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I. DETAILS OF THE CLUSTERING ALGORITHM

For our purpose of classification and comparison of atomic sites, we must rely on clustering algorithms that accept
the use of a precomputed distance matrix or a similarity matrix (often termed an “affinity matrix” within the ML
community). Algorithms that are suited for this purpose are for instance k-means, spectral clustering, or affinity
propagation. All these algorithms were tested and were unfortunately found to not be well suited for our problem;
one must note that not all motifs appear equally frequently in our a-C systems. For instance, C atoms bonded to only
two and even only one neighbors appear less frequently than sp2 and sp3 carbons. Therefore, we need a clustering
algorithm which can handle clusters of dissimilar sizes. Ideally, we would also wish to specify the number of target
clusters to build or, at least, what number of clusters not to exceed. All the aforementioned algorithms failed to deliver
this performance and as a matter of fact showed poor agreement between each other and yielded clusterings which did
not resonate with chemical intuition. We settled for a variant of k-means: k-medoids. In essence, k-medoids allows
us to provide our own metric of distance and relies on the use of medoids instead of centroids, which provide a better
exemplary representation of our atomic environments. A medoid is an actual element of the data set (an atomic site
in our case), whereas a centroid is a point in the hyper-space of atomic similarities that may or may not be close to
any actual sample. Within the k-medoids method, each cluster is built around a medoid (sample) which possesses the
minimal average distance from other samples within the same cluster. The procedure is extremely efficient; we used
the Numpy-based implementation by Christian Bauckhage [1]. Unfortunately, k-medoids results are very sensitive
to initial guesses for which samples to use as medoids. To alleviate this problem, we extended Bauckhage’s code to
accept more informed initialization than the original one based on random samples. Our modified version of the code
is available from GitHub [2]. Briefly, our approach consists on requesting a certain number of initial medoids to be
as isolated from other samples as possible, and randomizing the rest according to the total number of clusters to be
built. In the present study we ran the algorithm 10 000 times, which should be more than sufficient given the number
of elements in the data set. The predicted set of medoids which provide the best intra-cluster coherence is chosen as
the final result. Here, we use two different ways to define “incoherence”: total and relative. The total intra-cluster
incoherence is given by

Itot =
∑
k

∑
i∈Ck

Di,Mk
, (1)

where Ck is the kth cluster, i runs through all the samples contained within Ck, and Mk is the medoid of cluster
Ck. Minimizing Itot favors the proliferation of even-sized clusters, since it may become affordable to integrate a small
number of isolated samples (which could constitute their own cluster attending to chemical intuition) into a larger
distant cluster since they contribute little to the total incoherence. To overcome this issue, we also define the relative
incoherence as

Irel =
∑
k

1

nk

∑
i∈Ck

Di,Mk
, (2)

where nk is the number of elements within cluster Ck. Minimization of Irel may lead to proliferation of very small
clusters with very high internal coherence; this problem can be easily solved with appropriate medoid initialization.
In our case we used a mixture of maximally isolated and random medoid initialization.

All in all, we found that 2 Å SOAP cutoff, together with a maximum of 6 clusters and the use of the relative
coherence criterion, provide the best recipe in terms of classifying atomic motifs in a-C in accordance with chemical
intuition, as will be shown next.

In Fig. 1 we show the clusterings resulting from applying the different criteria discussed above. We study the
representation provided by both total and relative coherence criteria, by requesting the data to be classified into 4, 6
and 8 clusters. On the plots, each data cluster is represented by a different color. For 4 clusters, both criteria lead to
unintuitive grouping of sites (red ovals on the figure highlight the issue). This problem is still present for 6 clusters
with the total coherence criterion. For 8 clusters, both schemes provide an intuitive representation although at the
cost of increased complexity. We find that the relative coherence criterion together with a target 6 clusters provides
the best trade-off between complexity (in the sense of minimizing the cluster number) and fulfillment of the chemical
intuition requirement.

II. COORDINATES OF THE MEDOIDS

The coordinates of the medoids identified in our manuscript are given in Listing 1, in regular XYZ format (Cartesian
coordinates in Å). The central site of the motif is always given centered at (2,2,2).
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FIG. 1. Results of the clustering analysis with different numbers of target clusters. Atomic sites which belong to the same
cluster are represented with same-colored dots. Red ellipses indicate issues related to the algorithm clustering together sites
which are too different from each other.
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Listing 1. Coordinates of the medoids identified in our manuscript.

# Cluste r 1 :
2
L a t t i c e =”4.0 0 .0 0 .0 0 . 0 4 .0 0 .0 0 . 0 0 . 0 4 .0” pbc=”F F F”
C 2.00000000 2.00000000 2.00000000 6
C 2.29687663 2.67777026 0.94624125 6

# Clus te r 2 :
3
L a t t i c e =”4.0 0 .0 0 .0 0 . 0 4 .0 0 .0 0 . 0 0 . 0 4 .0” pbc=”F F F”
C 2.00000000 2.00000000 2.00000000 6
C 0.85233974 2.50752321 1.89310963 6
C 3.03752697 1.39706709 2.69247182 6

# Clus te r 3 :
3
L a t t i c e =”4.0 0 .0 0 .0 0 . 0 4 .0 0 .0 0 . 0 0 . 0 4 .0” pbc=”F F F”
C 2.00000000 2.00000000 2.00000000 6
C 1.36714570 2.76202438 3.01283000 6
C 2.18154943 0.74383237 1.89620746 6

# Clus te r 4 :
4
L a t t i c e =”4.0 0 .0 0 .0 0 . 0 4 .0 0 .0 0 . 0 0 . 0 4 .0” pbc=”F F F”
C 2.00000000 2.00000000 2.00000000 6
C 0.76259816 1.58637350 2.47140027 6
C 3.19947508 1.82510102 2.68586940 6
C 1.72449741 3.11424993 1.02365541 6

# Clus te r 5 :
4
L a t t i c e =”4.0 0 .0 0 .0 0 . 0 4 .0 0 .0 0 . 0 0 . 0 4 .0” pbc=”F F F”
C 2.00000000 2.00000000 2.00000000 6
C 2.55238270 2.72733814 0.77848972 6
C 1.55336964 2.41922688 3.23944008 6
C 2.48320219 0.58494414 2.11089562 6

# Clus te r 6 :
5
L a t t i c e =”4.0 0 .0 0 .0 0 . 0 4 .0 0 .0 0 . 0 0 . 0 4 .0” pbc=”F F F”
C 2.00000000 2.00000000 2.00000000 C
C 0.78845475 1.04857888 2.53432665 6
C 2.75631108 1.55215021 3.30558944 6
C 2.86585723 1.34108586 0.96320102 6
C 1.88348724 3.47487605 1.74732444 6

III. NON-PLANARITY/NON-LINEARITY OF MOTIFS

In Fig. 2 we show motif non-linearity and non-planarity h for sp and sp2 sites, respectively. The non-linearity
and non-planarity h are defined as the orthogonal distances between the central site and the line (sp) or plane (sp2)
defined by its neighbors, respectively.
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FIG. 2. Motif non-planarity (sp2) and non-linearity (sp).

IV. INTEGRATED LOCAL DENSITY OF STATES

The local density of states (LDOS), averaged over all sites belonging to the same cluster, is shown in Fig. 3. The
interval from −3 to 3 eV was used to integrate the LDOS. In the paper we show that this integrated value performs
well as descriptor for adsorption characteristics.

V. KERNEL OPTIMIZATION FOR A GAP ML MODEL OF ADSORPTION ENERGY

The kernels used to measure the degree of similarity between two atomic sites rely on several parameters that can
strongly influence the kernel performance. For instance, the parameter used to “smear” the atomic density within
the SOAP approach [3], σatom, can make a SOAP descriptor “sharp” or “fuzzy”. Sharp descriptors are good at
interpolating the properties of atomic sites which resemble very closely the training configurations, but will be bad
at interpolating (and, obviously, extrapolating) far away. The following is a list of all of the parameters which affect
kernel performance (where we have excluded the spherical harmonics parameters for the SOAP expansion):

• σatom, “atom sigma” [units: Å]. It controls the smearing of the atomic density in the generation of the SOAP
representation of the atomic density.

• rc, SOAP cutoff radius [units: Å]. It defines the region around an atomic site within which SOAP can “see” the
atomic neighborhood. The information about the environment outside the cutoff sphere is lost.

• σ, the parameter used for Tikhonov regularization when constructing a GAP model [4] [unitless]. It represents
noise in the data.

• Nt, number of samples in the training set. Usually, the more the better, although many models will not improve
beyond a certain number of training configurations.

• ζ, SOAP kernel exponent [unitless]. This number, typically equal to 4, is used to make the SOAP kernel more
or less sharp. The higher the number the sharper the SOAP kernel.

• σn, smearing parameter of the LDOS moment Gaussian kernel [units: electrons × eVn]. We use nmax + 1 of
these parameters, where nmax depends on the definition of the LDOS kernel [see Eq. (7) of main manuscript].

In Fig. 4 we show the Monte Carlo results of parameter optimization. The RMSE of each model (that is, of each
combination of parameters) is one dot on the graph. The lowest lying (lowest error) models define the convex hull, and
delimit the model accuracy that can be achieved with the constraints imposed by constructing the kernel (and other
aspects of the GAP model) in some particular way. The best model is given by the combination of parameters which
yield the lowest error. From the graph one can see how we first optimized the SOAP parameters and coarse-grained
the LDOS parameters, followed by fine tuning of optimal SOAP+LDOS parameters.
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FIG. 3. Average local density of states (LDOS) of each cluster. Vertical dashed lines delimit the integration interval. Cluster
1 is excluded from the plot due to poor sampling.
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FIG. 4. Performance of different GAP ML models for adsorption energy prediction which can be built for the H-probe data. Nt

samples drawn from half of the data are used for training and all the samples in the other half are used for testing. SOAP-only
models are purple data points and SOAP+LDOS models are green data points.



8

−8

−6

−4

−2 –H

Full adsorption (incl. relaxation)

–COOH

−8

−6

−4

−2 =O (ketone only)

−8 −6 −4 −2

=O/–O– (all O)

−8

−6

−4

−2

−8 −6 −4 −2

–OH

G
A
P
(e
V
)

G
A
P
(e
V
)

DFT (eV)

G
A
P
(e
V
)

DFT (eV)

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

FIG. 5. SOAP+LDOS GAP models for adsorption energy prediction on a-C surface sites, including cluster 1 sites.

TABLE I. Performance (error estimates) of the GAP ML models for adsorption of different functional groups on a-C surface
atomic motifs.

All motifs Excl. cluster 1

MAE RMSE MAE RMSE

(meV) (meV) (meV) (meV)

–H 248 364 227 313

–COOH 295 443 243 316

=O 329 558 261 338

=O/–O– 468 686 417 556

–OH 261 345 239 303

VI. EFFECT OF UNDERCOORDINATED ATOMS

The one-fold coordinated atoms in cluster 1 are highly unstable structural defects (3 out of 10 800 sites) in our
a-C surfaces. It is quite difficult to train a ML model which can predict accurate adsorption energies for these sites
and all other sites simultaneously. Removing these sites the errors are reduced considerably. Training a model which
can predict the energies of those defective sites correctly would require more data in that particular region of feature
space. To illustrate this issue, in Fig. 5 and Table I we show the predictions of our best SOAP+LDOS ML model
including cluster 1 sites.
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