Supporting Information

Spray Assembly of Metal–Phenolic Networks: Formation, Growth, and Applications

Qi-Zhi Zhong, Shuaijun Pan, Md. Arifur Rahim, Gyeongwon Yun, Jianhua Li, Yi Ju, Zhixing Lin, Yiyuan Han, Yutian Ma, Joseph J. Richardson, and Frank Caruso*

ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia

Corresponding Author

*Email: fcaruso@unimelb.edu.au

Figure S1. Atomic force microscopy (AFM) height images of (a) a scratched zone of a TA-Fe^{III} coating on a quartz substrate showing the bare substrate and (b) a 15-nm thick TA-Fe^{III} film, with a roughness of 2.9 nm.

Figure S2. XPS spectra of TA-Fe^{III} coating: (a) survey, (b) Fe 2p, and (c) C 1s.

Figure S3. Energy-dispersive X-ray spectroscopy maps showing the different elements present in the (a, b) TA-Cu^{II}, (c, d) TA-Al^{III}, and (e–h) TA-Cu^{II}-Al^{III}-Zr^{IV} coatings.

Figure S4. AFM topography image of a TA-Al^{III} coating, with a roughness of 1.5 nm.

Figure S5. Solubility of quercetin in (a) water and (b) ethanol.

Figure S6. Spraying quercetin (Que) and Fe^{III} in ethanol onto various substrates. PS, polystyrene; PP, polypropylene; PU, polyurethane.

Figure S7. AFM topography image of a GA-Fe^{III} film, with a roughness of 2.7 nm.

Figure S8. UV–visible absorbance spectra of TA-Fe^{III} complexes in water at different pHs: (a)

1, (b) 3, (c) 5, (d) 7, (e) 9, and (f) 11.

Figure S9. UV–visible absorbance spectra of TA-Fe^{III} coatings prepared at different solution pHs (5 cycles): (a) 1, (b) 3, (c) 5, (d) 7 (e) 9, and (f) 11. The insets show the magnified spectra in the wavelength range of 400-800 nm.

Figure S10. UV–visible absorbance spectra of TA-Fe^{III} coatings prepared using different washing protocols. The coating prepared using a washing step after each cycle showed higher absorbance values (black trace) than the coating prepared using a washing step after each spray (red trace). This result indicates that the complexes in the liquid layer may influence the thickness of the coating.

Figure S11. Dynamic light scattering spectrum of TA molecules (2 mg mL⁻¹) in water at pH 11.

Figure S12. AFM topography image of a TA-Fe^{III} film at pH 11, with a roughness of 5.1 nm.

Figure S13. Photographs of TA-Fe^{III} complexes formed in various solvents. MeOH, methanol; DMF, *N*,*N*-dimethylformamide; DMSO, dimethyl sulfoxide; EtOH, ethanol.

Figure S14. UV–visible absorbance spectra of TA-Fe^{III} complexes formed in different solvents: (a) MeOH, (b) DMF, (c) DMSO, (d) EtOH, and (e) water.

Figure S15. UV–visible absorbance spectra of TA-Fe^{III} coatings obtained using different solvents after 5 cycles: (a) MeOH, (b) DMF, (c) DMSO, (d) EtOH, and (e) water. The insets show the magnified spectra in the wavelength range of 400–800 nm.

Figure S16. AFM topography image of a TA-Fe^{III} film, prepared in the presence of 1 M NaCl in TA and FeCl₃· $6H_2O$ solutions, with a thickness of 16.2 nm and an rms roughness of 6.5 nm.

Figure S17. UV–visible absorbance spectra of the gradient TA-Fe^{III} coating on a quartz slide.

Figure S18. Fourier transform infrared spectra of TA-Fe^{III}-coated Janus membranes. The absorbance at 1720 cm⁻¹ indicates the formation of TA-Fe^{III} coating on the front side of the membrane.

Figure S19. Photographs of (a) clean quartz slide and (b) TA-Zr^{IV}-coated quartz slide.