A Preclinical Assessment of ⁸⁹Zr-atezolizumab Identifies A Requirement For Carrier Added Formulations Not Observed With ⁸⁹Zr-C4

Anna Moroz^{1,2}, Lee, Chia-Yin³, Yung-hua Wang², Jeffrey C. Hsiao², Natalia Sevillano⁴, Charles Truillet⁵, Charles S. Craik^{4,6}, Lawrence Fong^{6,7}, Cheng-I Wang³, Michael J. Evans^{2,4,6,*}

¹Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel St, Moscow, Russia, 143026

²Department of Radiology and Biomedical Imaging, University of California San Francisco 505 Parnassus Ave, San Francisco CA 94143

³Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove Immunos #03-06, Biopolis Singapore 138648

⁴Department of Pharmaceutical Chemistry, University of California San Francisco 505 Parnassus Ave, San Francisco CA 94143

⁵Imagerie Moleculaire In Vivo, INSERM, CEA, Univ. Paris Sud, CNRS, Universite Paris Saclay, CEA-Service Hospitalier Frederic Joliot, Orsay France, 94100

⁶Helen Diller Family Comprehensive Cancer Center, ⁷Department of Medicine, University of California San Francisco, 505 Parnassus Ave, San Francisco CA 94143

^{*}To whom the correspondence should be addressed: Michael J. Evans

michael.evans@ucsf.edu

Figure S1. Characterization and radiolabeling of DFO conjugated atezolizumab. A. A plot showing the displacement of ⁸⁹Zr from ⁸⁹Zr-DFO-atezolizumab as a function of added cold ZrCl₄. Using this plot, the average number of chelates per molecule of atezolizumab was determined to be 2.26. **B.** Instant thin layer chromatography (iTLC) traces from the radiosynthesis of ⁸⁹Zr-atezolizumab. At top is shown the crude reaction after 120 min, and below is purified ⁸⁹Zr-atezo after size exclusion chromatography. The arrow is centered over the position of expected migration of unconjugated ⁸⁹Zr-oxalate.

Figure S2. A. A summary of the biodistribution of ⁸⁹Zr-atezo over time (out to 96 hour post injection) in intact male C57Bl/6J mice bearing subcutaneous B16 F10 tumors. Data from each time point represents mean \pm standard deviation for cohort sizes of n = 4. Lg. Int. = large intestine, Sm. Int. = small intestine. B. A summary of the biodistribution of ⁸⁹Zr-C4 over time in intact male C57Bl/6J mice bearing subcutaneous B16 F10 tumors. The data is rendered from our previously disclosed work¹.

Figure S3. Biodistribution data from select tissue compartments in tumor bearing intact male C57Bl/6J mice 48 hours post injection of ⁸⁹Zr-atezo or heat denatured (HD) ⁸⁹Zr-atezo. Heat denaturation substantially decreased tumor-associated ⁸⁹Zr-atezo. Heat denaturation also reduced levels of ⁸⁹Zr-atezo in blood, muscle, and bone. Data from each time point represents mean \pm standard deviation for cohort sizes of n = 4.

Figure S4. A. A summary of the biodistribution of ⁸⁹Zr-atezo over time in immunocompromised intact male nu/nu mice bearing subcutaneous H1975 tumors. Data from each time point represents mean \pm standard deviation for cohort sizes of n = 4. Lg. Int. = large intestine, Sm. Int. = small intestine. B. A summary of the biodistribution of ⁸⁹Zr-C4 over time in intact male nu/nu mice bearing subcutaneous H1975 tumors. The data is rendered from our previously disclosed work¹.

Figure S5. A summary of the biodistribution of ⁸⁹Zr-atezo at 48 hours post injection in tumor bearing immunocompetent intact male C57Bl/6J mice injected with ⁸⁹Zr-atezo, ⁸⁹Zr-atezo + 15X naked atezo, or ⁸⁹Zr-atezo + 15X IgG1 isotype control. Data from each time point represents mean \pm standard deviation for cohort sizes of n = 4. Lg. Int. = large intestine, Sm. Int. = small intestine.

Figure S6. A summary of the biodistribution of ⁸⁹Zr-atezo at 48 hours post injection in tumor bearing immunocompromised intact male nu/nu mice exposed to carrier free and carrier added formulations of the radiotracer. 15x molar excess of unlabeled atezo was co-injected as carrier. Data from each time point represents mean \pm standard deviation for cohort sizes of n = 4. Lg. Int. = large intestine, Sm. Int. = small intestine.

Figure S7. A bar graph representing the percentage of cell bound ⁸⁹Zr-atezo after incubation alone, or in combination with 10X atezo or C4. The data are expressed as a percentage of bound activity compared to total activity added to the B16 F10 cells, and normalized to cell number. The incubation was performed for 30 min at 4° C. Data represent the mean \pm standard deviation from 4 wells per treatment arm. *P<0.01

References:

(1) Truillet, C.; Oh, H. L. J.; Yeo, S. P.; Lee, C. Y.; Huynh, L. T.; Wei, J.; Parker, M. F. L.; Blakely, C.; Sevillano, N.; Wang, Y. H.; et al. (2018) Imaging PD-L1 Expression with ImmunoPET. *Bioconjugate chemistry 29*, 96-103.