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1. Effects of Screening

The calculation presented in the main text assumes the presence of a long-range Coulomb inter-

action. However, this might be a bit stringent assumption especially for a system consisting of

graphene layers. In order to understand the corrections originating from screening we evaluate the

dielectric function under the random phase approximation (RPA). In particular, in this Appendix

we compute the RPA corrected dielectric function under the static limit (ω = 0),

εRPA(q) = ε [1− vqΠ(q)] . (S1)

Here vq = 2πe2/εq is the unscreened 2D Coulomb interaction, and Π(q) is the single-particle

bubble. Since we will be limiting our discussion to T → 0, we express Π(q) only in terms of the
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inter-band scattering term,

Π(q) = −g
∫

d2k

(2π)2
2

εk + εk′

∣∣∣ψ†+(k)ψ−(k′)
∣∣∣2 . (S2)

Here, 2 appears since we work with a 2-band system and εk is the eigenvalue of the low-energy

Hamiltonian in Eq. (3) [or see Eq. (4)] and the eigenvectors of this Hamiltonian are

ψ+(k) =
1√
2εk

vFk + 1
2m

(k†)2

εk

 , ψ−(k) =
1√
2εk

 −εk

vFk + 1
2m

k2

 . (S3)

Our notation here is, k = kx + iky, k̄ = kx − iky, k′ = k − q, and ~k = k(cos θk, sin θk). The

inter-band scattering cross-section can be simplified to

2εkεk′

∣∣∣ψ†+(k)ψ−(k′)
∣∣∣2 = εkεk′ − v2F~k · ~k′ +

k2k′2

4m2

[
1− 2

k2k′2

(
~k · ~k′

)2]
+

3k2vF
2m

[
qx cos(2θk)− qy sin(2θk)

]
. (S4)

The first term is simply the vacuum term, the second one is for SLG and the third one arises for

bi-layer graphene. The last term, an intermediate term in powers of momenta, is present purely

due to the twist angle. In obtaining the above form of this term, we have in fact dropped several

other terms since they do not contribute to the bubble due to being odd-powered in momenta.

Instead of considering the full integration, which anyway is daunting task to perform analyti-

cally, we consider only the relevant limits. In fact, for rs & 1 the validity of such a perturbative

expression in Eq. (S1) is questionable. In other words, for twist angles close to magic angle

(θ − θmagic . 0.5◦) such a calculation breaks down. We thus limit our discussion on screening-

effects only to twist angles away from the magic angle, in other words when the dispersion is

predominantly linear. In this case, only the first two terms in Eq. (S4) could contribute,

SLG Limit : EU =
1

εRPA

e2

r
, εRPA = ε

(
1 +

π

8
g r(1)s

)
= ε+ πα ṽ(θ) . (S5)
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Here ε = 3 − 4 is the dielectric constant of the hBN substrate1 used for the TBLG sample and

recall g = 8. This result can be understood by the following argument, since εk ∼ k amounts to

the high-energy limit, the electrons of the two layers are almost decoupled, leading to a long-range

and sing-layer like behavior, as obtained in Ref.2 for SLG. This corrects the value of r(1)s to

r(1, RPA)
s =

r
(1)
s

1 + πr
(1)
s

.
1

π
. (S6)

This is clearly much less than 1. In fact, for all practical twist angle considerations, one can assume

rs to be 1/π, independent of the angle. However, we will be mostly interested in angles closer to

the magic angle, for which we continue using rs(θ, ν) of Eq. (7). Keeping this in mind, we simply

set ṽ = 1 and work with εRPA = 4 + πα ≈ 10, that is precisely the value used in Ref. 1

Although not very meaningful, for the sake of completeness, we consider the other limit when

the twist angle is very close to magic angle and thus making the (1st and) 3rd term in Eq. (S4)

dominate. In this limit,3 Π(q) = −N0 log 4, where N0 = gm/2π is the density of states in

the bi-layer graphene limit. The dielectric function becomes, εRPA/ε = 1 + qTF/q, where qTF =

(log 4)gme2/ε is the Thomas-Fermi screening vector. This screens the Coulomb interaction to

BLG Limit : EU =
2πe2

ε (q + qTF)

r�1/qTF−−−−−→ 1

εq2TF

e2

r3
. (S7)

2. rs for Device D1

Here we apply the same method we used for M2 but for device D1. For that we extract m∗ as

a function of carrier density (Fig. 3b of Ref. 1 ) and compute the resultant rs using Eq. (7) .

Recall, D1 contains the discrepancy of ν = 2 for hole-doped half-filling and ν = 2.2 for electron

doping. We obtain the value of rs using Eq. (7) which is shown in Fig. S1 . We clearly see the

dome-like behavior of rs near 1/2 and 3/4 filling, a direct result of the dome seen in Fig. 5 near

γ = 1 (see main text). As in the experimental data, there is no feature in rs at ν = 1. Also note the

displacement of the peak in rs away from ν = 2. The dip in the conductance in Ref. 1 occurs also
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occurs away from ν = 2, however, in the opposite direction. Hence, at present no conclusion can

be made.

Figure S1: We redraw Fig. 4 of the main text, by using the effective mass data for sample D1. We
observe maximization of rs slightly away from 1/2-filling but close to 3/4-filling. The dome-like
feature is a reminiscent of the one present in Fig. 3 (inset) in the main text. Since D1 is slightly
away from the magic angle, it can access the small-γ region and achieve this maximization.
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