Supporting Information For:

Tuning the Negative Photochromism of Water Soluble Spiropyran Polymers

Matthew J. Feeney and Samuel W. Thomas III*

Department of Chemistry, 62 Talbot Avenue

Tufts University, Medford, MA 02155

Email: sam.thomas@tufts.edu

Contents:

1.	NMR spectra of prepared monomers and polymers	S2-S18
2.	Absorbance data for pKa determinations of DMAEMA, AMPS polymers	S19-S23
3.	Photo ring closing absorbance data	S24-S29
4.	Thermal ring opening absorbance data with exponential decay fits	
5.	Supporting figures	S36-S40
6.	Extinction Coefficients for PEGMA polymers	S41

1. NMR spectra of prepared monomers and polymers.

¹³C NMR, CHCl₃ (125 MHz)

¹³C NMR, CHCl₃ (75 MHz)

¹H NMR, CHCl₃ (500 MHz)

¹³C NMR, CHCl₃ (125 MHz)

¹³C NMR, CHCl₃ (125 MHz)

HSp-PEGMA

¹H NMR, CHCl₃ (300 MHz)

OMeSp-PEGMA

¹H NMR, CHCl₃ (500 MHz)

NO₂Sp-PEGMA ¹H NMR, CHCl₃ (500 MHz)

HSp-DMAEMA

¹H NMR, CHCl₃ (500 MHz)

OMeSp-DMAEMA

¹H NMR, CHCl₃ (300 MHz)

NO₂Sp-DMAEMA

¹H NMR, CHCl₃ (500 MHz)

OMeSp-AMPS

¹H NMR, D₂O (500 MHz)

NO₂Sp-AMPS

¹H NMR, D₂O (500 MHz)

2. Absorbance data for pKa determinations of DMAEMA, AMPS polymers.

3. Photo ring closing absorbance data

All irradiation experiments shown were performed using 3 mW/cm^2 at 404 nm (unless otherwise noted), with specific conditions specified in manuscript.

S25

4. Thermal ring opening absorbance data with exponential decay fits.

Curve fit: y = 0.0245+0.17(1-e^{-kt})

Curve fit:		
y = 0.11+0.43	1-e ^{-kt})	

Curve fit: $\gamma = 0.40+0.39(1-e^{-kt})$

(pH 6) Curve fit: y = 0.17+0.53(1-e^{-kt})

(pH 2) Curve fit: y = 0.31+0.31(1-e^{-kt})

5. Supporting figures

Figure S1. Decrease in both MCH⁺ and MC absorbance upon exposure of $NO_2Sp-DMAEMA$ to 3 mW/cm² at 404 nm, where only MCH⁺ absorbs.

Figure S2. Decrease in absorbance of NO₂Sp-DMAEMA at pH 2 over 3 days in the dark.

Figure S3. Minimal decrease in MCH⁺ absorbance of **NO₂Sp-AMPS** at pH 2 over 3 days in the dark.

Figure S4. Decrease in absorbance of NO₂Sp-AMPS at pH 6 over 3 days in the dark.

Figure S5. Ineffective photoacidity of **HSp-PEGMA** at pH > 6. Irradiations were performed with $\lambda > 295$ nm, for 10 minutes (yellow sqyares). Samples were allowed to recover solution pH in the dark over at minimum two hours (black circles).

Figure S6. Photoacidity of **HSp-AMPS** in the absence of added NaCl. Irradiations were performed for 10 minutes with $\lambda > 295$ nm (yellow squares). Samples were allowed to recover solution absorbance in the dark for at minimum 30 minutes (black circles).

6. Extinction coefficients for PEGMA polymers

	ε MCH ⁺ (M ⁻¹ cm ⁻¹)
HSp-PEGMA	31000
NO ₂ Sp-PEGMA	23000
OMeSp-PEGMA	27000