Design, Synthesis, and Characterization of Novel Small Molecules as Broad Range Anti-Schistosomal Agents

Anastasia Rugel ${ }^{b, \neq}$, Reid Tarpley ${ }^{a, ~}{ }^{¥}$, Ambrosio Lopez ${ }^{\text {a }}$, Travis Menard ${ }^{\text {a }}$, Meghan A. Guzman ${ }^{\text {b }}$, Alexander B. Taylor ${ }^{\mathrm{c}, \mathrm{e}}$, Xiaohang Cao ${ }^{\mathrm{c}}$, Dmytro Kovalskyy ${ }^{\text {d }}$, Frédéric D. Chevalier ${ }^{\mathrm{f}}$, Timothy J. C. Anderson ${ }^{\mathrm{f}}$, P. John Hart ${ }^{\mathrm{c}, \mathrm{e},}$ ${ }^{\mathrm{g}}$, Philip T LoVerde ${ }^{* \mathrm{~b}}$ and Stanton F. McHardy ${ }^{*}{ }^{\mathrm{a}}$
${ }^{a}$ Center for Innovative Drug Discovery, University of Texas at San Antonio, Department of Chemistry, One UTSA Circle, San Antonio, Texas 78249, USA.
${ }^{b}$ Department of Pathology and Laboratory Medicine, ${ }^{\text {c }}$ Department of Biochemistry and Structural Biology, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229 and ${ }^{\text {d }}$ Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Dr., San Antonio, Texas 78229, USA.
${ }^{e}$ X-ray Crystallography Core Laboratory, Institutional Research Cores, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA.
${ }^{\mathrm{f}}$ Texas BioMedical Research Institute, 7620 NW Loop 410, San Antonio, Texas 78227-5301.
${ }^{\mathrm{g}}$ Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229.
*Corresponding authors. Stanton F. McHardy; Tel.: 210-458-8676; e-mail: stanton.mchardy@utsa.edu. Philip T. LoVerde; Tel.: 210-567-3737; e-mail: loverde@uthscsa.edu

SUPPLEMENTAL INFORMATION TABLE OF CONTENTS

General chemistry procedures. 2
Detailed experimental procedures and data for all compounds. 4
Schistosoma assay description 32
Table S1. Anti-schistosomal data (S. mansoni) for additional analogs. 33
X-Ray Structure determinations 33
Table S2. X-ray data 35
Molecular Modeling and Docking Studies 36
Table S3. Modeling and docking data 37
Figure S. 1 Full COSY NMR for compound 12a 38
Figure S. 2 Aromatic region expanded COSY NMR for compound 12a. 39
Figure S. 3 Aliphatic region expanded COSY compound 12a 40
Figure S. 4 Full HSQC NMR compound 12a 41
SI References 41

Chemistry

Chemicals were purchased from established commercial suppliers, including Sigma Aldrich (St. Louis, MO), Chembridge Corporation (San Diego, CA), ChemDiv (San Diego, CA), and Specs (Hopkinton, RI), Cayman (Ann Arbor, MI) and Pfaltz \& Bauer (Waterbury, CT). The identity of all the tested compounds was confirmed by ${ }^{1} \mathrm{H}$ NMR and HPLC-MS, and the purity was ensured to be $\geq 95 \%$.

General procedures. Unless otherwise indicated all reactions were conducted in standard commercially available glassware using standard synthetic chemistry methods and setup. All airand moisture-sensitive reactions were performed under nitrogen atmosphere with dried solvents and glassware under anhydrous conditions. Starting materials and reagents were commercial compounds of the highest purity available and were used without purification. Solvents used for reactions were indicated as of commercial dry or extra-dry or analytical grade. Analytical thinlayer chromatograph (TLC) was carried out using silica gel $60 \mathrm{~F}_{254}$ TLC plates. TLC visualization was achieved with a UV lamp or by staining in an iodine chamber. Flash chromatography was done on a system using prepacked silica gel columns or using silica gel 60 A (230-400 mesh) or with preparative thin-layer chromatography plates (1000 micron F_{254}), or using a Biotage Isolera One 2.2, using commercial columns that were pre-packed with Merck Kieselgel 60 (230-400 mesh) silica gel. Solvent systems employed consisted of (EtOAc/Hex or $\mathrm{DCM} / \mathrm{MeOH}$ or $\mathrm{DCM} / \mathrm{MeOH} / \mathrm{Conc} . \mathrm{NH}_{4} \mathrm{OH}$). All moisture- and air-sensitive reactions and reagent transfers were carried out under dry nitrogen. Final compounds for biological testing are all $\geq 95 \%$ purity as determined by HPLC-MS and ${ }^{1} \mathrm{H}$ NMR.

NMR. ${ }^{1} \mathrm{H}$ NMR experiments were recorded on Agilent DD2 400 MHz spectrometers at ambient temperature. Samples were dissolved and prepared in deuterated solvents $\left(\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}\right.$ and DMSOd_{6}) with residual solvents being used as the internal standard in all cases. All deuterated solvent peaks were corrected to the standard chemical shifts $\left(\mathrm{CDCl}_{3}, d_{\mathrm{H}}=7.26 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}, d_{\mathrm{H}}\right.$ $\left.=3.31 \mathrm{ppm} ; \mathrm{DMSO}-d_{6}, d_{\mathrm{H}}=2.50 \mathrm{ppm}\right)$. Spectra were all manually integrated after automatic baseline correction. Chemical shifts (d) are given in parts per million (ppm), and coupling constants (J) are given in Hertz (Hz). The proton spectra are reported as follows: d (multiplicity, coupling constant J, number of protons). The following abbreviations were used to explain the
multiplicities: app = apparent, $b=$ broad, $d=$ doublet, $d d=$ doublet of doublets, $d d d=$ doublet of doublet of doublets, dddd = doublet of doublet of doublet of doublets, $\mathrm{m}=$ multiplet, $\mathrm{s}=$ singlet, $\mathrm{t}=$ triplet, $\mathrm{ABq}=\mathrm{AB}$ quartet.

HPLC-MS. All samples were analyzed on Agilent 1290 series HPLC system comprised of binary pumps, degasser and UV detector, equipped with an auto-sampler that is coupled with Agilent 6150 mass spectrometer. Purity was determined via UV detection with a bandwidth of 170 nm in the range from $230-400 \mathrm{~nm}$. The general LC parameters were as follows: Column - Zorbax Eclipse Plus C18, size $2.1 \times 50 \mathrm{~mm}$; Solvent A: 0.10 \% formic acid in water, Solvent B: 0.00% formic acid in acetonitrile; Flow rate $-0.7 \mathrm{~mL} / \mathrm{min}$; Gradient: 5% B to 95% B in 5 minutes and hold at 95% B for 2 min ; UV detector - channel $1=254 \mathrm{~nm}$, channel $2=254 \mathrm{~nm}$. Mass detector Agilent Jet Stream - Electron Ionization (AJS-ES).

((4-bromo-2-nitrobenzyl)oxy)(tert-butyl)dimethylsilane (6):
To a flame-dried 3-neck 250 mL RBF equipped with a stir bar and N_{2} outlet, added 4-bromo-2nitrobenzoic acid ($13.68 \mathrm{~g}, 55.6 \mathrm{mmol}$), followed by anhydrous THF (56 mL). After thoroughly flushing the apparatus with N_{2}, the stirring solution was cooled to $0{ }^{\circ} \mathrm{C}$ and 223 mL of 1 M BH_{3} THF (223 mmol) was added dropwise via addition funnel over 40 min . The reaction was allowed to warm to room temperature and stir for 18 hours. The reaction was then cooled to $0^{\circ} \mathrm{C}$ and quenched upon slow addition of MeOH until bubbling ceased. The resulting solution was concentrated under reduced pressure to yield a yellow solid. The resulting solid was dissolved in EtOAc and washed with equal amounts of $\mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3}, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, decanted and concentrated in under reduced pressure to provide 12.41 g , 96.1% of (4-bromo-2-nitrophenyl)methanol as a beige solid. The crude product was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 8.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $2 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrNO}_{3}[\mathrm{M}+1]: 232.0,[\mathrm{M}+3]: 234.0$; found, 232.0, 234.0.

To a stirring solution of (4-bromo-2-nitrophenyl)methanol ($12.30 \mathrm{~g}, 53.0 \mathrm{mmol}$) and tertbutyldimethylsilyl chloride ($8.07,53.6 \mathrm{mmol}$) in DMF $(71.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added imidazole
$(10.87 \mathrm{~g}, 158 \mathrm{mmol})$ and the resulting reaction was allowed to slowly warm to room temperature. After 36 hours, 140 mL of $\mathrm{H}_{2} \mathrm{O}$ was added, the resulting solution was extracted with hexanes (2 x 50 mL), the combined organic layers were washed with brine ($2 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification was accomplished by flash chromatography, eluting with 100% hexanes, collecting 120 mL fractions. Fractions 1 to 6 were collected and concentrated under reduced pressure to yield $14.30 \mathrm{~g}, 77.8 \%$ of $\mathbf{6}$ as a clear off yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H})$, $0.95(\mathrm{~s}, 10 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.75,137.44,136.76,129.65$, 127.36, 61.83, 25.85, 18.32, -5.46.

Representative procedure for the Buchwald coupling of 6.

To a stirring solution of $\mathbf{6}$ (1.2 equiv.) in 1,4-dioxane (14.0 mL) at room temperature, added the appropriate N -BOC amine (1 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.5 equiv.) and (\pm)-BINAP (0.07 equiv.). A stream of N_{2} gas was bubbled through the solution for 5 minutes, after which time $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.07 equiv.) was added. The reaction was heated to reflux for 12 hours under positive N_{2}, cooled to room temperature, diluted with EtOAc, filtered over celite and the celite pad was washed with EtOAc. The resulting crude solution was concentrated under reduced pressure to yield a brown oil. Purification was accomplished by flash chromatography, eluting with solvent gradients of EtOAc and hexanes. Product containing fractions were collected and concentrated to yield the desired compounds of general structure 7. The following compounds were prepared using the general method described above.

The following compound was prepared using the general method described above, employing tert-butyl 3-aminopyrrolidine-1-carboxylate as the N-BOC amine reagent. tert-butyl-3-((4-(((tert-butyldimethylsilyl)oxy)methyl)-3-nitrophenyl)amino)pyrrolidine-1-carboxylate. Orange solid: $927.6 \mathrm{mg}, 70.3 \%$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, \mathrm{J}=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.97 ($\mathrm{s}, 2 \mathrm{H}$), 4.07 ($\mathrm{s}, 1 \mathrm{H}$), 3.97 (d, J = $6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 ($\mathrm{s}, 1 \mathrm{H}$), 3.49 ($\mathrm{s}, 2 \mathrm{H}$), 3.26 (dd, J = 34.7, $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dtd}, \mathrm{J}=13.3,7.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.12$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers) $\delta 154.54,147.33,146.16,129.07$,
$126.71,118.51,107.68,79.66,61.89,52.95,52.18,51.86,43.98,43.70,31.55,30.95,28.46$, 25.91, 18.35, -5.44. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+1-\mathrm{C}_{4} \mathrm{H}_{9}\right]$: 396.2; found, 396.2.

The following compound was prepared using the general method described above, employing tert-butyl 3-aminopiperidine-1-carboxylate as the N -BOC amine reagent. tert-butyl-3-((4-(((tert-butyldimethylsilyl)oxy)methyl)-3-nitrophenyl)amino)piperidine-1-carboxylate. Orange oil: $3.35 \mathrm{~g}, 57.9 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (s, 2H), $3.89(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}$, $J=12.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}$, $9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.02,147.56,146.24,129.24,126.40$, $118.38,107.96,80.11,62.07,48.92,48.82,44.48,30.423,28.50,26.06,23.15,18.50,-5.27$. ESIMS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+1-\mathrm{C}_{4} \mathrm{H}_{9}\right]$: 410.2; found, 410.2.

The following compound was prepared using the general method described above, employing tert-butyl 4-aminopiperidine-1-carboxylate as the N-BOC amine reagent. tert-butyl-4-((4-(((tert-butyldimethylsilyl)oxy)methyl)-3-nitrophenyl)amino)piperidine-1-carboxylate. Orange oil: $1.36 \mathrm{~g}, 71.1 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~m}$, $2 \mathrm{H}), 3.77(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$, $1.35(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.69,148.41,146.6$, 129.04, 126.29, 118.56, 107.66, 79.73, 61.91, 50.15, 42.51, 32.09, 28.40, 25.91, 18.35, -5.44. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+1-\mathrm{C}_{4} \mathrm{H}_{9}\right]$: 410.2; found, 410.2.

The following compound was prepared using the general method described above, employing tert-butyl 3-aminoazepane-1-carboxylate as the N -BOC
amine
reagent.
tert-butyl-3-((4-(((tert-butyldimethylsilyl)oxy)methyl)-3-nitrophenyl)amino)azepane-1-carboxylate. Orange oil: $713.2 \mathrm{mg}, 66.4 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.77$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~m}$, $1 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.85,147.43,146.63,128.96,127.38,118.46,107.84,79.78,61.86$, $53.47,52.13,48.94,34.21,28.55,28.41,25.90,22.24,18.38,-5.44$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+1-\mathrm{C}_{4} \mathrm{H}_{9}\right]$: 424.2; found, 424.2.

The following compound was prepared using the general method described above, employing tert-butyl 4-aminoazepane-1-carboxylate as the N-BOC amine reagent. tert-butyl-4-((4-(((tert-butyldimethylsilyl)oxy)methyl)-3-nitrophenyl)amino)azepane-1-carboxylate. Orange oil: $669.1 \mathrm{mg}, 61.4 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 3.85$ $(\mathrm{s}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 4 \mathrm{H}), 3.26(\mathrm{~s}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J$ $\mathrm{z}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.51,147.38,145.50,129.04,127.53,118.872,108.35$, $79.54,61.92,46.53,45.80,43.03,34.50,32.77,28.49,25.91,24.68,18.36,-5.44$. ESI-MS $(\mathrm{m} / \mathrm{z}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+1-\mathrm{C}_{4} \mathrm{H}_{9}\right]$: 424.2; found, 424.2.

The following compound was prepared using the general method described above, employing tert-butyl 3-aminoazetidine-1-carboxylate as the N-BOC amine reagent. tert-butyl-3-((4-(((tert-butyldimethylsilyl)oxy)methyl)-3-nitrophenyl)amino)azetidine-1carboxylate. Orange oil: $175.0 \mathrm{mg}, 39.4 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.816 .81(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~m}, 3 \mathrm{H})$, $4.24(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=9.2,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.10,148.29,145.41,129.20,127.62,118.45,107.74,79.90,61.86$, 56.63, 43.07, 28.33, 25.90, 18.34, -544. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+1-$ $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right]$: 382.2; found, 382.2.

Representative procedure for the silyl deprotection of compound 7.

To a stirring solution of 7 in THF (40 mL) at $-10^{\circ} \mathrm{C}$, was added a 1.0 M Tetrabutylammonium Fluoride (1.2 equiv) solution in THF dropwise over 8 minutes and the resulting reaction was allowed to slowly warm to room temperature. After 2 hours, 50 mL of brine and 50 mL of EtOAc were added to quench the reaction. Layers were separated and washed organic with brine ($3 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification was accomplished by flash chromatography, eluting with a solvent gradient of EtOAc/hexanes. Product containing fractions were collected and concentrated to yield the desired compounds. The following compounds were prepared using the general method described above.

tert-butyl-3-((4-(hydroxymethyl)-3-nitrophenyl)amino)pyrrolidine-1-carboxylate. Orange solid: $591.7 \mathrm{mg}, 86.7 \% .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.27(\mathrm{dd}, J=34.0,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dtd}, J=13.1,7.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers) $\delta 154.71,149.17,147.28,132.14,125.17$, $118.43,108.24,79.93,62.58,53.01,52.25,51.96,51.67,44.13,43.81,31.67,31.08,28.61$. ESIMS (m/z): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\mathrm{M}+1-\mathrm{C}_{4} \mathrm{H}_{9}\right]$: 282.1; found, 282.1.

tert-butyl-3-((4-(hydroxymethyl)-3-nitrophenyl)amino)piperidine-1-carboxylate. Orange oil: $2.14 \mathrm{~g}, 89.7 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~m}$, $1 \mathrm{H}), 3.90(\mathrm{dd}, J=12.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=$ $13.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.42$, 149.11, 147.07, 132.05, 124.51, 118.01, 108.08, 80.02, $62.45,48.66,48.55,30.17,28.34,22.92$. ESI-MS $(\mathrm{m} / \mathrm{z})$: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\mathrm{M}+1-\mathrm{C}_{4} \mathrm{H}_{9}\right]$: 296.1; found, 296.1.

tert-butyl-4-((4-(hydroxymethyl)-3-nitrophenyl)amino)piperidine-1-carboxylate. Orange oil: $863.4 \mathrm{mg}, 86.0 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~m}$, $2 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.47(3,1 \mathrm{H}), 2.95(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.68$, $149.13,147.05,132.04,124.52,118.30,107.99,79.81,62.46,50.04,42.40,31.99,28.40$. ESIMS (m/z): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\mathrm{M}+1-\mathrm{C}_{4} \mathrm{H}_{9}\right]$: 296.1; found, 296.1.

tert-butyl 3-((4-(hydroxymethyl)-3-nitrophenyl)amino)azepane-1carboxylate. Orange oil: $462.1 \mathrm{mg}, 87.4 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H})$, $3.55(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.68(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.69,149.15,147.38$, 132.07, 123.89, 118.36, 108.10, 79.93, 62.57, 53.58, 51.89, 48.94, 32.65, 28.57, 28.40, 22.20. ESI-MS $(\mathrm{m} / \mathrm{z}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\mathrm{M}+1-\mathrm{C}_{4} \mathrm{H}_{9}\right]$: 310.1 ; found, 310.1 .

tert-butyl 4-((4-(hydroxymethyl)-3-nitrophenyl)amino)azepane-1carboxylate. Orange oil: $426.0 \mathrm{mg}, 85.5 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H})$, $3.47(\mathrm{~m}, 4 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H})$, $1.68(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.40,149.10,146.99,131.99$, $124.34,118.28,108.14,79.60,62.45,53.11,46.58,42.99,34.65,32.76,28.48,24.63$. ESI-MS $(\mathrm{m} / \mathrm{z}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\mathrm{M}+1-\mathrm{C}_{4} \mathrm{H}_{9}\right]$: 310.1; found, 310.1.

tert-butyl 3-((4-(hydroxymethyl)-3-nitrophenyl)amino)azetidine-1carboxylate. Orange oil: $84.6 \mathrm{mg}, 80.0 \%{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.41$ (d, J $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=8.9,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=8.9,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58$ $(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.25,149.15,146.53,132.24$, 126.08, 118.46, 108.31, 80.19, 62.57, 56.74, 43.15, 28.50. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\mathrm{M}+1-\mathrm{C}_{4} \mathrm{H}_{9}\right]$: 268.1; found, 268.1.

Representative procedure for the tertbutylcarbamate deprotection.

To a flame dried 50 mL RBF equipped with a stir bar and N_{2} outlet was added the BOCprotected amine (1 equiv.), followed by anhydrous $\mathrm{DCM}(0.2 \mathrm{M})$. After thoroughly flushing the apparatus with N_{2}, the stirring solution was cooled to $-10{ }^{\circ} \mathrm{C}$. After 10 minutes, neat $\mathrm{BF}_{3} \mathrm{OEt}_{2}(3$ equiv.) was added dropwise over 6 minutes. Upon addition, the yellow solution turned bright red followed by a red oil precipitating from solution. The reaction was allowed to warm to room temperature and stir for 1 hour at which point the reaction was quenched with 5 mL of saturated NaHCO_{3}. The orange aqueous layer was extracted with a $1: 3$ mixture of isopropanol to chloroform ($6 \times 20 \mathrm{~mL}$), dried organic extracts over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification was accomplished by flash chromatography, eluting with a solvent gradient of EtOAc/hexanes. Product containing fractions were collected and concentrated to yield the desired compounds of general structure 8. The following compounds were prepared using the general method described above.

(2-nitro-4-(pyrrolidin-3-ylamino)phenyl)methanol (9a). Red oil: 320.1 $\mathrm{mg}, 77.0 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.46(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{dd}, \mathrm{J}=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 3.18(\mathrm{dd}, \mathrm{J}=11.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dt}$, $\mathrm{J}=11.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, \mathrm{J}=11.4,8.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, \mathrm{J}=11.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ (dt, J = 15.3, 7.2 Hz, 1H), $1.70(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 149.99, 149.29, 131.33, 125.48, 118.71, 108.64, 61.84, 54.44, 52.86, 45.93, 33.21. ESI-MS (m/z): m/z calcd for
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 238.1; found, 238.1. HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 238.1186; found, 238.1186.

(2-nitro-4-(piperidin-3-ylamino)phenyl)methanol. (10a) Orange oil: $1.33 \mathrm{~g}, 87.4 \% .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.93 (dd, $J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dt}, J=13.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (ddd, $J=12.6,11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=12.3,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dd}, J=13.1,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.87(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 150.14,149.07$, $131.42,125.08,118.51,108.32,61.86,51.13,50.03,46.37,31.42,25.19$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 252.1; found, 252.1. HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 252.1343; found, 252.1341.

(2-nitro-4-(piperidin-4-ylamino)phenyl)methanol. Orange oil: 609.1 $\mathrm{mg}, 99.0 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{dt}, J=7.0,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{td}$, $J=12.4,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{dd}, J=13.6,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{ddd}, J=13.8,11.3,3.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 150.12$, 149.22, 131.37, 124.61, 118.52, 108.49, 61.90, 50.81, 45.78, 33.59. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 252.1$; found, 252.1. HRMS (EI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 252.1343; found, 252.1345.

Representative procedure for reductive amination reactions.

To a stirring solution of amine (1 equiv.) in 1,2-DCE (0.1 M), added the appropriate aldehyde or ketone (1.5 equiv.). After stirring for 1 hour at room temperature, $\mathrm{NaBH}(\mathrm{OAc})_{3}$ (2.5 equiv) was added. The reaction was allowed to stir for 12-24 hours, at which point, reaction was quenched upon addition of 1.0 ml of saturated NaHCO_{3} and 1.0 mL of EtOAc. Layers were separated then the aqueous portion was extracted EtOAc ($3 \times 10 \mathrm{~mL}$). Combined organic fractions, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification crude product was carried out via by flash chromatography to afford the desired compounds of general structure 4 . The following compounds were prepared using the general method described above.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and propan-2-one as the ketone reagent. (4-((1-isopropylpyrrolidin-3-yl)amino)-2-nitrophenyl)methanol (9b). Orange oil: $48.5 \mathrm{mg}, 63 \% .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.91$ (ddd, $J=13.2,7.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dt}, J=3.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.95 (dd, $J=10.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (ddd, $J=9.5,7.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (ddd, $J=9.5,7.7,6.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.42 (dd, $J=10.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (sept, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (dtd, $J=14.2,8.0,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 280.2; found, 280.2

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and benzaldehyde as the aldehyde reagent. ((4-((1-benzylpyrrolidin-3-yl)amino)-2-nitrophenyl)methanol (9c). Orange solid: $77.5 \mathrm{mg}, 95 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 7.39$ (d, $\left.J=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.28$ (m, 4H), 7.21 (m, 1H), 7.14 (d, $J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.60\left(\mathrm{ABq}, \Delta v_{\mathrm{AB}}=12.6\right.$ $\left.\mathrm{Hz}, J_{\mathrm{AB}}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.89(\mathrm{dd}, J=9.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=14.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}$, $J=15.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=9.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 328.2$; found, 328.2. HRMS (EI): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 328.1656; found, 328.1665.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 1-methyl-1H-imidazole-5-carbaldehyde as the aldehyde reagent. (4-((1-((1-methyl-1H-imidazol-5-yl)methyl)pyrrolidin-3-yl)amino)-2-
nitrophenyl)methanol (9d). Orange oil: $37.6 \mathrm{mg}, 54 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.54$ (s, $1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.83(\mathrm{dd}, J=9.7,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.69 \mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=9.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H})$. ESIMS (m / z): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+1]$: 332.2; found, 332.2. HRMS (EI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+1]$: 332.1717; found, 332.1706.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and pyridine-2-carboxaldehyde as the aldehyde reagent. (2-nitro-4-((1-(pyridin-2-ylmethyl)pyrrolidin-3-yl)amino)phenyl)methanol (9e). Orange oil: $26.0 \mathrm{mg}, 32 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.49$ (ddd, $J=4.9,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.80 (td, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dt}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{ddd}, J=7.6$, $5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~m}$, $1 \mathrm{H}), 3.95\left(\mathrm{ABq}, \Delta v_{\mathrm{AB}}=9.7 \mathrm{~Hz}, J_{\mathrm{AB}}=13.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.11(\mathrm{dd}, J=10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~m}$, $1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=10.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+1]$: 329.2; found, 329.2. HRMS (EI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$ [M+1]: 329.1608; found, 329.1603.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 1 H -indole-3-carbaldehyde as the aldehyde reagent. (4-((1-((1H-indol-3-yl)methyl)pyrrolidin-3-yl)amino)-2-nitrophenyl)methanol (9f). Orange oil: $59.8 \mathrm{mg}, 34 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.65(\mathrm{dt}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dt}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J$ $=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{ddd}, J=8.0,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}$,
$2 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 3.13(\mathrm{dd}, J=11.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.66$ (dd, $J=10.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$ $[\mathrm{M}+1]: 367.2$; found, 367.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+1]: 367.1765$; found, 367.1771 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 2-phenylacetaldehyde as the aldehyde reagent. (2-nitro-4-((1-phenethylpyrrolidin-3-yl)amino)phenyl)methanol (9g). Orange oil: 51.2 $\mathrm{mg}, 56 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 3 \mathrm{H})$, 6.77 (dd, $J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{td}, J=8.6,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~m}, 3 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS $(\mathrm{m} / \mathrm{z}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 342.2$; found, 342.2. HRMS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 342.1812; found, 342.1814 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and propan-2-one as the ketone reagent. (4-((1-isopropylpiperidin-3-yl)amino)-2-nitrophenyl)methanol (10b). Orange oil: $59.4 \mathrm{mg}, 98 \% .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=9.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (ddd, $J=9.3,7.9$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=9.4,7.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{dd}, J=9.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.69(\mathrm{tt}, J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{dddd}, J=12.8,8.0,6.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}) 0.86(\mathrm{dd}, J=6.6,1.3$ $\mathrm{Hz}, 6 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 294.2; found, 294.2.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and benzaldehyde as the aldehyde reagent. (4-((1-benzylpiperidin-3-yl)amino)-2-nitrophenyl)methanol (10c). Orange oil: $34.2 \mathrm{mg}, 50 \%$. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 148.61,147.73,137.00,129.94,129.12,127.90,126.96$, $123.39,117.09,106.96,62.60,60.48,57.92,53.05,48.86,29.72,23.11$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 342.2$; found, 342.2. HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 342.1812; found, 342.1822.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 1-methyl-1H-imidazole-5-carbaldehyde as the aldehyde reagent. (4-((1-((1-methyl-1H-imidazol-5-yl)methyl)piperidin-3-yl)amino)-2nitrophenyl)methanol (10d). Orange oil: $47.0 \mathrm{mg}, 68 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.48$ (s, $1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}$, $1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.44\left(\mathrm{ABq}, \Delta v_{\mathrm{AB}}=11.8, \mathrm{~Hz}, J_{\mathrm{AB}}=14.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.38(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.69 \mathrm{~m}, 1 \mathrm{H})$, $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+1]$: 346.2; found, 346.2. HRMS (EI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+1]$: 346.1874; found, 346.1876.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and pyridine-2-carboxaldehyde as the aldehyde reagent. (2-nitro-4-((1-(pyridin-2-ylmethyl)piperidin-3-yl)amino)phenyl)methanol (10e). Orange
oil: $26.8 \mathrm{mg}, 42 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.48(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~m}, 1 \mathrm{H}), 7.55$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=$ 8.4, 2.4 Hz, 1H), $4.73(\mathrm{~m}, 1 \mathrm{H}), 3.67\left(\mathrm{ABq}, \Delta \mathrm{v}_{\mathrm{AB}}=24.0 \mathrm{~Hz}, J_{\mathrm{AB}}=13.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.56(\mathrm{~m}, 1 \mathrm{H})$, $2.92(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.67(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+1]: 343.2$; found, 343.2. HRMS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+1]$: 343.1765 ; found, 343.1766.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 1 H -indole-3-carbaldehyde as the aldehyde reagent. (4-((1-((1H-indol-3-yl)methyl)piperidin-3-yl)amino)-2-nitrophenyl)methanol (10f). Orange oil: $21.1 \mathrm{mg}, 54 \%{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.55$ (ddd, $J=7.9,1.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dt}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.02 (ddd, $J=8.2,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (ddd, $J=8.0,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=8.5,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.91\left(\mathrm{ABq}, \Delta v_{\mathrm{AB}}=6.4 \mathrm{~Hz}, J_{\mathrm{AB}}=13.5 \mathrm{~Hz} 2 \mathrm{H}\right), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=$ $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.76(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS $(\mathrm{m} / \mathrm{z}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+1]$: 381.2; found, 381.2. HRMS (EI): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$ [M+1]: 381.1921; found, 381.1925 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 2-phenylacetaldehyde as the aldehyde reagent. (2-nitro-4-((1-phenethylpiperidin-3-yl)amino)phenyl)methanol (10g). Orange oil: 16.7 $\mathrm{mg}, 24 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 6 \mathrm{H}), 6.82(\mathrm{dd}, J=$ $8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 3 \mathrm{H})$, $1.64(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 356.2; found, 356.2. HRMS (EI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 356.1969 ; found, 356.1972 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 2-methoxybenzaldehyde as the aldehyde reagent. (4-((1-(2-methoxybenzyl)pyrrolidin-3-yl)amino)-2-nitrophenyl)methanol (11a). Orange oil: $9.1 \mathrm{mg}, 35 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (m, 1H), $2.89(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=10.7,4.4 \mathrm{~Hz}, 14 \mathrm{H}), 2.32(\mathrm{dt}, J=14.8,8.0 \mathrm{~Hz}, 11 \mathrm{H}), 1.74$ $(\mathrm{m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 358.2; found, 358.3. HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 358.1761 ; found, 358.1774 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 2-fluorobenzaldehyde as the aldehyde reagent. (4-((1-(2-fluorobenzyl)pyrrolidin-3-yl)amino)-2-nitrophenyl)methanol (11b). Orange oil: $11.7 \mathrm{mg}, 47 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 2 \mathrm{H})$, $7.08(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.74\left(\mathrm{ABq}, \Delta \mathrm{v}_{\mathrm{AB}}=6.6\right.$ $\left.\mathrm{Hz}, J_{\mathrm{AB}}=13.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.99(\mathrm{dd}, J=9.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{td}, J=8.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dt}, J$ $=8.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=9.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 346.2; found, 346.2. HRMS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{3}$ [M+1]: 346.1561; found, 346.1571.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 2-(trifluoromethyl)benzaldehyde as the
aldehyde reagent. (2-nitro-4-((1-(2-(trifluoromethyl)benzyl)pyrrolidin-3yl)amino)phenyl)methanol (11c). Orange oil: $37.2 \mathrm{mg}, 67 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $7.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{t}, J=7.3 \mathrm{~Hz} 1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H})$ $4.04(\mathrm{~m}, 1 \mathrm{H}), 3.82\left(\mathrm{ABq}, \Delta \mathrm{v}_{\mathrm{AB}}=14.6 \mathrm{~Hz}, J_{\mathrm{AB}}=13.0 \mathrm{~Hz}, \mathrm{f} 2 \mathrm{H}\right), 2.93(\mathrm{dd}, J=9.5,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.80(\mathrm{td}, J=8.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{td}, J=8.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=9.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (dtd, $J=13.5,8.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.73(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 396.2; found, 396.2. HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 396.1530$; found, 396.1538.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 2-(trifluoromethoxy)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(2-(trifluoromethoxy)benzyl)pyrrolidin-3yl)amino)phenyl)methanol (11d). Orange oil: $6.7 \mathrm{mg}, 28 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.60$ (dd, $J=6.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=5.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.78$ (ABq, $\left.\Delta v_{\mathrm{AB}}=13.6 \mathrm{~Hz}, J_{\mathrm{AB}}=10.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.97(\mathrm{dd}, J=9.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H})$, $2.55(\mathrm{dd}, J=9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]: 412.1$; found, 412.2. HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 412.1479; found, 412.1480 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 4-nitrobenzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(4-nitrobenzyl)pyrrolidin-3-yl)amino)phenyl)methanol (11e). Orange oil: 4.6 mg ,
$5 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}) 2.86(\mathrm{td}, J=9.0,4.4 \mathrm{~Hz} 1 \mathrm{H}), 2.76(\mathrm{dd}, J=9.6,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.63 (dd, $J=9.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+1]$: 373.2; found, 373.2. HRMS (EI): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+1]$: 373.1506; found, 373.1517.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 4-(trifluoromethyl)benzaldehyde as the aldehyde reagent. ((2-nitro-4-((1-(4-(trifluoromethyl)benzyl)pyrrolidin-3yl)amino)phenyl)methanol (11f). Orange oil: $50.0 \mathrm{mg}, 23 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 7.52 (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.64\left(\mathrm{ABq}, \Delta \mathrm{v}_{\mathrm{AB}}=11.6 \mathrm{~Hz}, J_{\mathrm{AB}}=\right.$ $13.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=9.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=9.7,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 396.2$; found, 396.2. HRMS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 396.1530; found, 396.1534.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 4-(trifluoromethoxy)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(4-(trifluoromethoxy)benzyl)pyrrolidin-3yl)amino)phenyl)methanol (11g). Orange oil: $59.4 \mathrm{mg}, 66 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.59\left(\mathrm{ABq}, \Delta \mathrm{v}_{\mathrm{AB}}=11.8 \mathrm{~Hz}, J_{\mathrm{AB}}=\right.$
$13.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{dd}, J=9.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=9.8,4.7$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.24(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]: 412.1$; found, 412.2. HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]: 412.1479$; found, 412.1487.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 3-(trifluoromethyl)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(3-(trifluoromethyl)benzyl)pyrrolidin-3yl)amino)phenyl)methanol (11h). Orange oil: $43.5 \mathrm{mg}, 55 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.69(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, \mathrm{J}=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.76(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{ddt}, \mathrm{J}=8.8,7.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76\left(\mathrm{ABq}, \Delta v_{\mathrm{AB}}=8.3 \mathrm{~Hz}, J_{\mathrm{AB}}=13.1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 2.96 (dd, J = 9.8, 6.9 Hz, 1H), 2.79 (m, 1H), 2.61 (ddd, J = 9.3, 7.9, 6.4 Hz, 1H), 2.54 (dd, J = $9.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS $(\mathrm{m} / \mathrm{z}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 396.2; found, 396.2. HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 396.1530; found, 396.1540 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 3-(trifluoromethoxy)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(3-(trifluoromethoxy)benzyl)pyrrolidin-3yl)amino)phenyl)methanol (11i). Orange oil: $35.0 \mathrm{mg}, 46 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 6.89$ $(\mathrm{dd}, \mathrm{J}=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.71\left(\mathrm{ABq}, \Delta \mathrm{V}_{\mathrm{AB}}=11.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AB}}=13.0 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 2.94(\mathrm{dd}, \mathrm{J}=9.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dd}, \mathrm{J}=9.8,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.35 (dtd, J = 13.8, 8.0, $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.72 (dddd, $\mathrm{J}=12.9,8.1,6.3,4.6 \mathrm{~Hz}, 1 \mathrm{H})$. ESI-MS (m/z):
m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ [M+1]: 412.1; found, 412.2. HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 412.1479; found, 412.1484.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 2,4-dichlorobenzaldehyde as the aldehyde reagent. (4-((1-(2,4-dichlorobenzyl)pyrrolidin-3-yl)amino)-2-nitrophenyl)methanol (11j). Orange oil: $8.8 \mathrm{mg}, 30 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}$, $2 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=15.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=15.4$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=9.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{td}, J=13.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H})$. ESIMS (m/z): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 396.1; found, 396.1. HRMS (EI): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 396.0876; found, 396.0881.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(pyrrolidin-3ylamino)phenyl)methanol as the amine reagent and 2-cyanobenzaldehyde as the aldehyde reagent. 2-((3-((4-(hydroxymethyl)-3-nitrophenyl)amino)pyrrolidin-1-yl)methyl)benzonitrile (11k). Orange oil: $16.3 \mathrm{mg}, 21 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.62$ (ddd, $J=7.7,1.2,0.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.65(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{dd}, J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}$, $2 H), 2.24(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+1]: 353.2$; found, 353.2. HRMS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+1]$: 353.1608 ; found, 353.1617.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 2-(trifluoromethyl)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(2-(trifluoromethyl)benzyl)piperidin-3yl)amino)phenyl)methanol (12a). Orange oil: $23.3 \mathrm{mg}, 52 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $7.85(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=705 \mathrm{~Hz}$, 1H) $7.39(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, \mathrm{J}=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}$, $1 \mathrm{H}), 3.67\left(\mathrm{ABq}, \Delta \mathrm{V}_{\mathrm{AB}}=22.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AB}}=14.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.53(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ $(\mathrm{m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.04,149.18,138.99,133.20,131.69,131.35,129.58(\mathrm{q}, \mathrm{J}=30.4$ Hz), 128.25, 127.42, 126.81 (q, J = 5.3 Hz), 124.79, 118.64, 108.34, 61.89, 59.55, 59.46, 55.08, 50.38, 30.76, 24.56. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 410.2; found, 410.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 410.1686; found, 410.1686.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 2-(trifluoromethoxy)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(2-(trifluoromethoxy)benzyl)piperidin-3yl)amino)phenyl)methanol (12b). Orange oil: $45.2 \mathrm{mg}, 67 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $7.61(\mathrm{dd}, \mathrm{J}=6.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{dd}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, \mathrm{J}=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.62\left(\mathrm{ABq}, \Delta \mathrm{V}_{\mathrm{AB}}\right.$ $\left.=11.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AB}}=13.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.52(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.23(\mathrm{t}, \mathrm{J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]: 426.2$; found, 426.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 426.1635; found, 426.1637 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 4-(trifluoromethoxy)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(4-(trifluoromethoxy)benzyl)piperidin-3yl)amino)phenyl)methanol (12c). Orange oil: $55.7 \mathrm{mg}, 69 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.4,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.50\left(\mathrm{ABq}, \Delta \mathrm{V}_{\mathrm{AB}}=11.8 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{\mathrm{AB}}=13.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.60(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{fH}), 1.64(\mathrm{~s}, 4 \mathrm{H})$. ESI-MS $(\mathrm{m} / \mathrm{z}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 426.2; found, 426.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 426.1635; found, 426.1640 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 3-(trifluoromethyl)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(3-(trifluoromethyl)benzyl)piperidin-3yl)amino)phenyl)methanol (12d). Orange oil: $15.0 \mathrm{mg}, 39 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $7.66(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, \mathrm{J}=7.6,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H})$, $3.62(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{t}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 410.2$; found, 410.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 410.1686; found, 410.1694.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 2-methoxybenzaldehyde as the aldehyde
reagent. (4-((1-(2-methoxybenzyl)piperidin-3-yl)amino)-2-nitrophenyl)methanol (12e). Orange oil: $34.0 \mathrm{mg}, 67 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.41$ (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30(\mathrm{dd}, \mathrm{J}=7.4,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{ddd}, \mathrm{J}=8.2,7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, \mathrm{J}=8.2,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{dd}, \mathrm{J}=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, \mathrm{J}=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.61$ ($\mathrm{s}, 2 \mathrm{H}$), $3.52(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{t}, \mathrm{J}=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 372.2; found, 372.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]: 372.1918$; found, 372.1925 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 2-chlorobenzaldehyde as the aldehyde reagent. (4-((1-(2-chlorobenzyl)piperidin-3-yl)amino)-2-nitrophenyl)methanol (12f). Orange oil: $22.8 \mathrm{mg}, 44 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.43(\mathrm{td}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.89 (dd, J = 8.5, 2.5 Hz, 1H), $4.74(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.77 (d, J = $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.20(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.78$ $(\mathrm{m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS $(\mathrm{m} / \mathrm{z}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 376.1$; found, 376.2. HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 376.1422; found, 376.1427.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 2-cyanobenzaldehyde as the aldehyde reagent. 2-((3-((4-(hydroxymethyl)-3-nitrophenyl)amino)piperidin-1-yl)methyl)benzonitrile (12g). Orange oil: $32.0 \mathrm{mg}, 48 \% .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.72(\mathrm{dd}, \mathrm{J}=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.61 (ddd, $\mathrm{J}=7.7,7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.56(\mathrm{ddd}, \mathrm{J}=7.8,1.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{td}, \mathrm{J}=7.5,1.4$ $1 \mathrm{H}), 7.39(\mathrm{dt}, \mathrm{J}=8.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, \mathrm{J}=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ $(\mathrm{s}, 2 \mathrm{H}), 3.70\left(\mathrm{ABq}, \Delta \mathrm{V}_{\mathrm{AB}}=37.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AB}}=13.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.56(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H})$ $2.57(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS
$(\mathrm{m} / \mathrm{z}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+1]: 367.2$; found, 367.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+1]: 367.1765$; found, 367.1770.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 4-tertbutylbenzaldehyde as the aldehyde reagent. (4-((1-(4-(tert-butyl)benzyl)piperidin-3-yl)amino)-2-nitrophenyl)methanol (12h). Orange oil: $16.2 \mathrm{mg}, 52 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.68(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 398.2; found, 398.2.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 4-nitrobenzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(4-nitrobenzyl)piperidin-3-yl)amino)phenyl)methanol (12i). Orange oil: 13.5 mg , $18 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{ABq}$, $\left.\Delta \mathrm{V}_{\mathrm{AB}}=8.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AB}}=14.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.54(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H})$. ESIMS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}$ [M+1]: 387.2; found, 387.2. HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+1]: 387.1663$; found, 387.1663.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 4-(trifluoromethyl)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(4-(trifluoromethyl)benzyl)piperidin-3yl)amino)phenyl)methanol (12j). Orange oil: $52.3 \mathrm{mg}, 64 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 3.56\left(\mathrm{ABq}, \Delta \mathrm{V}_{\mathrm{AB}}=11.8\right.$ $\left.\mathrm{Hz}, \mathrm{J}_{\mathrm{AB}}=13.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.64(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.72$ $(\mathrm{m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 410.2; found, 410.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 410.1686; found, 410.1687 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 3-(trifluoromethoxy)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(3-(trifluoromethoxy)benzyl)piperidin-3yl)amino)phenyl)methanol (12k). Orange oil: $35.6 \mathrm{mg}, 66 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $7.41(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~s}$, $2 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.96(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 426.2; found, 426.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 426.1635; found, 426.1639 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 2,4-bis(trifluoromethyl)benzaldehyde as the
aldehyde reagent. (4-((1-(2,4-bis(trifluoromethyl)benzyl)piperidin-3-yl)amino)-2nitrophenyl)methanol (12l). Orange oil: $30.4 \mathrm{mg}, 64 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.16(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.75\left(\mathrm{ABq}, \Delta \mathrm{V}_{\mathrm{AB}}=16.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AB}}=15.5 \mathrm{~Hz}\right.$, 2H), $3.57(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}$, $1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS $(\mathrm{m} / \mathrm{z}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 478.2$; found, 478.2. HRMS (EI): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 478.1560; found, 478.1569.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 2-methylbenzaldehyde as the aldehyde reagent. (4-((1-(2-methylbenzyl)piperidin-3-yl)amino)-2-nitrophenyl)methanol (12m). Orange oil: $20.1 \mathrm{mg}, 53 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32(\mathrm{~m}, 1 \mathrm{H}), 7.25$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.49\left(\mathrm{ABq},, \Delta \mathrm{V}_{\mathrm{AB}}\right.$ $\left.=16.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AB}}=15.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.95(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, $2.20(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 356.2 ; found, 356.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 356.1969; found, 356.1977.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-3ylamino)phenyl)methanol as the amine reagent and 2,4-dichlorobenzaldehyde as the aldehyde reagent. (4-((1-(2,4-dichlorobenzyl)piperidin-3-yl)amino)-2-nitrophenyl)methanol (12n). Orange oil: $10.3 \mathrm{mg}, 19 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (d, $J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=$ 8.6, 2.3 Hz, 1H), $4.74(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H})$, $2.30(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H})$.

ESI-MS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 410.1; found, 410.1. HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 410.1033; found, 410.1037.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-4ylamino)phenyl)methanol as the amine reagent and 2-(trifluoromethyl)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(2-(trifluoromethyl)benzyl)piperidin-4yl)amino)phenyl)methanol (13a). Orange oil: $22.1 \mathrm{mg}, 50 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 7.83 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}$, $2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{td}, J=11.7,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.01$ (dd, $J=12.7,2.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.54 (ddd, $J=24.3,10.7,3.2 \mathrm{~Hz}, 2 \mathrm{H}$). ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 410.2$; found, 410.2.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-4ylamino)phenyl)methanol as the amine reagent and 4-(trifluoromethyl)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(4-(trifluoromethyl)benzyl)piperidin-4yl)amino)phenyl)methanol (13b). Orange oil: $26.2 \mathrm{mg}, 64 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H})$, $2.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{bs}, 1 \mathrm{H}), 2.20(\mathrm{t}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.52$ ($\mathrm{m}, 2 \mathrm{H}$). ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 410.2$; found, 410.2. HRMS (EI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 410.1686; found, 410.1689.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-4ylamino)phenyl)methanol as the amine reagent and 4-(trifluoromethoxy)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(4-(trifluoromethoxy)benzyl)piperidin-4yl)amino)phenyl)methanol (13c). Orange oil: $36.1 \mathrm{mg}, 85.3 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 7.45 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.24(\mathrm{td}, J=11.7,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.53$ (ddd, $J=14.0,11.3,3.6 \mathrm{~Hz}$, $2 H)$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 426.2; found, 426.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 426.1635; found, 426.1639.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-4ylamino)phenyl)methanol as the amine reagent and 2-methoxybenzaldehyde as the aldehyde reagent. (4-((1-(2-methoxybenzyl)piperidin-4-yl)amino)-2-nitrophenyl)methanol (13d). Orange oil: $28.3 \mathrm{mg}, 78 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (td, J $=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.36$ $(\mathrm{m}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{dd}$, $J=21.1,10.1 \mathrm{~Hz}, 2 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]$: 372.2; found, 372.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ [M+1]: 372.1918; found, 372.1923.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-4ylamino)phenyl)methanol as the amine reagent and 2-fluorobenzaldehyde as the aldehyde
reagent. (4-((1-(2-fluorobenzyl)piperidin-4-yl)amino)-2-nitrophenyl)methanol (13e). Orange oil: $27.4 \mathrm{mg}, 79 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.45(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (tdd, $J=7.3,5.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.19 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (td, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (ddd, $\mathrm{J}=$ $9.9,8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (s, 2H), 3.64 (s, 2H), 2.93 (d, $J=12.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 360.2 ; found, 360.2 . HRMS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{3}$ [M+1]: 360.1718; found, 360.1725 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-4ylamino)phenyl)methanol as the amine reagent and 2-chlorobenzaldehyde as the aldehyde reagent. (4-((1-(2-chlorobenzyl)piperidin-4-yl)amino)-2-nitrophenyl)methanol (13f). Orange oil: $33.3 \mathrm{mg}, 84.3 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.50(\mathrm{dd}, J=7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.41(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{td}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{td}, \mathrm{J}=7.5,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.68$ (s, 2H), 3.36 (m, $1 \mathrm{H}), 2.93$ (d, $J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.01$ (d, $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.53 (ddd, J $=14.5,11.2,3.7 \mathrm{~Hz}, 2 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 376.1$; found, 376.1. HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 376.1422 ; found, 376.1427.

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-4ylamino)phenyl)methanol as the amine reagent and 2-(trifluoromethoxy)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(2-(trifluoromethoxy)benzyl)piperidin-4yl)amino)phenyl)methanol (13g). Orange oil: $21.5 \mathrm{mg}, 55 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $7.59(\mathrm{dd}, J=6.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS (m/z):
m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ [M+1]: 426.2; found, 426.2. HRMS (EI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]: 426.1635$; found, 426.1639 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-4ylamino)phenyl)methanol as the amine reagent and 3-(trifluoromethyl)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(3-(trifluoromethyl)benzyl)piperidin-4yl)amino)phenyl)methanol (13h). Orange oil: $29.8 \mathrm{mg}, 73 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 7.83 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1H) $7.40(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}$, $2 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{td}, J=11.8,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.54 (ddd, $J=23.9,10.7,3.3 \mathrm{~Hz}, 2 \mathrm{H}$). ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 410.2; found, 410.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 410.1686$; found, 410.1688 .

The following compound was prepared using the general reductive amination procedure described above, employing (2-nitro-4-(piperidin-4ylamino)phenyl)methanol as the amine reagent and 3-(trifluoromethoxy)benzaldehyde as the aldehyde reagent. (2-nitro-4-((1-(3-(trifluoromethoxy)benzyl)piperidin-4yl)amino)phenyl)methanol (13i). Orange oil: $24.7 \mathrm{mg}, 65 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $7.42(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.20$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~s}$, $2 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{td}, J=11.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.53 (ddd, $J=13.9,11.5,3.6 \mathrm{~Hz}, 2 \mathrm{H}$). ESI-MS (m/z): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ $[\mathrm{M}+1]: 426.2$; found, 426.2. HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+1]: 426.1635$; found, 426.1635.

The following compound was prepared using the general
reductive amination procedure described above, employing (2-nitro-4-(piperidin-4ylamino)phenyl)methanol as the amine reagent and 2,4-dichlorobenzaldehyde as the aldehyde reagent. (4-((1-(2,4-dichlorobenzyl)piperidin-4-yl)amino)-2-nitrophenyl)methanol (13j). Orange oil: $28.0 \mathrm{mg}, 69 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J$ $=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=$ $11.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{ddd}, J=15.7,12.6,4.0 \mathrm{~Hz}, 2 \mathrm{H})$. ESI-MS (m/z): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 410.1; found, 410.1. HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 410.1033$; found, 410.1044.

The following compounds were prepared using the general procedure described above for tertbutylcarbamate deprotection.

(4-(azetidin-3-ylamino)-2-nitrophenyl)methanol (14). Orange oil: 18.2 $\mathrm{mg}, 34.6 \%{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~m}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.57$ ($\mathrm{m}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$). ESI-MS (m/z): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 224.1$; found, 224.1. HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]$: 224.1030; found, 224.1033.

(4-(azepan-3-ylamino)-2-nitrophenyl)methanol (15). Orange oil: $250.5 \mathrm{mg}, 79.1 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{~m}, 2 \mathrm{H}), 2.17$ $(\mathrm{m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS (m/z): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 266.1; found, 266.1. HRMS (EI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ [M+1]: 266.1499; found, 266.1505.

(4-(azepan-4-ylamino)-2-nitrophenyl)methanol (16). Orange oil: $240.5 \mathrm{mg}, 81.4 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 4 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H}), 1.95$ $(\mathrm{m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS $(\mathrm{m} / \mathrm{z}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 266.1$; found, 266.1. HRMS (EI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]: 266.1499$; found, 266.1504.

Screening in Schistosoma

Strains of S. mansoni, S. haematobium, and S. japonicum were maintained by passage through species-specific snail intermediate hosts (Biomphlaria glabrata, Bulinus truncatus, and Oncomelania hupensis, respectively) and Golden Syrian hamsters as a definitive host. Definitive host animals were sacrificed in accordance with IACUC protocol (UTHSCSA IACUC Protocol \#08039) by intraperitoneal injection using Fatal-Plus (Butler Animal Health, Ohio), a sodium pentobarbital solution, with 10% heparin added. The adult parasites were obtained by perfusion as previously described using 0.9% saline containing EDTA. ${ }^{1}$ Derivatives were solubilized in DMSO and diluted to working concentration of 50 mM and added directly to each well of a 24well plate within 2-24 hours after harvesting adult schistosomes from the hamsters at a final concentration of $143 \mu \mathrm{M}$. Each analog was tested in triplicate. DMSO, oxamniquine, or hycanthone were used as controls as needed. Drugs were incubated with the worms at $37{ }^{\circ} \mathrm{C}, 5 \%$ CO_{2} for 45 minutes, mimicking physiological conditions. ${ }^{2,3}$ The worms were washed with plain media 3 times to remove any residual derivatives. Worms were then incubated in culture media as previously described for a period of 10-14 days. On day 14 , the assay gives \% worms alive as an efficacy data point. For comparison, compound 3 scores 50% alive in this assay. The compounds were first tested on S. mansoni, and a few of the more active analogs were tested on S. haematobium and S. japonicum.

Additional Structural Analogs Screened for S. mansoni

Compounds highlighted below in table S 1 showed no significant killing activity ($<40 \%$) in S. mansoni.
${ }^{\text {a }}$ Table S1. SAR data on worm killing of S. mansoni.

Entry	$\mathbf{R}=$	\% Killing	\% Killing	\% Killing
		(S. m.)	(S. h.)	(S. j.)
11k	2-CN	0	ND	ND
12e	$2-\mathrm{OMe}$	10	ND	ND
12f	$2-\mathrm{Cl}$	10	ND	ND
12 g	$2-\mathrm{CN}$	3	ND	ND
12h	$4-\mathrm{tBu}$	<40	ND	ND
12i	$4-\mathrm{NO}_{2}$	0	ND	ND
12j	$4-\mathrm{CF}_{3}$	3	ND	ND
12k	$3-\mathrm{OCF}_{3}$	37	ND	ND
121	2,4-CF3	<40	ND	ND
12 m	$2-\mathrm{Me}$	<40	ND	ND
12n	2,4-diCl	<40	ND	ND
13d	$2-\mathrm{OMe}$	7	ND	ND
13 e	2-F	0	ND	ND
13f	$2-\mathrm{Cl}$	0	ND	ND
13 g	$2-\mathrm{OCF}_{3}$	20	ND	ND
13h	$3-\mathrm{CF}_{3}$	17	ND	ND
13 i	$3-\mathrm{OCF}_{3}$	30	ND	ND
13j	2,4-diCl	37	ND	ND
14	NA	20	ND	ND
15	NA	12	ND	ND
16	NA	12	ND	ND

${ }^{a}$ Compounds were tested against adult male S. mansoni (S. m.) worms in vitro. All compounds were tested at a final concentration of $143 \mu M$. All screens were performed in experimental and
biological triplicate. Positive control, compound 3 kills $85 \% \pm 15$ of S. mansoni parasites in vitro.

X-Ray Structure determination

Crystals of S. mansoni sulfotransferase:compound complexes were prepared and X-ray crystal structures were determined as previously described. ${ }^{3,4}$ Briefly, crystals of the sulfotransferase containing the sulfate-depleted co-substrate adenosine-3'-5'-diphosphate (PAP) were soaked overnight in mother liquor saturated with CIDD compounds. Data were acquired at the UTHSCSA X-ray Crystallography Core Laboratory or at the Advanced Photon Source Northeastern Collaborative Access Team (NE-CAT) beamline 24-ID-E and integrated and scaled using XDS. ${ }^{5}$ Coordinates and restraints for CIDD compounds were generated using JLigand. ${ }^{6}$ Models were manually rebuilt using COOT^{7} and refined using PHENIX ${ }^{8}$. Data collection and refinement statistics are provided in Table S2. Figures were generated using PyMOL (Schrödinger, LLC).

Table S2. Data collection and refinement statistics.

	$\begin{gathered} (\boldsymbol{R})-\mathbf{9 c} \\ \text { CIDD-0000071 } \end{gathered}$	$\begin{gathered} (\boldsymbol{S})-\mathbf{1 0 a} \\ \text { CIDD-0000074 } \end{gathered}$	$\begin{gathered} (\boldsymbol{R})-\mathbf{9 f} \\ \text { CIDD-0000206 } \end{gathered}$	$\begin{gathered} \text { (S)-11f } \\ \text { CIDD-0000204 } \end{gathered}$	$\begin{gathered} \text { (S)-11g } \\ \text { CIDD-0000773 } \end{gathered}$
PDB code	6BDP	6BDQ	6BDR	6BDS	6MFE
Data collection					
Space group	$P 2{ }_{1}{ }_{1} 2$	$P 2{ }_{1}{ }_{1} 2$	$P 2{ }_{1}{ }_{1} 2$	$P 2{ }_{1}{ }_{1}{ }^{2}$	$P 2{ }_{1}{ }_{1} 2$
$\begin{aligned} & \text { Cell dimensions } \\ & \quad a, b, c(\AA) \\ & \alpha, \beta, \gamma,\left(^{\circ}\right) \end{aligned}$	$\begin{gathered} 140.9,39.5,53.8 \\ 90,90,90 \end{gathered}$	$\begin{gathered} 139.5,38.7,54.1 \\ 90,90,90 \end{gathered}$	$\begin{gathered} 141.3,39.4,53.6 \\ 90,90,90 \end{gathered}$	$\begin{gathered} 140.8,39.5,53.6 \\ 90,90,90 \end{gathered}$	$\begin{gathered} 140.6,39.6,53.7 \\ 90,90,90 \end{gathered}$
Wavelength (\AA)	1.54178	1.54178	0.97918	0.97918	1.54178
Resolution (\AA)	$\begin{aligned} & 42.73-1.43 \\ & (1.51-1.43) \end{aligned}$	$\begin{aligned} & 46.48-1.83 \\ & (1.93-1.83) \end{aligned}$	$\begin{aligned} & 141.27-1.66 \\ & (1.75-1.66) \end{aligned}$	$\begin{gathered} 140.78-1.53 \\ (1.61-1.53) \end{gathered}$	$\begin{aligned} & 42.66-1.44 \\ & (1.52-1.44) \end{aligned}$
$R_{\text {sym }}$	0.066 (0.784)	0.076 (0.829)	0.090 (1.065)	0.074 (0.958)	0.067 (0.818)
$R_{\text {pim }}$	0.030 (0.368)	0.039 (0.426)	0.040 (0.456)	0.033 (0.432)	0.027 (0.351)
Mean $I / \sigma I$	16.7 (2.1)	14.6 (2.0)	20.6 (2.0)	16.4 (2.0)	17.2 (2.1)
Completeness (\%)	99.5 (99.3)	99.5 (99.7)	99.7 (100)	99.5 (100)	95.7 (86.2)
Redundancy	4.5 (4.2)	4.5 (4.5)	6.1 (6.2)	5.8 (5.8)	6.7 (5.9)
Wilson value (\AA^{2})	13.5	23.6	20.2	16.6	15.1
Refinement					
Resolution (\AA)	26.41-1.43	42.76-1.83	37.92-1.66	38.07-1.53	42.66-1.44
No. reflections	56,031	26,505	36,092	45,784	52,225
$R_{\text {work/ }} R_{\text {free }}$	0.170/0.207	0.184/0.216	0.147/0.198	0.151/0.202	0.165/0.211
No. atoms					
Protein	2,060	2,116	2,111	2,099	2,102
Ligand	51 (1 PAP, 1 Compound 9c)	$\begin{gathered} 45 \text { (1 PAP, } 1 \\ \text { Compound 10a) } \end{gathered}$	$\begin{gathered} 67 \text { (1 PAP, } 2 \\ \text { Compound } 9 \mathrm{f}) \end{gathered}$	72 (1 PAP, 2 Compound 11f)	$\begin{gathered} 65(1 \mathrm{PAP}, 1 \\ \text { Compound } 11 \mathrm{~g}) \end{gathered}$
Water	342	127	236	350	339
B-factors (\AA^{2})					
Protein	18.6	27.1	26.1	21.9	21.7
Ligand	19.7	21.2	37.9	32.0	33.1
Water	31.6	32.0	37.1	35.1	34.0
R.m.s deviations					
Bond lengths (\AA)	0.008	0.006	0.010	0.010	0.010
Bond angles (${ }^{\circ}$)	1.128	0.967	1.340	1.232	1.353
Ramachandran plot (\%) Favored, allowed, outliers	98.4, 1.6, 0.0	97.6, 2.4, 0.0	97.2, 2.8, 0.0	98.8, 1.2, 0.0	98.0, 2.0, 0.0

*Highest resolution shell is shown in parentheses.

Molecular Modeling and Docking Studies

Materials and Methods

Molecular modeling was performed with Schrodinger suite (2018-2). Compound structures were handled by Chemaxon InstantJchem suite (18.11). Protonation states of the 3aminopyrrolidine and 3-aminopiperidine nitrogens were calculated with Jaguar-pKa module using 11 g and 12 a as corresponding series representatives. Five conformers were initially generated for both protonated and deprotonated states with conformational energy window 12 $\mathrm{kcal} / \mathrm{mol}$. The lowest energy conformers were used for geometry optimization and single point calculations.

For the docking studies, the crystal structure of smSULT with $\mathbf{1 1 g}$ was used. The structure was processed with protein preparation wizard. Water molecules HOH199, HOH200 and HOH307 were removed. A grid box with a side of $20 \AA$ and centered at geometric center of 11 g was generated. The sulfate-depleted PAP molecule was retained in the system during grid generation. Docking was performed at standard precision level with two poses saved. Intramolecular strain was calculated with Epik. No additional constraints were imposed on docking routine. Table S 3 below shows the binding energies calculated across the $\mathbf{9 - 1 3}$ analogs included in the SAR studies.
${ }^{\text {a }}$ Table S3. Calculated docking scores in S. mansoni

Compound	S. mansoni docking score Kcal/mol	Compound	S. mansoni docking score Kcal/mol
11c (S)	-9.917	9d (S)	-8.087
11 f (R)	-9.846	$11 \mathrm{i}(\mathrm{R})$	-8.024
10f (S)	-9.54	11i (S)	-7.985
11j (S)	-9.486	10c (R)	-7.979
11f (S)	-9.417	12c (R)	-7.908
11d (S)	-9.417	11b (R)	-7.906
9 f (S)	-9.41	12d (S)	-7.834
12d (S)	-9.378	11a (R)	-7.813
$10 \mathrm{~g}(\mathrm{~S})$	-9.361	9c (R)	-7.794
11b (S)	-9.164	9d (R)	-7.785
13b	-9.147	10e (R)	-7.746
11e (S)	-8.886	$11 \mathrm{~g}(\mathrm{R})$	-7.706
11h (R)	-8.821	13c	-7.622
$10 f(\mathrm{R})$	-8.787	10b (S)	-7.62
$9 \mathrm{~g}(\mathrm{R})$	-8.751	9 e (S)	-7.618
12c (S)	-8.75	9e (R)	-7.588
12a (S)	-8.644	12a (R)	-7.586
9f (R)	-8.582	12b (R)	-7.579
11a (S)	-8.516	9a (S)	-7.485
11c (R)	-8.483	13a	-7.387
9c (S)	-8.469	10d (R)	-7.371
10c (S)	-8.423	9b (R)	-7.366
10d (S)	-8.398	11h (S)	-7.333
$11 \mathrm{~g}(\mathrm{~S})$	-8.371	$10 \mathrm{~g}(\mathrm{R})$	-7.272
$10 \mathrm{e}(\mathrm{S})$	-8.298	10a (R)	-7.249
11e (R)	-8.294	12b (S)	-7.248
11d (R)	-8.278	10a (S)	-7.232
11j (R)	-8.215	10b (R)	-7.214
12d (R)	-8.156	9a (R)	-7.168
9 g (S)	-8.114	9b (S)	-6.941

${ }^{\text {a }}$ Docking studies of analogs $9-13$ on S. mansoni. Molecular modeling was performed with
Schrodinger suite (2018-2). Compound structures were handled by Chemaxon InstantJchem suite (18.11).

Figure S. 1 Full COSY compound 12a

Figure S. 2 Aromatic region expanded COSY compound 12a

Figure S. 3 Aliphatic region expanded COSY compound 12a

Figure S. 4 Full HSQC compound 12a

References for Experimental Section

1. Duvall, R.H. and W.B. DeWitt, An improved perfusion technique for recovering adult schistosomes from laboratory animals. Am J Trop Med Hyg, 1967, 16, 483-486.
2. Valentim, C. L. L.; Cioli, D.; Chevalier, F. D.; Cao, X. H.; Taylor, A. B.; et al. Genetic and molecular basis of drug resistance and species-specific drug action in schistosome parasites. Science 2013, 342, 1385-1389.
3. Taylor, A. B.; Roberts, K. M.; Cao, X.; Clark, N. E.; Holloway, S. P.; Donati, E.; Polcaro, C. M.; Pica-Mattoccia, L.; Tarpley, R. S.; McHardy, S. F.; Cioli, D.; LoVerde, P. T.; Fitzpatrick, P. F.; Hart, P. J., Structural and enzymatic insights into species-specific resistance to schisto-some parasite drug therapy. J. Biol. Chem. 2017, 292, 11154-11164.
4. Taylor A. B, Pica-Mattoccia L, Polcaro CM, Donati E, Cao X, Basso A, Guidi A, Rugel AR, Holloway SP, Anderson TJ, Hart PJ, Cioli D, and LoVerde PT. Structural and functional characterization of the enantiomers of the antiSchistosomal drug oxamniquine. PloS Negl. Trop. Dis., 2015, 9, e0004132.
5. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2012, 66, 125-132.
6. Lebedev, A. A.; Young, P; Isupov, M. N.; Moroz, O. V.; Vagin, A. A.; Murshudov, G. N. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Cryst. 2012, D68, 431-440.
7. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486-501.
8. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., et al. PHENIX: a comprehensive Pythonbased system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 213-221.
