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Molecular Dynamics Simulation Methodology

In this study, we performed all-atom classical MD simulations using LAMMPS.1 We con-

ducted a set of simulations for two different salts: LiTFSI and LiOTF. For each salt we

first performed a series of bulk-like, fully periodic simulations at molal concentrations of 7m,

10m, 12m, 15m, and 21m. This yielded bulk densities, ion-water correlation functions, and

data for fitting model parameters (pw and εs). Additionally, we conducted MD simulations

of the 21m solution in a nano-slit geometry with surface charges of 0,±0.05,±0.1,±0.15,

and ±0.2 C/m2.

Simulation Details: In the periodic geometries, as seen in fig. S1A., we performed simu-

lations containing 1000 water molecules and enough ion pairs for 7m, 10m, 12m, 15m, and

21m solutions. The simulations were carried out at fixed temperature (300 K) and pressure

(1 bar), with Nose-Hoover thermostat and barostat until the density of the fluid equilibrated

(10 ns with 1 fs time steps). Next, we switched to constant volume simulation box, still with

a fixed temperature (300 K) and Nose-Hoover thermostat, and equilibrate for an additional

6 ns. Finally, production runs were performed for an additional 6 ns. In the nano-slit ge-

ometries, as seen in fig. S1B., we simulated the system at constant volume and temperature,

filling a 33x33x200 Å3 simulation box, with two 33x33x33 Å3 electrodes, sandwiching the

electrolyte, made up of Lennard Jones (LJ) spheres arranged in an fcc lattice (100) corre-

sponding to gold. We refer to these LJ spheres as ‘gold’ atoms from here on out, although

the primary purpose is to hold an applied charge and serve as a hard boundary for the

electrolyte. For 21m LiTFSI (LiOTF), the box contained 707 (1096) ion pairs, 1873 (2904)

water molecules, and 4096 (4096) ‘gold’ atoms. Surface charges (0,±0.05,±0.1,±0.15, and

±0.2 C/m2) were applied by placing partial charges on the first layer of ‘gold’ atoms. Equi-

libration runs of about 12 ns (1 fs time steps) were performed initially with no applied

potential/charge. Then the surface charge was ramped up from zero, allowing for 12 ns of

equilibration and 6 ns of production at each electrode surface charge.

The initial configurations for all simulations were generated using the open-source soft-
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Figure S1: Snapshots of molecular dynamics simulations in (A) periodic and (B) nano-slit
geometries.

ware, PACKMOL.2 All MD simulations were visualized using the open-source software,

VMD.3

Force Field Details : For all ionic species we employed the CL&P force field, which was

developed for ionic liquid simulations, with same functional form as the OPLSAA force

field.4 Given the dense ionic nature of our systems, we expect the CL&P force field to be

appropriate for WiSEs. We note that our model overpredicts the fluid density by 8% (1.804

g/cm3 vs 1.656 g/cm3) compared to the APPLE&P many-body polarizable force field used in

refs. 5 and 6 for LiTFSI, which is known to compare accurately with experiments of various

transport and liquid structure properties. The CL&P force field is known to underestimate

electrolyte transport properties such as conductivity and self diffusion coefficients,7 but ac-

curate modelling of transport is not of importance for this study. We are more interested
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in accurately modelling liquid structure. In particular, the Li+ solvation structure is vital

to our theory. To this end, we plot the coordination number of Lithium as a function of

salt concentration in fig. S2A, where we find that the CL&P force field is able to accurately

reproduce values obtained in ref. 6. Similarly, we plot the radial distribution functions of

various species surrounding Li+ in 21m LiTFSI in fig. S2. The plots shown almost quantita-

tively match the radial distribution functions found using the APPLE&P force field in ref.

6. However, in ref. 6, the authors find that Li+ exhibits a bi-modally distributed solvation

shell; some Li+ is heavily solvated with water (nbound
w = 4) and some is not solvated by any

water (nbound
w = 0). The CL&P force field does not predict this phenomena, as seen in fig.

S2C. However, we do observe that the average value of nbound
w = 2.5, measured in ref. 6 is

recovered by the CL&P force field.

For water, we employed the spc/e force field. Inter-atomic interactions are determined

using Lorentz-Berthelot mixing rules. Finally, for nano-slit simulations, we require force fields

for the ‘gold’ electrode. We did not explicitly model the dynamics of the electrode, omitting

the need for a ‘gold’-‘gold’ force field. The ‘gold’ interacts with the fluid mainly via coulomb

interactions, as the surface layer of ‘gold’ atoms are charged. We also include Lennard-Jones

interactions, which were made to be the same no matter what atom is interacting with ‘gold’

(LJ well depth: ε = 0.001eV, LJ well distance: σ = 3Å). We make the Lennard-Jones

parameters constant for all species in order to emphasize the role of the electrolyte and

obtain conclusions that are not specific to the electrode material. Long range electrostatic

interactions were computed using the Particle-Particle Particle-Mesh (PPPM) solver (with a

cut-off length of 12 Å), which maps particle charge to a 3D mesh for the periodic simulations

and a 2D mesh in the transverse direction for the nano-slit simulation.8
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Figure S2: (A) Lithium coordination number as a function of ion concentration. Atoms
within 2.7Å of a central Li+ is considered to be coordinated to Li+. (B) The radial distri-
bution function of various species around a central Li+ in 21m LiTFSI electrolyte. (C) A
histogram of the number of waters coordinating Li+ in 21m LiTFSI electrolyte.

Electrostatic Energy:

We start by writing the displacement field:

D = ε0E + Pel + Pdip + PBSK (S1)

where E = −∇φ is the electric field and φ is the electrostatic potential; ε0 is vacuum

permittivity; Pel is the local background polarization field of the electrolyte, with major
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contributions coming from the electronic polarizability of molecular species which is assumed

to be constant; Pdip is the local dipolar polarization field and is assumed to be a strong

function of the concentration of dipoles, cw; and PBSK is the local polarization field due

to the orientation of correlated ions, as described by the Bazant-Storey-Kornyshev (BSK)

theory.9

Each of the contributions to the polarization field can be written as

Pel = ε0(εs − 1)E (S2)

Pdip = cw〈pw〉 = cwpwL(βpwE) (S3)

PBSK = −ε0εsl
2
c∇2E (S4)

where pw is the effective dipole moment of free water molecules; β = 1/kBT is inverse thermal

energy; L(u) = cothu− 1/u is the Langevin function; and lc is the ionic correlation length.9

In reality, Pel is a function of the local concentrations of all the species in the fluid; this

contribution turns out to be roughly constant here. Therefore, in practice, we define εs to

be the permittivity of the WiSE when there is no free water in the fluid, which is something

that we will obtain from fitting MD simulations.

It is convenient to write the displacement field in terms of linear and non-linear contri-

butions:

D = Pdip + ε0εs(1− l2c∇2)E (S5)

The differential electrostatic energy, δWe for a dielectric medium of volume, V , is given
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by

δWe =

∫
V

dx [E · δD] (S6)

where we may write the variation in the displacement field as the following

δD =
δPdip

δE
δE + ε0εsδE− ε0εsl

2
c∇δ(∇ · E) (S7)

where we have used the identity ∇ · ∇E = ∇∇ · E, when ∇ × E = 0. We then plug this

result into Eq. (S6)

δWe =

∫
V

dx

[
δPdip

δE
E · δE + ε0εsE · δE− ε0εsl

2
cE · ∇δ(∇ · E)

]
(S8)

We may then use the vector identity:

E · ∇δ(∇ · E) = ∇ · (Eδ(∇ · E))−∇ · Eδ(∇ · E) (S9)

and employed the divergence theorem to transform the first term of Eq. (S9) into a surface

term, at which the electric field vanishes. Thus

δWe =

∫
V

dx

[
δPdip

δE
E · δE + ε0εsE · δE + ε0εsl

2
c∇ · E · δ(∇ · E)

]
(S10)

Integrating δWe from 0 to We, plugging in the definition, E = −∇φ, and enforcing

∇ ·D = ρ with a Lagrange multiplier, λ, obtains:
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We =

∫
V

dx

[
cw
β

(
βpw∇φ · L(βpw∇φ)− ln

(
sinh(βpw∇φ)

βpw∇φ

))]
+

∫
V

dx
[εs

2

(
|∇φ|2 + l2c |∇2φ|2

)]
+

∫
V

dx [λ (ρ−∇ ·D)] (S11)

Substituting in Eq. (S1) and integrating by parts shows that λ = φ. Hence the electrostatic

energy of the WiSE is given by:

We =

∫
V

wedx (S12)

=

∫
V

dx

[
ρφ− ε0εs

2

(
|∇φ|2 + l2c |∇2φ|2

)
− cwkBT ln

(
sinh (βpw|∇φ|)

βpw|∇φ|

)]
(S13)

Pressure Function:

Here we outline a heuristic derivation of the pressure function for a Langmuir model. This

allows the form of the pressure function to be derived, without going into too much detail.

The grand canonical partition function for a 3-component system can be seen as:

Ξ =
∞∑

n+=0

∞∑
n−=0

∞∑
nw=0

eβµ+n+eβµ−n−eβµwn0Q(n+)Q(n−)Q(nw) (S14)

where Q(nj) corresponds to the canonical partition function of each species, j, as seen by

Q(nj) = Ωje
−βεjnj (S15)

where the energy is given by Ej = εjnj.

In the model of Han et al.10 it was assumed that the lattice is subsequently filled with each

species. Hence, the number of configurations for each state is written as if each component,

of which there are nj individual elements, resides on its own ‘individual lattice’ with a total
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of Nt available sites,

Ωj =
Nt!

nj!(Nt − nj)!
(S16)

Hence, we have for the partition function

Ξ =
N∑

nw=0

Ωwe
βµ̃wnw ·

(N−nw)/ξ−∑
n−=0

Ω−e
βµ̃−n− ·

(N−nw−ξ−n−)/ξ+∑
n+=0

Ω+e
βµ̃+n+ (S17)

where ξ− = v−/vw and ξ+ = v+/vw, and µ̃j = µj − εj has been introduced for convenience.

The sums are evaluated progressively because of the assumption that the lattice is subse-

quently filled with each component. Using the binomial theorem, we obtain after evaluating

the sums

Ξ =
{

[(1 + eβµ̃+)ξ−/ξ+ + eβµ̃− ]1/ξ− + eβµ̃w
}N

(S18)

where N is the total number of lattice sites available to free water. In the limit of all

components of equal size, we recover the well-known symmetric 3-component Langmuir

partition function:

Ξ =
{

1 + eβµ̃+ + eβµ̃− + eβµ̃w
}N

(S19)

In the grand canonical ensemble, the partition function is related to the pressure, p,

through,

pV = kBT ln Ξ (S20)

Hence, we have for the pressure function,

p =
kBT

vw
ln{[(1 + eβµ̃+)ξ−/ξ+ + eβµ̃− ]1/ξ− + eβµ̃w} (S21)
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To obtain the pressure function in the main text, we bring a constant out of the chemical

potentials:

p =
kBT

vw
ln{[(1 + ξ+e

βµ̃+)ξ−/ξ+ + ξ−e
βµ̃− ]1/ξ− + eβµ̃w} (S22)

It should be evident that this derivation, which is a generalization of the special case of

ref. 10, can be further generalized to any number of components of any size.

Concentrations:

The concentrations can be obtained from

cj =
∂p

∂µj

∣∣∣∣
T,µi6=j

(S23)

Taking these derivatives yields

c̃w =
2

γ

eβ(µw+Ψ)

[(1 + ξ+eβ(µ+−eφ))ξ−/ξ+ + ξ−eβ(µ−+eφ)]1/ξ− + eβ(µw+Ψ)
(S24)

c̃− =
2

γ

eβ(µ−+eφ)[(1 + ξ+e
β(µ+−eφ))ξ−/ξ+ + ξ−e

β(µ−+eφ)]1/ξ−−1

[(1 + ξ+eβ(µ+−eφ))ξ−/ξ+ + ξ−eβ(µ−+eφ)]1/ξ− + eβ(µw+Ψ)
(S25)

c̃+ =
2

γ

eβ(µ+−eφ)(1 + ξ+e
β(µ+−eφ))ξ−/ξ+−1[(1 + ξ+e

β(µ+−eφ))ξ−/ξ+ + ξ−e
β(µ−+eφ)]1/ξ−−1

[(1 + ξ+eβ(µ+−eφ))ξ−/ξ+ + ξ−eβ(µ−+eφ)]1/ξ− + eβ(µw+Ψ)
(S26)

where γ = 2cbulk
± vw is the packing parameter for ions in the bulk, and c̃i = ci/c

bulk
± are

non-dimensionalized concentrations. Note that the packing parameter is not equivalent to

the typically defined compacity,11 since we have an asymmetric lattice here.
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In the limit of Ψ� |eφ| (see main text for definition of the function), cw → 1/vw, while

ions are depleted c± → 0. When eφ� Ψ > −eφ, the anions saturate, c− → 1/ξ−vw = 1/v−,

with all other concentrations tending to zero, c+,w → 0. For −eφ � Ψ > eφ, the cation

concentration reaches a maximum, c+ → 1/ξ+vw = 1/v+, with c−,w → 0.

The chemical potentials in (S24)-(S26) are determined by the concentrations of species

in the bulk reservoir, where the mean-field electrostatic potential is zero. Solving the system

of algebraic equations, Eqs. (S24)-(S26), under these conditions yields:

βµw = ln

[
γw

1− γw

]
+

1

ξ−
ln

[
1− γw

1− γw − ξ−γ/2

]
+

1

ξ+

ln

[
1− γw − ξ−γ/2

1− γw − ξ−γ/2− ξ+γ/2

]
(S27)

βµ− = ln

[
γ/2

1− γw − ξ−γ/2

]
+

1

ξ+

ln

[
1− γw − ξ−γ/2

1− γw − ξ−γ/2− ξ+γ/2

]
(S28)

βµ+ = ln

[
γ/2

1− γw − ξ−γ/2− ξ+γ/2

]
(S29)

where γw = cbulk
w vw is the packing parameter of free water molecules in the bulk. Note that

ξ−γ/2 is the comapcity of anions and ξ+γ/2 is the compacity of cations, as they would be

defined in a symmetric lattice-gas.11

Model Parameterization:

Our theory is parameterized from molecular dynamics simulations of 21m aqueous solutions

of LiTFSI and LiOTF in fully periodic geometries, representing the bulk fluid. The model

developed in the main text and Appendix requires the specification of 7 parameters: ξ+, ξ−,

γ, γw, pw, εs, and lc. Here, we discuss our procedure for determining these parameters.

In the main text we explained that ξ+ has a contribution from solvating water molecules.
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On the other hand, we made the assumption that ξ− is only related to the molecular volume

of the ‘naked’ TFSI− ions. It can be seen in fig. S3, that cations are much more vigorously

solvated than anions. This observation serves as the justification for our assumption that no

water is bound to anions.

Figure S3: The Li-O(water) and N(TFSI)-O(water) radial distribution functions are plotted
to contrast the asymmetry in ion solvation between anions and cations. The correlation
functions serve in determining the contribution of ion solvation in the ion size parameters,
xi+ and ξ−.

We determined the bulk volumetric filling fraction, ΦB, of the fluid, by fitting it to

reproduce the bulk molar concentrations of species observed in MD simulations. For LiTFSI,

we found a bulk filling fraction of 0.81. The bulk filling fraction is related to γ and γw in the

following way:

ΦB = γw +
γ

2
(ξ+ + ξ−) (S30)

where γ and γw are related via the molality of the solution, and the number of bound water

molecules. We write the equation for the ratio of ion pairs to water molecules:

1 mol water

0.018 kg
× 1 kg

21 mol ion
= 2.65

mol water

mol ion
(S31)
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We may then write

2.65 =
γw + nbound

w γ/2

γ/2

where nbound
w is the average number of bound water molecules to the cation. Thus, upon

determining ΦB, we specify both γ and γw.

We now determine the remaining parameters, pw and εs, from a set of MD simulations

with various water concentrations (7m-21m salt concentration) and computing the bulk

dielectric constant, using the well-known Kirkwood formula:

εMD = 1 +
4π

3V kBT

(
〈|M|〉2 −

〈
|M|2

〉)
(S32)

where M is the total instantaneous dipole moment of the fluid during a snapshot of the MD

simulation.

The model described in the previous section yields the following formula for the permit-

tivity operator:

ε̂ =
cwβp

2
w

ε0

L(βpwE)

βpwE
+ εs

(
1− l2c∇2

)
(S33)

While parameterizing, the simulations were performed in the absence of an external electric

field and averaged over the entire simulation box, so we may take limit of ε̂ as |E| → 0 and

the limit in which the gradient operators vanish (long wavelength limit):

ε̂→ ε = εs + cw
p2
w

3ε0kBT
(S34)

We fit Eq. (S34) to the dielectric constants computed from MD in order to determine pw

and εs, as shown in fig. S4. For LiTFSI, we obtained values of εs = 10.1 and pw = 2.7p0
w,

where p0
w = 1.85 Debye is the dipole moment of a water molecule in vacuum.
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Figure S4: The static dielectric constant computed from MD simulations, as well as with Eq.
(S34) is plotted as a function of free water concentration. Inset: The dielectric constants are
plotted as a function of total water concentration.

The last parameter we must specify is lc, the correlation length, which is perhaps the

least well determined parameter in the model. As a modification to the Poisson-Fermi theory

for neat ILs, lc was first introduced by BSK as a parameter which controls the magnitude of

electrostatic correlations between charges in an IL.9 These electrostatic correlations lead to

the ”overscreening” phenomena, which manifests as decaying oscillations in density profiles

within the EDL. In ref. 9, lc was taken to be the ionic diameter.

Here we take a similar approach. One complication is that in our system, there is a large

asymmetry in the size of cations and anions. MD simulations (see fig. S5, for example)

show asymmetric overscreening in positively or negatively charged surfaces. We posit that

this observation implies that lc is a function of the size of the counter-ion attracted to the

charged surface. For LiTFSI (and LiOTF), we assumed that lc is proportional to the counter-

ion radii, a±, with proportionality constant, α. Thus, for σ > 0, lc = αa− and for σ < 0,

lc = αa+. Interestingly, we find that the LiOTF solution displayed a larger magnitude of

overscreening than LiTFSI solution, most likely due to stronger electrostatic correlations

between cations and anions. For this reason, we actually needed larger correlation lengths

to model the LiOTF electrolyte than for LiTFSI electrolyte, as seen in table S1.

Thus, we have fully parameterized our model from MD simulations. Although we have
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outlined the parameterization for LiTFSI, we performed this procedure for LiOTF, as well.

The determined parameters are written in table S1.

Table S1: Summary of Model Parameters

Parameter LiTFSI LiOTF
ΦB 0.81 0.83
nbound
w 2.5 2.0
ξ+ 4.68 4.37
ξ− 14.85 8.02
pw/p

0
w 2.7 3.0

εs 10.1 8.2
α 2.0 4.0
a−/Å 3.53 2.87
a+/Å 2.41 2.32
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Model Results for LiOTF

Figure S5: (A) Surface excess concentration isotherms for all species. (B) The interfacial
concentration of water integrated within 5 Å of the electrode surface. The concentration
profiles of species in 21m LiTFSI next surfaces with charge (C) +0.1C/m2 and (D)−0.1C/m2
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