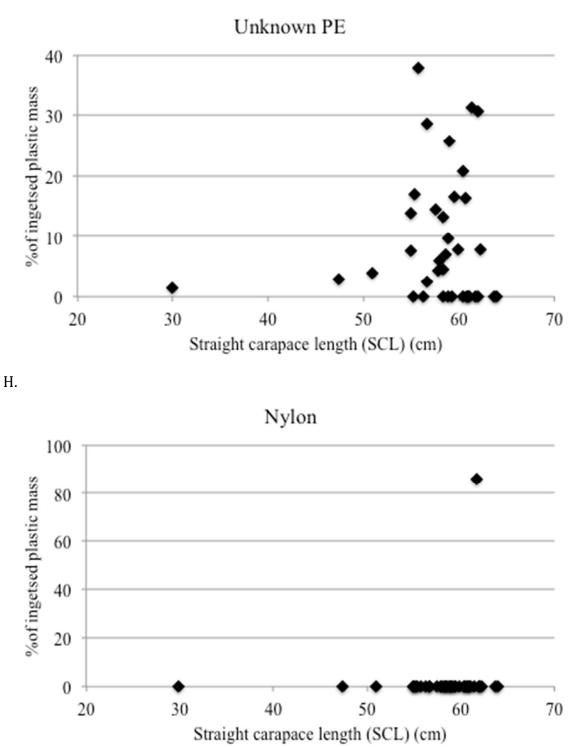




Figure S7. Average percent mass of ingested polymers by olive ridley sea turtles caught in 2012 (n = 7), 2013 (n = 10), 2014 (n = 5), 2015 (n = 11), and 2016 (n = 4). Based solely on chemical density, polymers that would float in seawater are bordered in blue, those that would sink in black. No significant difference was observed with MRPP (p = 0.463). Error bars are not shown. Polypropylene (PP), PE/PP mixture, low-density polyethylene (LDPE), unknown polyethylene (unknown PE), high-density polyethylene (HDPE), polystyrene (PS), nylon, polyvinyl chloride (PVC), polyurethane (PU), and unknown plastic pieces.



High-density polyethylene


A.

C.

E.

G.

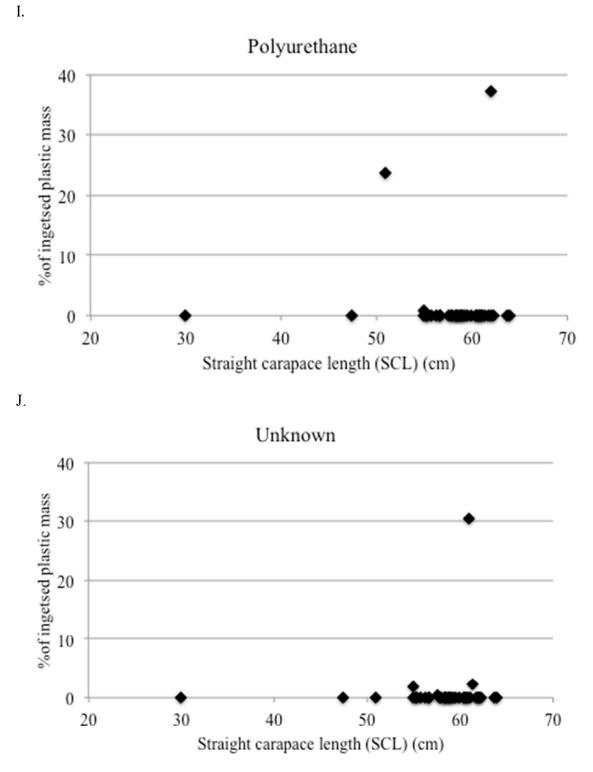
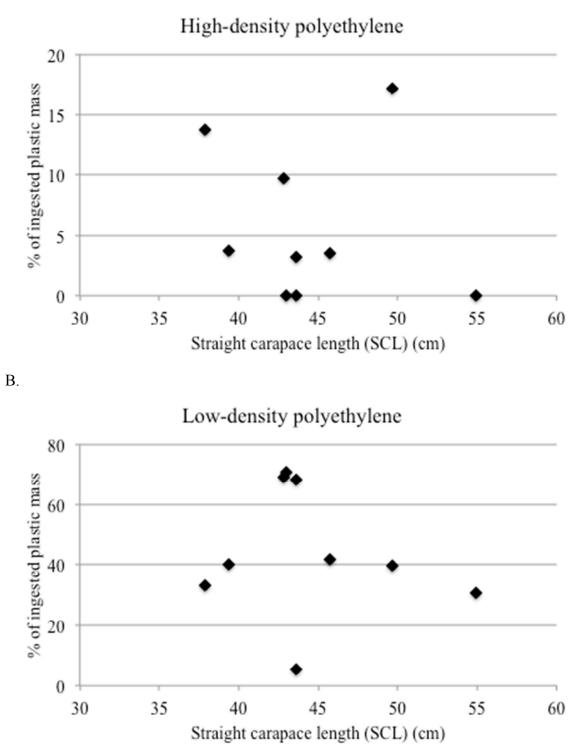
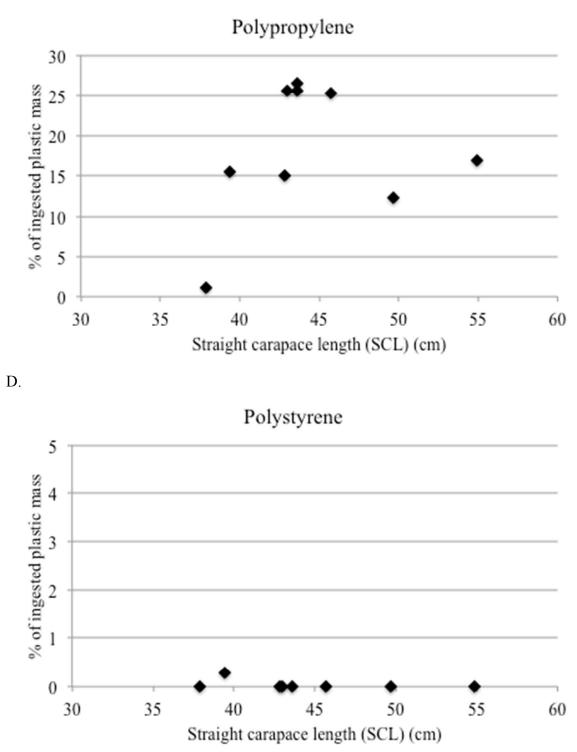
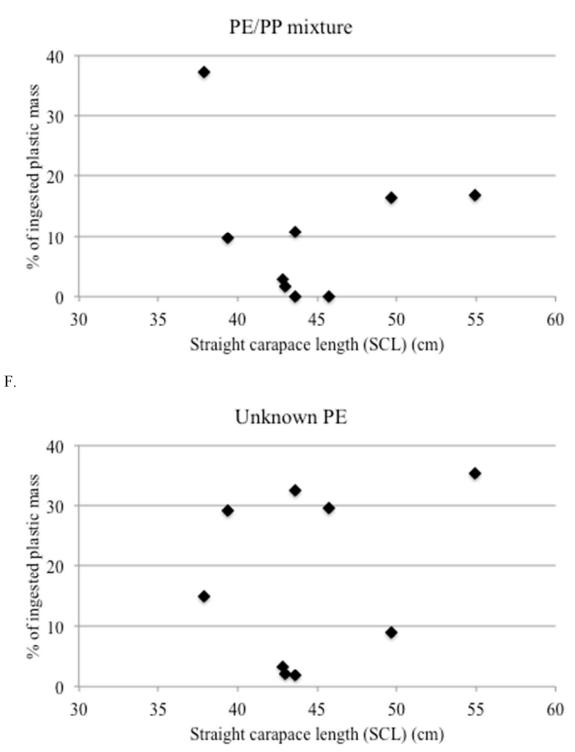




Figure S8. Percent of ingested plastic mass of a) high-density polyethylene (HDPE), b) polyvinyl chloride (PVC), c) low-density polyethylene d) polypropylene (PP), e) polystyrene (PS), f) PE/PP mixture, g) unknown polyethylene (PE), h) nylon, i) polyurethane (PU), and j) unknown in olive ridley (n = 37) sea turtles with varying straight carapace lengths (cm).


S24

A.

C.

E.

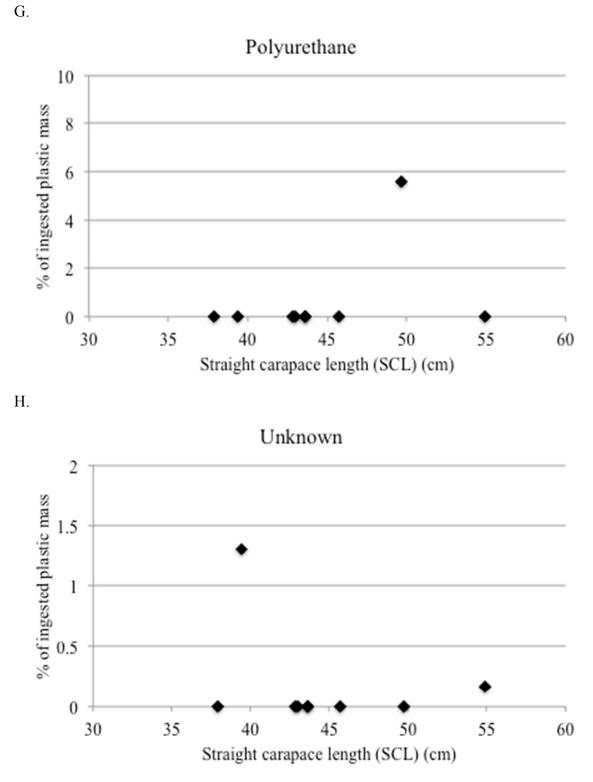
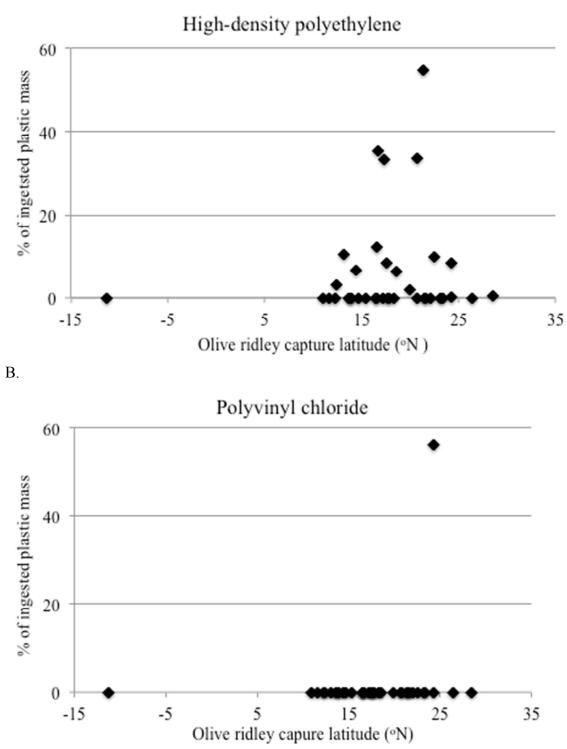
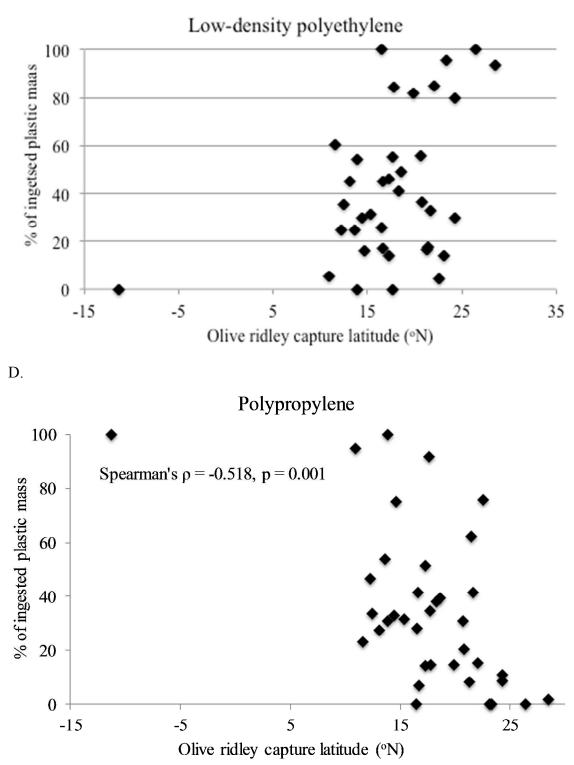
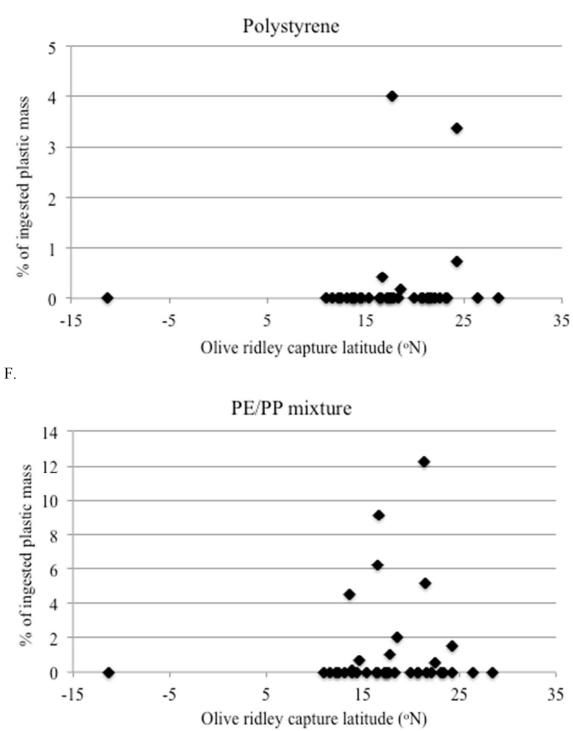
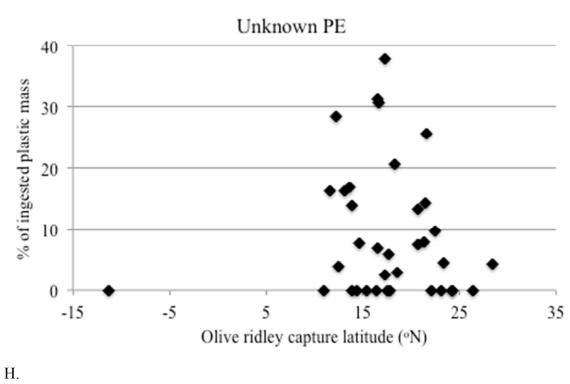
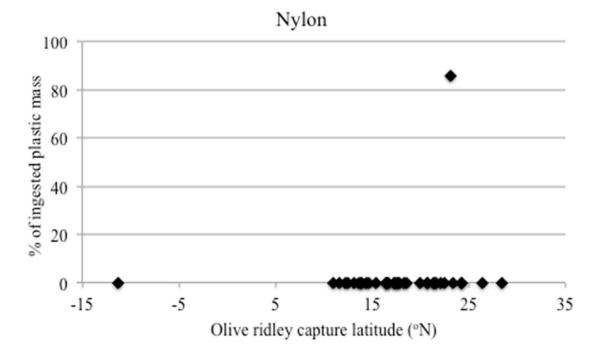




Figure S9. Percent of ingested plastic mass of a) high-density polyethylene (HDPE), b) low-density polyethylene c) polypropylene (PP), d) polystyrene (PS), e) PE/PP mixture, f) unknown polyethylene (PE), g) polyurethane (PU), and h) unknown in green (n = 9) sea turtles with varying straight carapace lengths (cm).


S28


A.



C.

E.

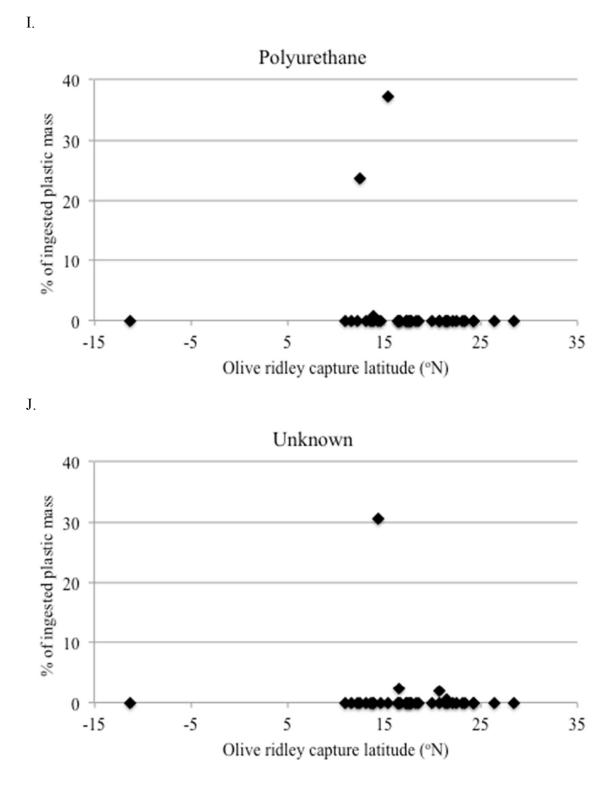
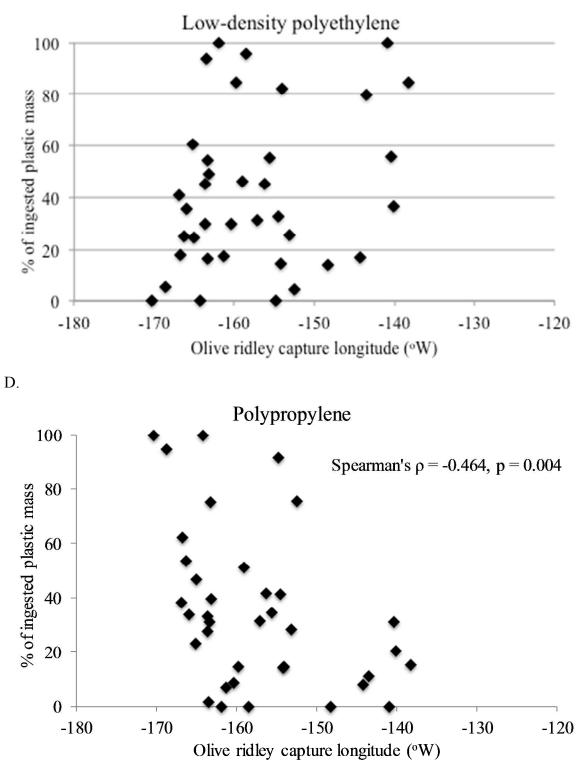
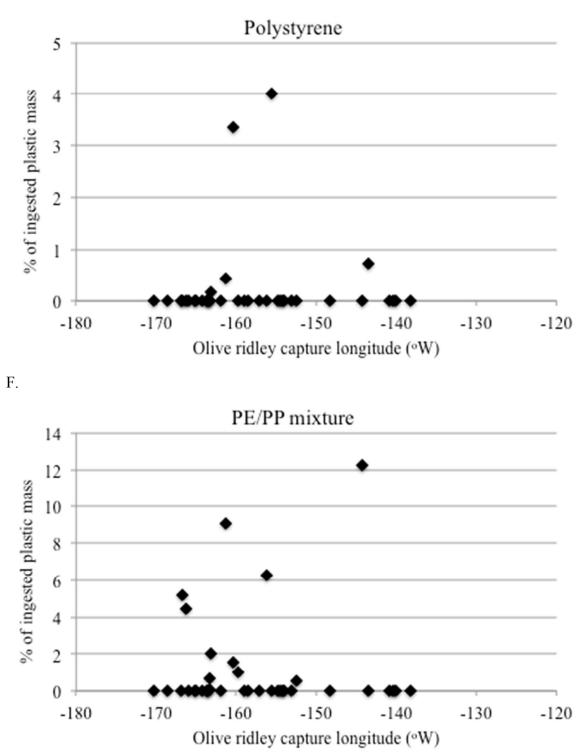
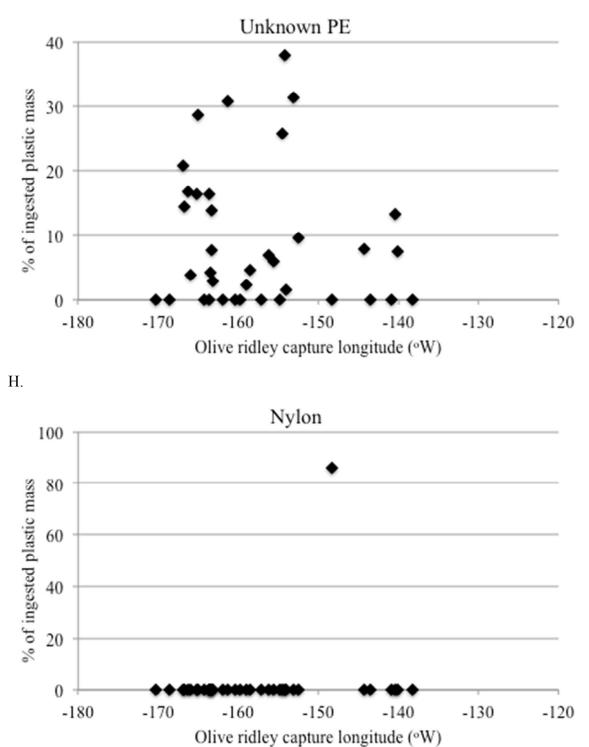



Figure S10. Percent of ingested plastic mass of a) high-density polyethylene (HDPE), b) polyvinyl chloride (PVC), c) low-density polyethylene, d) polypropylene (PP) e) polystyrene (PS), f) PE/PP mixture, g) unknown polyethylene (PE), h) nylon, i)


High-density polyethylene 60 % of ingested plastic mass 40 20 0 -150 -160 -180 -170-140 -130 -120 Olive ridley capture longitude (°W) B. Polyvinyl chloride 60 % of ingested plastic mass 40 20 0 -150 -180 -170-160 -140 -120 -130 Olive ridley capture longitude (°W)

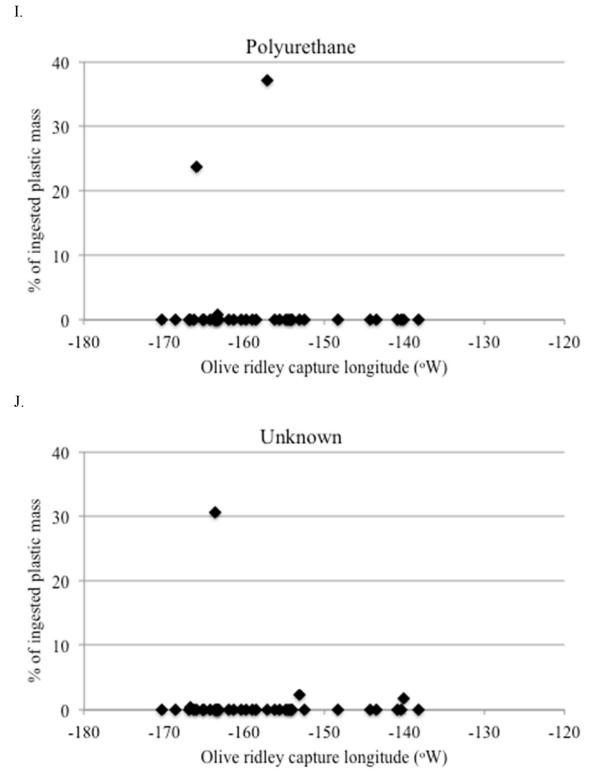
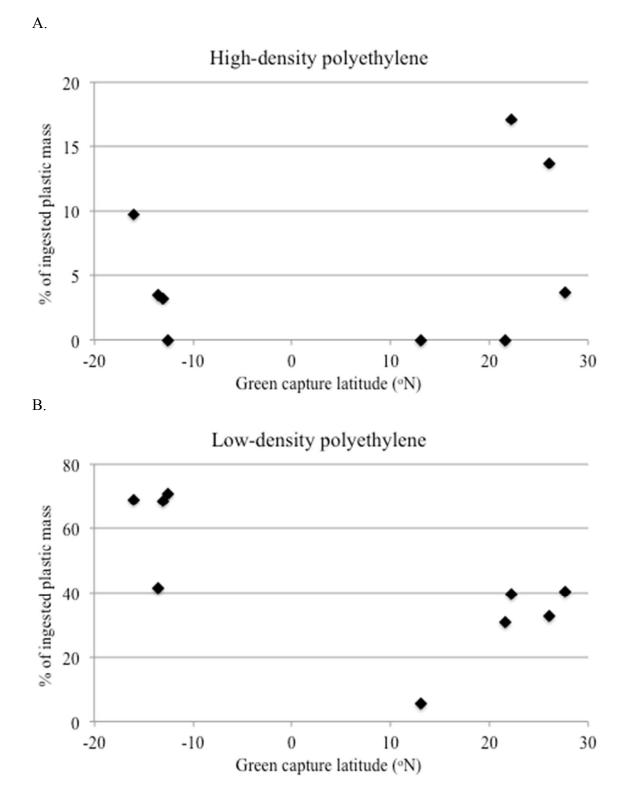
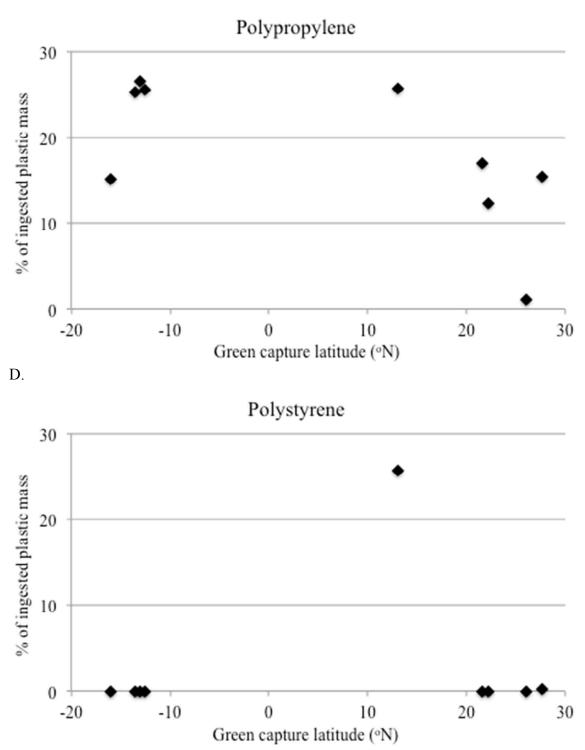
polyurethane (PU), and j) unknown in olive ridley (n = 37) sea turtles with varying capture latitudes ($^{\circ}N$).

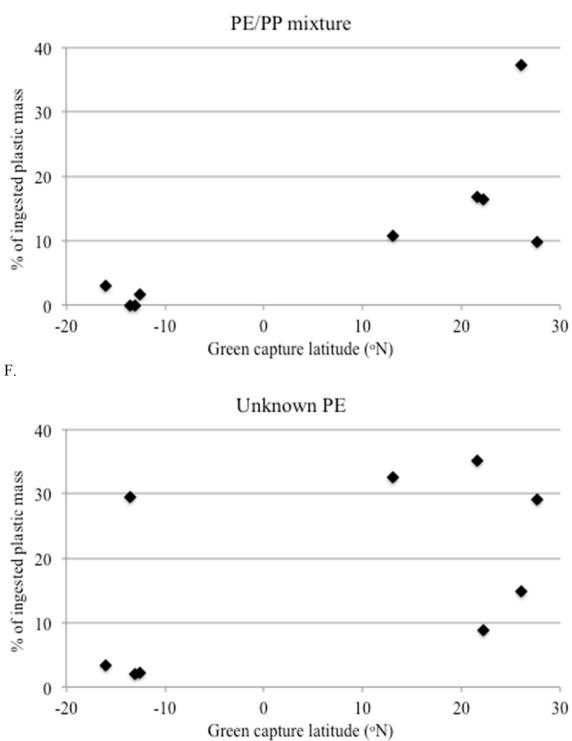

A.

C.

S36

G.

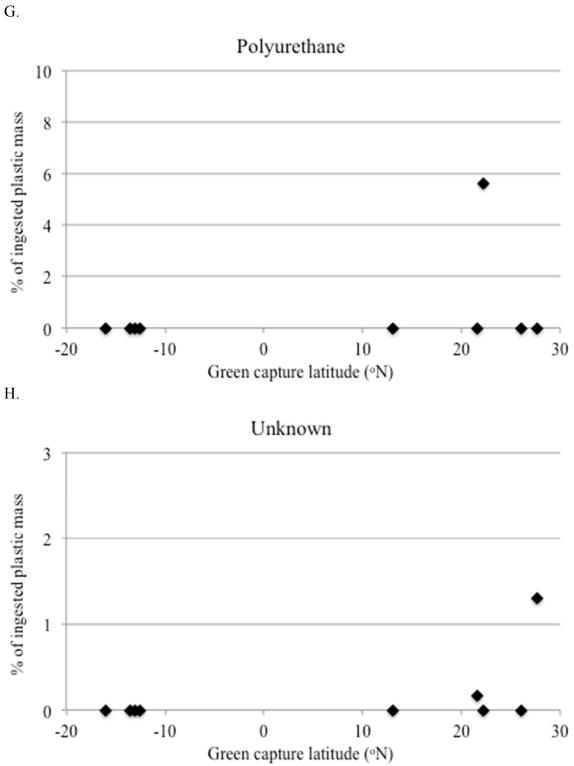
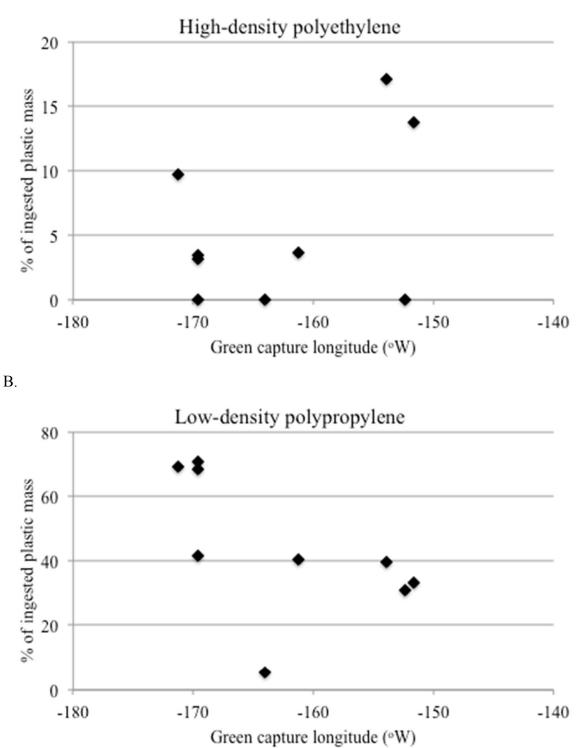
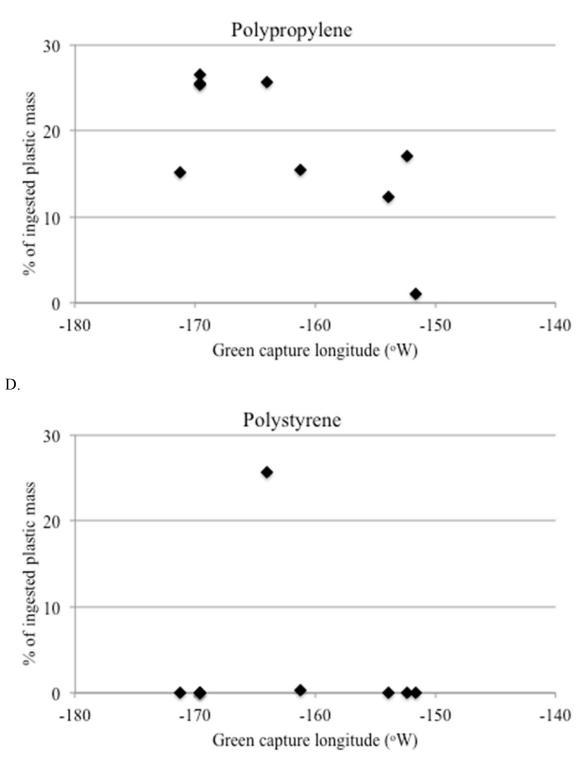




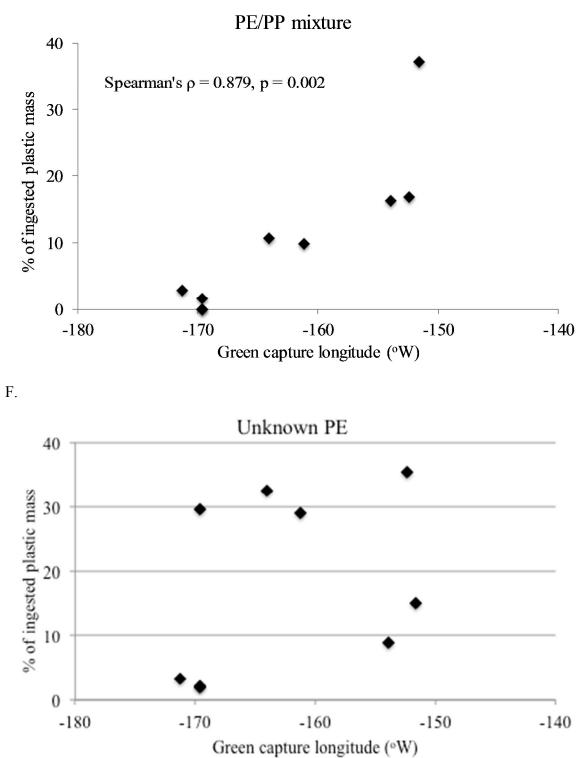

Figure S11. Percent of ingested plastic mass of a) high-density polyethylene (HDPE), b) polyvinyl chloride (PVC), c) low-density polyethylene, d) polypropylene (PP), e) polystyrene (PS), f) PE/PP mixture, g) unknown polyethylene (PE), h) nylon, i)

polyurethane (PU), and j) unknown in olive ridley (n = 37) sea turtles with varying capture longitudes (^oW).

C.

E.


Figure S12. Percent of ingested plastic mass of a) high-density polyethylene (HDPE), b) low-density polyethylene, c) polypropylene (PP), d) polystyrene (PS), e) PE/PP mixture, f) unknown polyethylene (PE), g) polyurethane (PU), and h) unknown in green (n = 9) sea turtles with varying capture latitudes ($^{\circ}N$).

A.

C.

E.

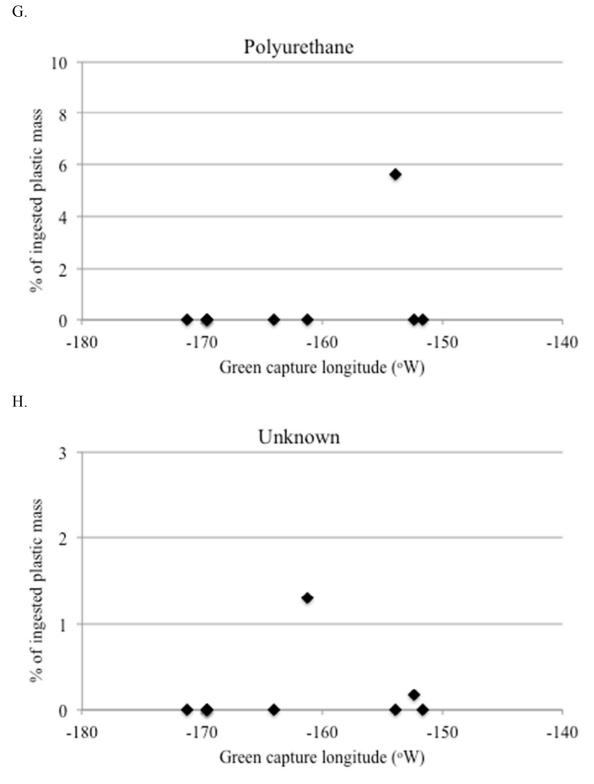


Figure S13. Percent of ingested plastic mass of a) high-density polyethylene (HDPE), b) low-density polyethylene, c) polypropylene (PP), d) polystyrene (PS), e) PE/PP mixture, f) unknown polyethylene (PE), g) polyurethane (PU), and h) unknown in green (n = 9) sea turtles with varying capture longitudes ([°]W).

REFERENCES

1. Bigelow, K.; Musyl, M. K.; Poisson, F.; Kleiber, P., Pelagic longline gear depth and shoaling. *Fish Res* **2006**, *77*, (2), 173-183.

2. Ito, R. Y.; Dollar, R. A.; Kawamoto, K. E., The Hawaii-based Longline Fishery for Swordfish, *Xiphias gladius*. In *Biology of Fisheries of Swordfish, Xiphias gladius*, Barrett, I.; Sosa-Nishizaki, O.; Bartoo, N., Eds. U.S. Department of Commerce: Seattle, Washington, 1998; pp 77-88.

3. Boggs, C. H.; Ito, R., Hawaii's pelagic fisheries. *Marine Fisheries Review* **1993**, *55*, (2), 69-82.

4. Boggs, C. H., Depth, Capture Time, and Hooked Longevity of Longline-Caught Pelagic Fish - Timing Bites of Fish with Chips. *Fish B-Noaa* **1992**, *90*, (4), 642-658.