SUPPORTING INFORMATION

Consumption of H₂S from Our Daily diet: Determination by a Simple Chemosensing Method

Ayndrila Ghosh[‡], Sujoy Das[‡], Himadri S. Sarkar, Shampa Kundu, Prithidipa Sahoo^{*}

Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, W.B., India *Corresponding author. E-mail: prithidipa@hotmail.com ‡These authors contributed equally. Table S1. Performance Comparison of Existing Methods and Present Methods based on azide reduction mechanism for Determination of H₂S.

Anal ytes	Sensor type	Detect ion limit(µM)	Detection medium	Detection method	Detecti on state	Sensitivity & Selectivity	Response Time	Estimat ion in samples	Reference
H ₂ S	Napthalim ide	0.066	Neutral	Naked eye UV-Vis Fluoresce nce	Liquid Gas	High	25 sec	Foods from daily diet	Current method
H ₂ S NO NO ₂ ⁻	Aza- BODIPY	14.67	Neutral	Naked eye UV-Vis Fluoresce nce	Liquid	High	30 sec	nd	Anal. Chem. 2014, 86 , 9335–9342.
H ₂ S	1,8- Napthalimi de	nd	Neutral	Fluoresce nce	Liquid	High	45-60 min	nd	Anal. Chem. 2016, 88 , 9213–9218.
H_2S	D- aminolucif erin	0.1	Neutral	Fluoresce nce	Liquid	High	60 min	nd	Anal. Chem. 2015, 87 , 11325–1133 1.
H ₂ S	Carbon dots- Naphthalim ide-azide	0.010	Neutral	UV-Vis Fluoresce nce	Liquid	High	15 min	nd	Chem. Commun., 2013, 49 , 403-405.
H ₂ S	Hydrosulfi de Naphthalim ide	1-10	Neutral	Fluoresce nce	Liquid	Moderat e	45-90 min	nd	Chem. Commun., 2012, 48 , 4767–4769.
H ₂ S	Coumarin– benzopyryl ium	0.22	Neutral	Naked eye UV-Vis Fluoresce nce	Liquid	High	~1 min	nd	AnalyticaChi micaActa 2015, 859 , 59–65.
H ₂ S	Dicyanome thylene- 4H- chromene	nd	Neutral	Naked eye UV-Vis Fluoresce nce	Liquid	High	2 min	nd	Dyes and Pigments. 2013, 98 , 367-371

H ₂ S	Dansylazid e	1	Neutral	UV-Vis Fluoresce nce	Liquid	High	15 min	nd	Angew. Chem. Int. Ed. 2011, 50 , 9672 –9675
H_2S	Imidazole	0.435	Neutral	UV-Vis Fluoresce nce	Liquid	High	20-30 min	nd	Biochemistry 2014, 53 , 5966–5974.
H ₂ S, NO	Rhodamine	nd	Neutral	Fluoresce nce	Liquid	High	25 min	nd	Chem. Commun., 2015, 51 , 4414—4416
H ₂ S	Rhodamine	5-10	Neutral	Fluoresce nce	Liquid	High	60 min	nd	J. Am. Chem. Soc. 2011, 133 , 10078– 10080.
H_2S	<i>p</i> - azidopheny lalanine	<50	Neutral	Fluoresce nce	Liquid	Moderat e	12 hrs	nd	J. Am. Chem. Soc. 2012, 134, 9589–9592
H ₂ S	Coumarin	nd	Neutral	Fluoresce nce	Liquid	nd	60 min	nd	J. Am. Chem. Soc. 2015, 137, 15330–1533 6
H ₂ S	Rhodamine	0.125- 0.5	Neutral	Fluoresce nce	Liquid	High	60 min	nd	PNAS 2013, 110,7131– 7135
H ₂ S	Napthalimi de	<0.3	Neutral	Naked eye UV-Vis Fluoresce nce	Liquid	High	40-80 min	nd	Scientific reports. 2016, 26203
H ₂ S	Dicyanome thylenedihy drofuran	nd	Neutral	Naked eye UV-Vis Fluoresce nce	Liquid	High	60 min	nd	Tetrahedron Letters 54 (2013) 2980– 2982
H ₂ S	7- Nitrobenz- 2-oxa- 1,3-diazole	0.68	Neutral	Naked eye UV-Vis Fluoresce nce	Liquid	High	5 min	nd	Tetrahedron 2013,69, 867-870

1. NMR Studies:

Figure S1. ¹H NMR of Compound 1 in CDCl₃

¹H NMR of Compound 2 in CDCl₃:

Figure S2.¹H NMR of Compound 2 in CDCl₃ (400 MHz).

¹H NMR of PN-N₃ in DMSO-d₆:

Figure S3. ¹H NMR of PN-N₃ in DMSO-d₆ (400 MHz).

¹³C NMR of PN-N₃ in DMSO-d₆:

Figure S4.¹³C NMR of PN-N₃ in DMSO-d₆ (400 MHz)

2. Mass spectrum of PN-N₃:

Figure S5. MALDI-TOF MS of PN-N₃.

3. Dependence of the absorbance of PN-N₃ on the concentration of H₂S:

Figure S6. Absorbance plot as a function of concentration of H_2S . The plot implies the enhancement in visual color of the probe solution upon addition of H_2S in CH₃CN/H₂O (1:8, v/v) at pH 7.0.

4. pH titration curve of PN-N₃ upon gradual addition of H₂S:

Figure S7. Fluorescence responses of **PN-N₃** (black) and **PN-NH₂** (red) at different pH conditions in CH₃CN/H₂O (1:8, v/v) (λ_{ex} = 435 nm).

5. Calculation of limit of detection (LOD) of PN-N₃ towards H₂S:

Figure S8. Linear fit curve of PN-N₃ with respect to Na₂S concentration.

From the linear fit graph of H_2S we get slope = 4.43×10^7 , and SD value is 1.46363. Thus using the above formula we get the Limit of Detection = 66 nM. Therefore, **PN-N**₃ can detect H_2S up to this very lower concentration by fluorescence techniques. 6. Job's plot for determining the stoichiometry of interaction by fluorescence method:

Figure S9. Job's plot of interaction of **PN-N**₃ with H₂S in acetonitrile-water (1:8, v/v), neutral pH, ([**PN-N**₃ $] = [H_2S] = 10 \mu$ M) by fluorescence method ($\lambda_{ex} = 435 \text{ nm}$).

7. Fluorescence response of PN-N₃ in liquid and gas phase:

Figure S10. (a) Fluorescence response of **PN-N**₃ to various anions [From left to right: Only **PN-N**₃, **PN-N**₃ with H₂S, HPO₄²⁻, HCO₃⁻, OAc⁻, F⁻, Cl⁻, S₂O₃⁻, S₂O₄²⁻, SO₃²⁻, SO₄²⁻, H₂O₂, NO, Ascorbic acid and L-cysteine] in acetonitrile–water (1:8 v/v, pH 7.0,10 mM phosphate buffer) solution. (b) Fluorescence color changes visualized on filter paper strips after 10 minutes of incubation of **PN-N**₃ and **PN-N**₃ with H₂S respectively.

8. Comparative absorbance and fluorescence titration spectra:

Figure S11. (a) Comparative absorption spectra of **PN-N**₃ (20 μ M) in CH₃CN/H₂O, 1:8 (v/v), (pH 7.0, 10 mM phosphate buffer) after addition of various anions, H₂O₂, NO, Ascorbic acid and L-cysteine, upto 20 equiv. (b) Comparative fluorescence emission spectra of **PN-N**₃ (c = 20 μ M) in CH₃CN/H₂O, 1:8 (v/v), (pH 7.0, 10 mM phosphate buffer) after addition of H₂S along with various anions H₂O₂, NO, Ascorbic acid and L-cysteine up to 20 equiv.

9. ¹H NMR titration spectrum of PN-N₃ with H₂S:

Figure S12. ¹H NMR titration spectra [400 MHz] of **PN-N**₃ in CD₃CN at 25^oC and the corresponding changes after the gradual addition of one equiv. of H₂S in D₂O from (i) only **PN-N**₃, (ii) **PN-N**₃+ 0.5 equiv. of H₂S (iii) **PN-N**₃+ 1 equiv. of H₂S, (iv) **PN-N**₃+ 2 equiv. of H₂S.

10. Partial HRMS of the mixed assay system:

Figure S13. Partial HRMS spectra of **PN-N**₃-Na₂S mixture in acetonitrile, taken after two hours of mixing.

11. Details of energy calculations using Density Functional Theory (DFT):

Top and side view of energy optimized geometry:

Figure S14. Energy optimized geometries of **PN-N₃** and **PN-NH₂** obtained at the B3LYP/6-311+G(d,p) levels of theory with CPCM solvation (H₂O).

Details	PN-N ₃	1	2	3	PN-NH ₂
Calculation method	RB3LYP	RB3LYP	RB3LYP	RB3LYP	RB3LYP
Basis set	6-311G+(d,p)	6-311G+(d,p)	6-311G+(d,p)	6-311G+(d,p)	6-311G+(d,p)
E(RB3LYP) (a.u.)	-1171.133	-1570.103	-1969.523	-1062.239	-1062.882
Charge, Multiplicity	0, 1	-1,1	0,1	-1,1	0, 1
Solvent (CPCM)	Water	Water	Water	Water	Water

Table S3. Information detailing for the geometry optimization in Gaussian 09 program.

Molecules	Calculation	Basis Set	E(RB3LYP)	Charge,	Solvent (CPCM)
	Method		(a.u.)	Multiplicity	
N_2	RB3LYP	6-311G+(d,p)	-109.558	0,1	Water
H_2S_2	RB3LYP	6-311G+(d,p)	-797.638	0,1	Water
HS⁻	RB3LYP	6-311G+(d,p)	-398.858	-1,1	Water
H_2S	RB3LYP	6-311G+(d,p)	-399.411	0,1	Water

Table S4. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations of the low-lying excited states of all the molecules and complexes. The data were calculated by TDDFT//B3LYP/6-311G+(d,p) based on the optimized ground state geometries.

Molecules	Electronic Transition	Excitation Energy ^a	f ^b	Composition ^c (%)
DN Na	$S_0 \to S_1$	3.30 eV at 376 nm	0.8193	H-1→ L+1 (70 %)
1 11-113	$S_0 \rightarrow S_9$	4.25 eVat 285nm	0.5066	$H \rightarrow L (69.4 \%)$
PN_NH	$S_0 \to S_1$	3.09 eV at 408 nm	0.7988	$\mathrm{H} \rightarrow \mathrm{L} \ (69.6 \ \%)$
1 11-11112	$S_0 \to S_8$	4.30 eV at 288 nm	0.2219	$H-1 \rightarrow L+1 (68 \%)$

^aOnly selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. ^bOscillator strength. ^cH stands for HOMO and L stands for LUMO.

Table S5. Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO).

Species	Еномо (a.u)	Е лимо (a.u)	ΔE(a.u)	∆E(eV)	$\Delta E(kcal/mol)$
PN-N ₃	-0.24400	-0.07083	0.17317	4.71	108.66
PN-NH ₂	-0.24124	-0.06607	0.17517	4.76	109.90

Figure S15. All relevant electronic transitions of the probe PN-N₃ and the product PN-NH₂.

12. Proposed Mechanism:

Scheme S1. Proposed mechanism for the formation of $PN-NH_2$ from $PN-N_3$ upon addition of two equivalents of H_2S .

13. Images of estimation:

Figure S16. Photographic images of filter paper strips soaked for 1 hour in **PN-N**₃ and of commercially available Na₂S solution (standard) of different concentrations.

14. Colorimetric assay for the estimation of H₂S:

Figure S17. a) Standard absorbance plot for **PN-N**³ with varying concentration of H_2S . b) Bar diagram of the colorimetric assay analysis for estimating the concentration of H_2S present in the food samples with the help of standard absorbance plot. Food samples, 1. Soybean; 2. Chicken; 3. Radish; 4. Egg and 5. Cauliflower.