Supporting Information

2,6-Bis(trifluoromethyl)phenylboronic Esters as Protective Groups for Diols:
A Protection/Deprotection Protocol for Use under Mild Conditions
Naoyuki Shimada, ${ }^{,{ }^{\dagger}}{ }^{\dagger}$ Sari Urata, ${ }^{\dagger}$ Kenji Fukuhara, ${ }^{\dagger}$ Takao Tsuneda, ${ }^{\dagger}$ and Kazuishi Makino*, ${ }^{\dagger}$${ }^{\dagger}$ Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories,Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan${ }^{\dagger}$ Fuel Cell Nanomaterials Center, University of Yamanashi, Kofu 400-0021, Japan
Table of Contents

1. General information S2
2. Preparation of 2,6-bis(trifluoromethyl)phenylboronic acid $\left(o-\mathrm{FXylB}(\mathrm{OH})_{2}, \mathbf{1 a}\right)$ S2
3. Preparations of 1,3 -diols $\mathbf{2 c}, \mathbf{2 d}$, and $\mathbf{2 e}$ S3
4. General procedure for the formations of boronic esters and characterization data for compounds $\mathbf{3 a}-\mathbf{k}$ S6
5. Experimental procedures for the chemical transformation of 2,6-bis(trifluoro- methyl)phenyl- boronic esters S10
6. Experimental procedures for the deprotection of 2,6-bis(trifluoromethyl)phenyl- boronic ester $\mathbf{3 e}$ and the formation of $o-\mathrm{FXylB}(\mathrm{OH})_{2}$ from potassium trifluoro- borate 17 S21
7. Experimental procedures for the synthsis of enetriyne natural product $\mathbf{1 8}$ S23
8. Estimation of the half-lives of boronic esters 3e, 31-n S24
9. DFT calculations of boronic esters $\mathbf{3 0}-\mathbf{r}$ S25
10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S32

1. General information

NMR spectra were recorded on Agilent Technologies 400-MR DD2 (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 377 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}$), 400-MR (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 377 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}$), NMR DD2 400NB (128 MHz for ${ }^{11} \mathrm{~B}$) spectrometers. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data are reported as follows; chemical shift in parts per million (ppm) downfield or upfield from $\mathrm{CDCl}_{3}(\delta 7.26), \mathrm{CD}_{3} \mathrm{OD}(\delta 3.31)$ integration, multiplicity $(\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{sep}=$ septet, dd $=$ double doublet, $\mathrm{ddd}=$ double double doublet, $\mathrm{dt}=$ double triplet, $\mathrm{dq}=$ double qualtet, and $\mathrm{m}=$ multiplet), and coupling constants (Hz). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shifts are reported in ppm downfield or upfield from CDCl_{3} ($\delta 77.0$) or $\mathrm{CD}_{3} \mathrm{OD}(\delta 49.0) .{ }^{19} \mathrm{~F}$-NMR chemical shifts are reported in ppm downfield or upfield from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}(\delta-113.15) .{ }^{11} \mathrm{~B}-\mathrm{NMR}$ chemical shifts are reported in ppm downfield or upfield from $\mathrm{PhB}(\mathrm{OH})_{2}(\delta 28.82)$. Mass spectra were measured with JEOL JMS-AX505HA, JMS-700 MStation, and JEOL JMS-T100LP spectrometers. Melting points (mp) were obtained on Stanford Research Systems MPA100 melting point apparatus. Thin-layer chromatography (TLC) was carried out on Merck 60F-254 precoated silica gel plates and were visualized by fluorescence quenching under UV light. Column chromatography was performed using Silica Gel 60N (spherical, neutral, 63-210 $\mu \mathrm{m}$) (Kanto Chemical Co., Inc.). Air- and/or moisture-sensitive reactions were carried out under an argon atmosphere using oven-dried glassware. Alcohol $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 f}, \mathbf{2 g}, \mathbf{2 h}, \mathbf{2 i}, \mathbf{2 j}$, and $\mathbf{1 6}$ were purchased from commercial suppliers and used without further purification. Alcohol $\mathbf{2 k}{ }^{1}$ and triyne $\mathbf{1 9}^{2}$ were synthesized according to the literature.

2. Preparation of 2,6-bis(trifluoromethyl)phenylboronic acid $\left(\boldsymbol{o}-\mathrm{FXylB}(\mathbf{O H})_{2}, \mathbf{1 a}\right)^{3}$

To a solution of t-BuOK ($947 \mathrm{mg}, 8.44 \mathrm{mmol}, 1.3$ equiv) $)^{4}$ and 1,3-bis(trifluoromethyl)benzene $\left(1.39 \mathrm{~g}, 6.49 \mathrm{mmol}, 1.0\right.$ equiv) in THF $(14 \mathrm{~mL}, 0.45 \mathrm{M})$ at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of n-BuLi in n-hexane (1.6 M in n-hexane, $4.46 \mathrm{~mL}, 7.14 \mathrm{mmol}, 1.1$ equiv). After stirring for 3 h , trimethyl borate ($2.18 \mathrm{~mL}, 19.5 \mathrm{mmol}, 3.0$ equiv) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at room temperature. The reaction was quenched by adding 1 M aqueous $\mathrm{HCl} / \mathrm{THF}(15 \mathrm{~mL}$, 1 M aqueous $\mathrm{HCl}:$ THF = 1:2). After stirring 12 h at room temperature, the resulting mixture was extracted with EtOAc ($2 \times 30 \mathrm{~mL}$). The combined organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography
(n-hexane : $\mathrm{EtOAc}=4: 1$) to give $\mathbf{1 a}(881 \mathrm{mg}, 3.44 \mathrm{mmol}, 52 \%$ yield) as a yellow solid and SI-1 ($316 \mathrm{mg}, 1.23 \mathrm{mmol}, 19 \%$ yield) as a yellow solid.
Data for 1a: $\mathrm{R}_{f} 0.34$ (4/1 n-hexane/EtOAc); mp 171-172 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.90(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 134.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.1 \mathrm{~Hz}\right)$, $130.2,129.9\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.4 \mathrm{~Hz}\right), 125.7\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=271.9 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-8.41$;
${ }^{11} \mathrm{~B}-\mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.73$; ${ }^{11} \mathrm{~B}-\mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD} / \mathrm{D}_{2} \mathrm{O}=9: 1\right) \delta 29.29$; IR (KBr) v $=3346,1582,1476,1350,1302,1209,1186,1110,1065,1010,839 \mathrm{~cm}^{-1}$; HRMS (EI) m/z Calcd for $\mathrm{C}_{8} \mathrm{H}_{5}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{2}[\mathrm{M}]^{+} 258.0287$, found 258.028 .
Data for SI-1: $\mathrm{R}_{f} 0.13$ ($4 / 1 n$-hexane/EtOAc); mp 109-110 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.95$ (s, 1H), $7.91(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 143.1$, $141.0(\mathrm{q}, J=31.3 \mathrm{~Hz}), 138.6(\mathrm{q}, J=32.7 \mathrm{~Hz}), 137.3(\mathrm{q}, J=3.5 \mathrm{~Hz}), 133.5(\mathrm{q}, J=271.9 \mathrm{~Hz}), 133.1$ $(\mathrm{q}, J=270.4 \mathrm{~Hz}), 131.0(\mathrm{~m}) ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-60.40,-62.38$; IR (KBr) $v=3358$, 1344, 1121,849 cm^{-1}; HRMS (EI) m / z Calcd for $\mathrm{C}_{8} \mathrm{H}_{5}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{2}[\mathrm{M}]^{+} 258.0287$, found 258.028 .

3. Preparations of $\mathbf{1 , 3 - d i o l s} 2 \mathrm{c}, 2 \mathrm{~d}$, and 2 e

Preparation of hept-6-ene-1,3-diol (2c)

To a stirred solution of $\mathbf{2} \mathbf{k}^{1}(126 \mathrm{mg}, 0.940 \mathrm{mmol})$ and benzaldehyde dimethyl acetal $(0.200 \mathrm{~mL}$, $1.41 \mathrm{mmol}, 1.5$ equiv) in $\operatorname{DMF}(10 \mathrm{~mL}, 0.094 \mathrm{M})$ at room temperature was added p-toluenesulfonic acid monohydrate ($35.8 \mathrm{mg}, 0.188 \mathrm{mmol}, 20 \mathrm{~mol} \%$). After stirring for 20 h at $50^{\circ} \mathrm{C}$, the reaction was quenched by adding saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc/hexane (4:1, $2 \times 10 \mathrm{~mL}$). The combined organic extract was washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane $: \mathrm{EtOAc}=3: 2$) to give SI-2 ($181 \mathrm{mg}, 0.813 \mathrm{mmol}, 86 \%$ yield) as a colorless oil.
Data for SI-2: $\mathrm{R}_{f}=0.29$ ($1 / 1 n$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{ddd}, J=11.6,5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{ddd}, J=12.0,11.6,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.92-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.6,128.7,128.2$, $126.0,101.2,77.2,67.0,62.7,32.5,31.2,28.5$; IR (neat) $v=3402,2923,2863,1027 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$245.1154, found 245.1156.

To a stirred solution of oxalyl chloride ($386 \mu \mathrm{~L}, 4.53 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$) at $78{ }^{\circ} \mathrm{C}$ was dropwise added DMSO ($544 \mu \mathrm{~L}, 9.05 \mathrm{mmol}, 3.0$ equiv) over 5 min . The mixture was stirred for 10 min at $-78{ }^{\circ} \mathrm{C}$ and a solution of SI-2 ($670 \mathrm{mg}, 3.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise. After stirring for $20 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(2.10 \mathrm{~mL}, 15.1 \mathrm{mmol}, 5.0$ equiv) was added dropwise at $-78^{\circ} \mathrm{C}$. After the mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min , the reaction was quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30$ $\mathrm{mL})$. The combined organic layer was washed with brine $(40 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane $: \mathrm{EtOAc}=2: 1$) to give SI-3 (563 mg , $2.56 \mathrm{mmol}, 85 \%$ yield) as a colorless oil.
Data for SI-3: $\mathrm{R}_{f}=0.30\left(4 / 1 n\right.$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{t}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{ddd}, J=11.6,5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (ddd, $J=12.4,11.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.79(\mathrm{~m}, 3 \mathrm{H})$, 1.58-1.52 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.12,202.09,138.54,138.53,128.71,128.70$, $128.19,128.18,125.9,101.1,76.0,66.8,39.6,31.2,31.2,28.3$; IR (neat) $v=2925,2853,1723$, $1364,1105 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 243.1000$, found 243.1000 .

To a solution of methyltriphenylphosphonium bromide ($1.82 \mathrm{~g}, 0.200 \mathrm{mmol}, 2.0$ equiv) in THF $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of n - BuLi in hexane $(1.6 \mathrm{M}$ in hexane, 3.18 mL , 5.09 mmol , 2.0 equiv). After stirring for 20 min at $0^{\circ} \mathrm{C}$, a solution of SI-3 ($560 \mathrm{mg}, 2.54 \mathrm{mmol}$) in THF (10 mL) was added dropwise to the mixture. After stirring for 50 min at $0^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$. The resulting mixture was filtered through a Celite pad and rinsed with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. Concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane : $\mathrm{EtOAc}=2: 1$) to give SI-4 ($500 \mathrm{mg}, 2.29 \mathrm{mmol}, 90 \%$ yield) as a colorless oil.
Data for SI-4: $\mathrm{R}_{f}=0.38$ ($4 / 1 n$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.85(\mathrm{ddt}, J=17.2,10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{ddd}, J=11.6,5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{ddd}, J=12.4,11.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.89-3.82 (m, 1H), 2.32-2.15 (m, 2H), 1.88-1.75 (m, 2H), 1.67-1.58 (m, 1H), 1.58-1.50 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.9,138.2,128.6,128.2,126.0,114.8,101.1,76.4,67.0,35.0$, $31.3,29.1$; IR (neat) $v=2925,2852,1364,1105 \mathrm{~cm}^{-1}$; HRMS (FAB) m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 219.2385$, found 219.1396 .

A solution of SI-4 ($500 \mathrm{mg}, 2.29 \mathrm{mmol}$) in 0.5 M aqueous HCl and THF ($30 \mathrm{~mL}, 0.076 \mathrm{M}, 0.5$ M aqueous $\mathrm{HCl}:$ THF $=2: 1$) was stirred for 3 h at $40^{\circ} \mathrm{C}$. The reaction mixture was extracted with CHCl_{3}, ($6 \times 20 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (EtOAc) to give $\mathbf{2 c}(258 \mathrm{mg}, 1.98 \mathrm{mmol}, 87 \%$ yield) as a colorless oil.
Data for 2c: $\mathrm{R}_{f}=0.15$ (2/1 n-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.84$ (ddt, $J=17.2$, $10.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.96(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.08(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{br}$,

2H), 2.25-2.01 (m, 2H), 1.76-1.52 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3,145.0,71.8,61.8$, $38.3,36.7,29.9$; IR (neat) $v=3343,2937,1058 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z Calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 131.1072, found 131.1080 .

Preparation of 4,6-dihydroxyhexyl acetate (2d)

To a stirred solution of SI-2 ($111 \mathrm{mg}, 0.500 \mathrm{mmol}$) and triethyl amine ($209 \mu \mathrm{~L}, 1.50 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL}, 0.10 \mathrm{M})$ at room temperature was added acetyl chloride ($71.4 \mu \mathrm{~L}, 1.00$ $\mathrm{mmol}, 2.0$ equiv). After stirring for 20 min , the reaction was quenched by adding 1 M aqueous HCl $(5.0 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane $: \operatorname{EtOAc}=5: 1$) to give SI-5 ($121 \mathrm{mg}, 0.458 \mathrm{mmol}, 92 \%$ yield) as a colorless oil.

Data for SI-5: $\mathrm{R}_{f}=0.18$ (4/1 n-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.38-7.30 (m, 3 H), $5.51(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{ddd}, J=11.4,5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.06(\mathrm{~m}, 2 \mathrm{H}) 3.96$ (ddd, $J=12.3,11.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.83(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.50(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.1,138.7,128.6,128.2,126.0,101.1,76.6,66.9,64.3,32.3,31.3,24.3,20.9$; IR (neat) $v=2956,2853,1738,1243,1108 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 287.1259$, found 287.1256.

A solution of SI-5 (121 mg, 0.458 mmol$)$ in $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}$ and THF $(6.5 \mathrm{~mL}, 0.070 \mathrm{M}, \mathrm{AcOH}$: $\mathrm{H}_{2} \mathrm{O}:$ THF $=1: 1: 1$) was stirred for 16 h at $40^{\circ} \mathrm{C}$. The reaction mixture was extracted with CHCl_{3}, ($4 \times 10 \mathrm{~mL}$). The combined organic layer was washed with brine (40 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=19: 1\right)$ to give $\mathbf{2 d}(65.6 \mathrm{mg}$, $0.373 \mathrm{mmol}, 81 \%$ yield) as a colorless oil.
Data for 2d: $\mathrm{R}_{f}=0.15\left(1 / 2 n\right.$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.09(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.92-3.79(\mathrm{~m}, 3 \mathrm{H}), 2.87(\mathrm{br}, 1 \mathrm{H}), 2.60(\mathrm{br}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.51(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,71.1,64.4,61.3,38.3,33.8,24.7,20.9$; IR (neat) $v=$ 3384, 2940, 1732, 1254, $1050 \mathrm{~cm}^{-1}$; HRMS (EI) m/z Calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$177.1127, found 177.1122.

Preparation of 6-(benzyloxy)hexane-1,3-diol (2e)

To a suspension of sodium hydride ($44.4 \mathrm{mg}, 1.85 \mathrm{mmol}, 3.0$ equiv) in DMF $(2.2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of SI-2 $(137 \mathrm{mg}, 0.617 \mathrm{mmol})$ in DMF $(2.0 \mathrm{~mL})$ and the mixture was strried for 10 min at room temperature. Benzyl bromide ($110 \mu \mathrm{~L}, 0.926 \mathrm{mmol}, 1.5$ equiv) was added dropwise at $0^{\circ} \mathrm{C}$ and the mixture was sirred for 3 h . The reaction was quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic layer was washed with brine (20 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane $: \operatorname{EtOAc}=9: 1$) to give SI-6 $(156 \mathrm{mg}, 0.500 \mathrm{mmol}, 81 \%$ yield) as a colorless oil.
Data for SI-6: $\mathrm{R}_{f}=0.28$ (4/1 n-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.38-7.26 (m, 8H), $5.49(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{ddd}, J=11.6,5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{ddd}, J=$ $12.4,11.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.47(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.50(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.8,138.6,128.6,128.3,128.2,127.6,127.5,126.0,101.1$, $77.0,72.9,70.2,67.1,32.7,31.3,25.3$; IR (neat) $v=3032,2950,2853,1364,1107 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 335.1623$, found 335.1610.

A solution of SI-6 (156 mg, 0.500 mmol) in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} /$ THF $(7.0 \mathrm{~mL}, 0.071 \mathrm{M}$, AcOH : $\mathrm{H}_{2} \mathrm{O}:$ THF $=1: 1: 1$) was stirred for 14 h at $40^{\circ} \mathrm{C}$. The reaction mixture was extracted with CHCl_{3}, ($5 \times 10 \mathrm{~mL}$). The combined organic layer was washed with brine (40 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (EtOAc) to give $\mathbf{2 e}(80.0 \mathrm{mg}, 0.357 \mathrm{mmol}, 71 \%$ yield) as a colorless oil.
Data for 2e: $\mathrm{R}_{f}=0.13$ (4/1 n-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.09(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.92-3.79(\mathrm{~m}, 3 \mathrm{H}), 2.87(\mathrm{br}, 1 \mathrm{H}), 2.60(\mathrm{br}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.51(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.4,71.1,64.4,61.3,38.3,33.8,24.7,20.9$; IR (neat) $v=$ 3372, 2942, 2865, 1278, $1099 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$247.1310, found 247.1311.

4. General procedure for the formations of boronic esters and characterization data for compounds 3a-k

General procedure for the formation of boronic esters from diols

To a solution of diols $\mathbf{2 a}-\mathbf{k}\left(0.200 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1.0 \mathrm{~mL}, 0.20 \mathrm{M})$ was added 2,6-bis(trifluoromethyl)phenylboronic acid (1a) ($0.200 \mathrm{mmol}, 1.0$ equiv). After stirring for 24 h at reflux, the reaction mixture was concentrated under reduced pressure to give the crude boronic ester, which was purified by silica gel column chromatography.

2-(2,6-Bis(trifluoromethyl)phenyl)-4-phenyl-1,3,2-dioxaborolane (3a)

80% yield, Data for 3a; yellow oil; $\mathrm{R}_{f} 0.34$ (20/1 n-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.34(\mathrm{~m}$, $5 \mathrm{H}), 5.66(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.5$, $134.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.6 \mathrm{~Hz}\right), 130.1,128.8,128.7$ $\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 128.4,125.9,124.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.6 \mathrm{~Hz}\right), 80.1,73.9 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}(377 \mathrm{MHz}$, CDCl_{3}) $\delta-59.79$; IR (neat) $v=3037,2912,1580,1297,1132 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{12}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$361.0835, found 361.0833.

2-(2,6-Bis(trifluoromethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (3b)

80% yield, Data for 3b: yellow solid; $\mathrm{R}_{f} 0.41$ (20/1 n-hexane/EtOAc); mp $49-51{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 4 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.8\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ $31.0 \mathrm{~Hz}), 129.0,128.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.4 \mathrm{~Hz}\right), 124.2\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.6 \mathrm{~Hz}\right), 72.8,31.8$, 22.4; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.74$; IR (KBr) $v=2921,1164 \mathrm{~cm}^{-1} ;$ HRMS (EI) m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{13}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{2}[\mathrm{M}]^{+}$326.0913, found 326.0919.

2-(2,6-Bis(trifluoromethyl)phenyl)-4-(but-3-en-1-yl)-1,3,2-dioxaborinane (3c)

 99% yield, Data for 3c: yellow oil; $\mathrm{R}_{f} 0.51$ ($9 / 1 n$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, CDCl_{3}) $\delta 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (ddt, $J=17.2,10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.96(\mathrm{~m}$, $1 \mathrm{H}), 4.22-4.08(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{dq}, J=14.0,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.98-1.88 (m, 1H), 1.82-1.73 (m, 1H), 1.68-1.59 (m, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.9$, $133.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.0 \mathrm{~Hz}\right), 128.9,128.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}\right), 124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.1 \mathrm{~Hz}\right), 115.0,71.6$, 61.9, 35.6, 31.6, 29.1; ${ }^{19} \mathrm{~F}$-NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-59.40; IR (neat) $v=3080,2926,1295,1132$ cm^{-1}; HRMS (EI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{15}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{2}[\mathrm{M}]^{+} 352.1069$, found 352.1098.

3-(2-(2,6-Bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propyl acetate (3d)

96% yield, Data for 3d: colorless oil; $\mathrm{R}_{f} 0.81$ ($2 / 1 n$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=8.0,1 \mathrm{H})$, 4.21-4.07 (m, 5H), 2.03 (s, 3H), 2.05-2.00 (m, 1H), 1.97-1.60 (m, 5H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,133.7\left(\mathrm{q}, J_{2}=31.1 \mathrm{~Hz}\right), 128.9,128.6$ $\left(\mathrm{q}, J_{3}=3.1 \mathrm{~Hz}\right), 124.3\left(\mathrm{q}, J_{1}=272.0 \mathrm{~Hz}\right), 71.8,64.2,61.9,33.0,31.8,24.2,20.9 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}(377$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-59.39; IR (neat) $v=2960,2923,2891,2850,1740,1577,1487,1433,1368,1344$, 1296, 1243, 1199, 1177, 1132, 1089, 1069, $818 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BF}_{6} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 421.1022$, found 421.1028 .

4-(3-(Benzyloxy)propyl)-2-(2,6-bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinane (3e)

97\% yield, Data for 3e: yellow oil; $\mathrm{R}_{f} 0.45$ ($9 / 1 n$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.21-4.07(\mathrm{~m}, 3 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 2 \mathrm{H})$, 2.04 (dq, $J=14.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.68(\mathrm{~m}, 4 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.6,133.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.2 \mathrm{~Hz}\right), 128.9,128.5\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}\right)$, $128.3,127.6,127.5,124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.6 \mathrm{~Hz}\right), 72.8,72.1,70.0,61.9,33.2,31.7,25.2 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}$ $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.39 ;{ }^{11} \mathrm{~B}-\mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.94 ;{ }^{11} \mathrm{~B}-\mathrm{NMR}(128 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD} / \mathrm{D}_{2} \mathrm{O}=9: 1$) $\delta 27.93$; IR (neat) $v=2922,1295,1130 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{21}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 469.1386$, found 469.1375 .
(4R,5R)-2-(2,6-Bis(trifluoromethyl)phenyl)-4,5-diphenyl-1,3,2-dioxaborolane (3f)

83\% yield, Data for 3f: yellow solid; $\mathrm{R}_{f} 0.38$ (20/1 n-hexane/EtOAc); mp $97-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 10 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.4$, $134.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.4 \mathrm{~Hz}\right), 130.2,128.8,128.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}\right), 128.6,126.2,124.2$ (q, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.6 \mathrm{~Hz}$), 88.0; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.42$; IR $(\mathrm{KBr}) v=$ 3036, 2908, 1300, $1130 \mathrm{~cm}^{-1}$; HRMS (EI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BF}_{6} \mathrm{O}_{2}[\mathrm{M}]^{+} 436.1069$, found 436.1067.
(3aR,7aS)-2-(2,6-Bis(trifluoromethyl)phenyl)hexahydrobenzo[d][1,3,2]dioxaborole (3g)

3 g
90% yield, Data for $\mathbf{3 g}$: yellow oil; $\mathrm{R}_{f} 0.31$ (20/1 n-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.56(\mathrm{~m}$, $2 \mathrm{H}), 1.91-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 134.6\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.4 \mathrm{~Hz}\right), 129.7,128.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.4 \mathrm{~Hz}\right), 124.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ 272.7 Hz), 76.6, 28.2, 19.7; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.79$; IR (neat) $v=$ 3420, 2942, 1297, $1132 \mathrm{~cm}^{-1}$; HRMS (EI) m/z Calcd for $\mathrm{C}_{14} \mathrm{H}_{13}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{2}[\mathrm{M}]^{+} 338.0913$, found 338.0919 .
(3aR,6aS)-2-(2,6-Bis(trifluoromethyl)phenyl)tetrahydro-4H-cyclopenta [d][1,3,2]dioxaborole (3h)

$3 h$

90\% yield, Data for 3h: yellow oil; $\mathrm{R}_{f} 0.44$ (20/1 n-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.03(\mathrm{~m}$, $2 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 134.6\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.4 \mathrm{~Hz}\right), 129.7,128.6,\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.3 \mathrm{~Hz}\right), 123.9\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}\right.$ $=272.6 \mathrm{~Hz}$), 84.1, 34.1, 21.7; ${ }^{19}$ F-NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.84$; IR (neat) $v=$ 2967, 1298, $1132 \mathrm{~cm}^{-1}$; HRMS (EI) m/z Calcd for $\mathrm{C}_{13} \mathrm{H}_{11}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{2}[\mathrm{M}]^{+} 324.0756$, found 324.0748 .
(3aR,9aS)-2-(2,6-Bis(trifluoromethyl)phenyl)octahydrocycloocta[d][1,3,2]dioxaborole (3i)

90%, yield, Data for $3 \mathbf{3 i}$: yellow solid; $\mathrm{R}_{f} 0.41$ (20/1 n-hexane/EtOAc); mp $64-66{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.65-4.59(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.65(\mathrm{~m}$, $2 \mathrm{H}), 1.56-1.26(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.6\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.4 \mathrm{~Hz}\right)$, $129.7,129.0\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.4 \mathrm{~Hz}\right), 124.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.6 \mathrm{~Hz}\right), 82.4,29.0,27.0,25.6$; ${ }^{19}$ F-NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.77$; IR (KBr) $v=2934,1300,1133 \mathrm{~cm}^{-1}$; HRMS (EI) m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{17}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{2}[\mathrm{M}]^{+}$366.1226, found m / z : 366.1239 .

2-(2,6-Bis(trifluoromethyl)phenyl)-4H-benzo[d][1,3,2]dioxaborinine (3j)

84% yield, Data for $\mathbf{3 j}$: yellow oil; $\mathrm{R}_{f} 0.41$ ($20 / 1 n$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}$, $1 \mathrm{H}), 7.10(\mathrm{dt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.8,134.1\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.4 \mathrm{~Hz}\right), 129.7,129.0,128.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.2\right.$ $\mathrm{Hz}), 124.9,124.2\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.4 \mathrm{~Hz}\right), 123.7,122.2,117.9,63.6 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}(377$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.74$; IR (neat) $v=3050,2905,1297,1169 \mathrm{~cm}^{-1} ; \mathrm{HRMS}$ (EI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{9}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{2}[\mathrm{M}]^{+} 346.0600$, found 346.0599 .
 $\left.J_{3}=4.3 \mathrm{~Hz}\right), 124.3\left(\mathrm{q}, J_{1}=272.1 \mathrm{~Hz}\right), 72.3,62.6,62.0,33.0,31.8,28.40 ;{ }^{19}$ F-NMR (377 MHz , CDCl_{3}) $\delta-59.38$; IR (neat) $v=2952,2927,2872,2840,1488,1431,1343,1295,1197,1168,1131$, 1088, 1066, $812 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{14} \mathrm{H}_{15}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 379.0916$, found 379.0918.

Preparation of 4-(3-(benzyloxy)propyl)-2-(2,6-bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinane (3e) on a 3 mmol scale

To a solution of $\mathbf{2 e}\left(674 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(15 \mathrm{~mL}, 0.20 \mathrm{M})$ was added 1a ($776 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.0$ equiv). After stirring for 24 h at reflux, the reaction mixture was concentrated under reduced pressure to furnish the crude product, which was purified by silica gel column chromatography (n-hexane $: \mathrm{EtOAc}=9: 1$) to give $\mathbf{3 e}(1.30 \mathrm{~g}, 2.91 \mathrm{mmol}, 97 \%$ yield) as a yellow oil.

Table S1. Formation of cyclic boronic esters between $o-\mathrm{FXylB}(\mathrm{OH})_{2}$ and different diols.

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of crude mixture.
b Isolated yield
${ }^{c}$ Performed with MS4 $\AA(1 \mathrm{~g} / \mathrm{mol})$
${ }^{d}$ Reaction time 60 h.
5. Experimental procedures for the chamical transformation of 2,6-bis(trifluoromethyl)phenylboronic esters
3-(2-(2,6-Bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propyl acetate (3d)

To a stirred solution of $\mathbf{3 k}(100 \mathrm{mg}, 0.280 \mathrm{mmol})$ and 2,4,6-trimethylpyridine $(74.0 \mu \mathrm{~L}, 0.560$ mmol, 2.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL}, 0.093 \mathrm{M})$ at room temperature was added acetyl chloride ($30.0 \mu \mathrm{~L}, 0.420 \mathrm{mmol}, 1.5$ equiv). After stirring for 20 h , the reaction was quenched by adding 1 M aqueous HCl . The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane $: ~ E t O A c=9: 1$) to give 3d ($110 \mathrm{mg}, 0.276 \mathrm{mmol}, 99 \%$ yield) as a colorless oil.

3-(2-(2,6-Bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propan-1-ol (3k)

3d

78\%

3k

To a stirred solution of $\mathbf{3 d}(43.8 \mathrm{mg}, 0.110 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}, 0.055 \mathrm{M})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of DIBAL-H in hexane $(1.03 \mathrm{M}$ in hexane, $0.22 \mathrm{~mL}, 0.220 \mathrm{mmol}, 2.0$ equiv). After stirring for 3 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched by adding EtOAc (2.0 mL). A saturated aqueous solution of potassium sodium tartrate $(6 \mathrm{~mL})$ was added to the resulting mixture. After stirring for 10 min , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The resulting mixture was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and brine (30 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane : $\mathrm{EtOAc}=1: 1)$ to give $\mathbf{3 k}(30.7 \mathrm{mg}, 0.0862 \mathrm{mmol}, 78 \%$ yield $)$ as a yellow oil.

4-(3-(Benzyloxy)propyl)-2-(2,6-bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinane (3e)

81\%

To a stirred suspension of $\mathbf{3 k}(356 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{Ag}_{2} \mathrm{O}(927 \mathrm{mg}, 4.00 \mathrm{mmol})$ in $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ $(3.0 \mathrm{~mL}, 0.33 \mathrm{M})$ at room temperature was added benzyl bromide $(0.60 \mathrm{~mL}, 5.00 \mathrm{mmol}, 5.0$ equiv). After stirring for 20 h at reflux, the reaction mixture was filtrated through Celite pad and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane : EtOAc $=9: 1$) to give $\mathbf{3 e}(362 \mathrm{mg}$, $0.812 \mathrm{mmol}, 81 \%$ yield) as a yellow oil.

3-(2-(2,6-Bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propan-1-ol (3k)

3 e

97\%

3k

A mixture of $10 \% \mathrm{Pd} / \mathrm{C}(16.0 \mathrm{mg}, 20 \mathrm{wt} \%)$ and $\mathbf{3 e}(79.0 \mathrm{mg}, 0.180 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL}$, 0.090 M) was stirred for 30 min at room temperature under H_{2} atmosphere (balloon). The reaction mixture was filtrated through Celite pad and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane $: \operatorname{EtOAc}=9: 1$) to give $\mathbf{3 k}(62.2 \mathrm{mg}, 0.175 \mathrm{mmol}, 97 \%$ yield) as a yellow oil.
(3-(2-(2,6-Bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propoxyl)triethylsilane (4)

3k

91\%

4

To a stirred solution of $\mathbf{3 k}(71.2 \mathrm{mg}, 0.200 \mathrm{mmol})$ and 2,6 -lutidine $(47.0 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}, 0.10 \mathrm{M})$ at room temperature was added dropwise TESOTf ($54.0 \mu \mathrm{~L}$, $0.240 \mathrm{mmol}, 1.8$ equiv). After stirring for 8 h , the reaction was quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2.0 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane $: ~ E t O A c=19: 1$) to give $4(85.5 \mathrm{mg}, 0.182 \mathrm{mmol}, 91 \%$ yield) as a colorless oil.
Data for 4: colorless oil; $\mathrm{R}_{f} 0.35$ (20/1 n-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.08(\mathrm{~m}, 3 \mathrm{H}), 3.69-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{dq}, J=14.2$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}, J=8.1 \mathrm{~Hz}, 9 \mathrm{H}), 0.58(\mathrm{q}, J=8.1 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.0 \mathrm{~Hz}\right), 128.9,128.5\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.4 \mathrm{~Hz}\right)$, $124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.8 \mathrm{~Hz}\right), 72.2,62.6,61.9,32.9,31.7,28.3,6.7,4.4 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-59.41$; IR (neat) $v=2956,1297,1135 \mathrm{~cm}^{-1} ;$ HRMS (EI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{30}{ }^{11} \mathrm{BO}_{3} \mathrm{~F}_{6} \mathrm{Si}[\mathrm{M}]^{+}$ 471.1961, found 471.1956 .

3-(2-(2,6-Bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propan-1-ol (3k)

A solution of $4(47.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ in 1 M aqueous $\mathrm{HCl} / \mathrm{THF}(1.0 \mathrm{~mL}, 1 \mathrm{M}$ aqueous HCl : THF = 1:1) was stirred for 10 min at room temperature. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2},(2 \times 2.0 \mathrm{~mL})$. The combined organic layer was washed with brine $(5.0 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane : EtOAc $=2: 1$) to give $\mathbf{3 k}(26.0 \mathrm{mg}$, $0.0740 \mathrm{mmol}, 74 \%$ yield) as a yellow oil.

3-(2-(2,6-Bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propanal (5)

To a stirred solution of oxalyl chloride ($128 \mu \mathrm{~L}, 1.50 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$ was added dropwise DMSO ($180 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 3.0$ equiv) dropwise over 5 min . The mixture was stirred for 10 min at $-78{ }^{\circ} \mathrm{C}$ and a solution of $\mathbf{3 k}(356 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0$ $\mathrm{mL})$ was added dropwise. After stirring for $20 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(696 \mu \mathrm{~L}, 5.00 \mathrm{mmol}, 5.0$ equiv) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. After the mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min , the reaction was quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane : EtOAc $=2: 1$) to give $\mathbf{5}(85.5 \mathrm{mg}$, $0.182 \mathrm{mmol}, 89 \%$ yield) as a colorless oil.

Data for 5: colorless oil; $\mathrm{R}_{f} 0.43$ (4/1 n-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.79(\mathrm{t}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.09(\mathrm{~m}, 3 \mathrm{H}), 2.72-2.58(\mathrm{~m}$, $2 \mathrm{H}), 2.08-1.80(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.8,133.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.0 \mathrm{~Hz}\right), 129.0$, $128.59\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}\right), 124.29\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.7 \mathrm{~Hz}\right), 71.3,61.9,39.5,31.8,28.7 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}(377$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.38$; IR (neat) $v=2953,2927,1725,1577,1487,1431,1344,1295,1200,1168$, 1131, 1987, 1068, $818 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{13}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 377.0760$, found 377.0749.

3-(2-(2,6-Bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propanal (5)

To a stirred solution of Dess-Martin periodinane ($68.2 \mathrm{mg}, 0.161 \mathrm{mmol}$, 1.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(1.0 \mathrm{~mL}$, total 0.050 M$)$ at room temperature was added a solution of $\mathbf{3 k}(38.2 \mathrm{mg}, 0.107 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. After stirring for 1 h , the reaction was quenched by successively adding saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1.0 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(1.0 \mathrm{~mL})$. After stirring for 30 min , the resulting mixture was extracted with EtOAc $(5.0 \mathrm{~mL})$. The combined organic layer was washed with brine $(5.0 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane : $\mathrm{EtOAc}=4: 1)$ to give $5(25.4 \mathrm{mg}, 0.0717 \mathrm{mmol}, 75 \%$ yield $)$ as a colorless oil.

3-(2-(2,6-Bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propan-1-ol (3k)

5

90\%

3k

To a stirred solution of $5(35.4 \mathrm{mg}, 0.100 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL}, 0.10 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(3.78 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv). After stirring for 5 min , the reaction was quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1.0 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc (5.0 $\mathrm{mL})$. The organic layer was washed with brine $(5.0 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane $: ~ E t O A c=2: 1$) to give $\mathbf{3 k}(32.0 \mathrm{mg}, 0.0900 \mathrm{mmol}, 90 \%$ yield) as a yellow oil.

3-(2-(2,6-Bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)-1-phenylpropan-1-ol (6)

5

70\%

6

To a stirred solution of $5(35.4 \mathrm{mg}, 0.100 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL}, 0.050 \mathrm{M})$ at room temperature was added dropwise a solution of PhMgBr in $\mathrm{Et}_{2} \mathrm{O}\left(0.70 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 140 \mu \mathrm{~L}, 0.098 \mathrm{mmol}, 1.0$ equiv). After stirrng for 10 min , the reaction was quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2.0$ mL). The resulting mixture was extracted with EtOAc ($3 \times 5.0 \mathrm{~mL}$). The combined organic layer was washed with brine (10 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane : EtOAc $=5: 1$) to give $6(30.4 \mathrm{mg}, 0.0703 \mathrm{mmol}, 70 \%$ yield) as a colorless oil.

Data for 6: colorless oil; $\mathrm{R}_{f} 0.51$ ($4 / 1 n$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.70(\mathrm{~m}, 1 \mathrm{H})$, 4.22-4.07 (m, 3H), 2.06-1.57 (m, 6H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.54,144.51,133.70(\mathrm{q}$,
$\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.0 \mathrm{~Hz}\right), 133.69\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.0 \mathrm{~Hz}\right), 128.94,128.93,128.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}\right), 128.44$, , $128.43,127.5,125.79,125.76,124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.1 \mathrm{~Hz}\right), 74.3,74.1,72.5,72.2,62.0,61.9,34.7$, $34.5,32.9,32.7,31.9,31.8 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.37$; IR (neat) $v=3390,2925,1296$, $1132 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{3}[\mathrm{M}]^{+} 432.1331$, found 432.1337 .

N-Benzyl-3-(2-(2,6-bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propan-1-amine (7)

1. benzylamine (1.1 equiv)
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{M})$
rt, 1.5 h
2. NaBH_{4} (1.0 equiv)
$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(1: 1,0.1 \mathrm{M})$
$0^{\circ} \mathrm{C}, 3$ min
86\%

To a stirred solution of $5(35.4 \mathrm{mg}, 0.100 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{~mL}, 0.20 \mathrm{M})$ at room temperature was added benzylamine ($12.0 \mu \mathrm{~L}, 0.110 \mathrm{mmol}, 1.1$ equiv). After stirring for 1 h , a solution of $\mathrm{NaBH}_{4}(3.78 \mathrm{mg}, 0.100 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added to the mixture at $0{ }^{\circ} \mathrm{C}$. After stirring for 3 min , the reaction was quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2.0 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was washed with brine (10 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=19: 1\right)$ to give $7(38.2 \mathrm{mg}, 0.0858 \mathrm{mmol}, 86 \%$ yield $)$ as a colorless oil.

Data for 7: colorless oil; $\mathrm{R}_{f} 0.32 \quad\left(19 / 1 \mathrm{CHCl}_{3} / \mathrm{MeOH}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.37(\mathrm{~m}, 5 \mathrm{H}), 4.20-4.07(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.01$ (brs, 1H), 2.69-2.65 (m, 2H), 2.02 (dq, $J=14.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=139.2,133.7\left(\mathrm{q}, J_{2}=31.0 \mathrm{~Hz}\right), 128.9,128.6\left(\mathrm{q}, J_{3}=4.2 \mathrm{~Hz}\right)$, $128.4,128.3,127.1,124.3\left(\mathrm{q}, J_{1}=272.2 \mathrm{~Hz}\right), 72.1,61.9,53.4,48.6,34.1,31.7,25.0 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}(377$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.38$; IR (neat) $v=3341,2925,1296,1131 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{23}{ }^{11} \mathrm{BF}_{6} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 446.1724$, found 446.1726 .

2-(2,6-Bis(trifluoromethyl)phenyl)-4-(but-3-en-1-yl)-1,3,2-dioxaborinane (3c)

5
$\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ (2.0 equiv) n-BuLi (2.0 equiv)
THF (0.1 M) $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$

99\%

3c

To a suspention of methyltriphenylphosphonium bromide ($35.7 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv) in THF (0.70 mL) at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of n - BuLi in hexane $(1.6 \mathrm{M}$ in hexane, 0.13 $\mathrm{mL}, 0.200 \mathrm{mmol}, 2.0$ equiv). After stirring for 20 min at $0^{\circ} \mathrm{C}$, a solution of $5(35.4 \mathrm{mg}, 0.100$ $\mathrm{mmol})$ in THF (0.30 mL , total, 0.17 M) was added. After stirring for 1 h at $0^{\circ} \mathrm{C}$, the reaction was diluted by adding $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$. The resulting mixture was filtered through a Celite pad and rised
with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. Concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane : EtOAc $=9: 1$) to give $\mathbf{3 c}(35.2 \mathrm{mg}$, $0.100 \mathrm{mmol}, 99 \%$ yield) as a yellow oil.

Methyl (E)-5-(2-(2,6-bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)pent-2- enoate (8)

To a stirred solution of $5(30.6 \mathrm{mg}, 0.0864 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}, 0.043 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added methyl (triphenylphosphoranylidene)acetate ($50.4 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.5$ equiv). After stirring for 10 min at room temperature, the reaction was quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(2.5 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$. The combined organic layer was washed with brine $(5.0 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane : EtOAc $=4: 1$) give $8(28.0 \mathrm{mg}, 0.0757 \mathrm{mmol}, 80 \%$ yield) as a colorless oil.

Data for 8: colorless oil; $\mathrm{R}_{f} 0.52$ (4/1 n-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dt}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=15.6$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.21-4.08(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.66(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=167.0,148.4,133.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.0 \mathrm{~Hz}\right), 128.6(\mathrm{q}$, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}\right), 124.30\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.0 \mathrm{~Hz}\right), 121.5,71.3,61.8,51.4,34.8,31.7,27.6 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}(377$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.37$; IR (neat) $v=2952,2920,2847,1725,1652,1578,1488,1436,1343,1295$, 1199, 1167, 1131, 1081, 986, $819 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{17}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 433.1022 , found 433.1015 .

(E)-2-(2,6-Bis(trifluoromethyl)phenyl)-4-(4-iodobut-3-en-1-yl)-1,3,2-dioxaborinane (9)

$$
\xrightarrow[\substack{\text { 1,4-dioxane }(0.04 \mathrm{M}) \\
\mathrm{rt}, 24 \mathrm{~h}}]{\substack{\mathrm{CrCl}_{2} \text { (12 equiv) } \\
\mathrm{CHI}_{3}(4.0 \text { equiv })}} \quad \begin{aligned}
& 68 \%(E / Z=93: 7)
\end{aligned}
$$

9

To a stirred solution of chromium (II) chloride ($73.7 \mathrm{mg}, 0.600 \mathrm{mmol}, 6.0$ equiv) in 1,4-dioxane $(1.3 \mathrm{~mL}$, total 0.40 M$)$ at room temperature was added a solution of iodoform $(78.7 \mathrm{mg}, 0.200$ mmol, 2.0 equiv) and $5(35.4 \mathrm{mg}, 0.100 \mathrm{mmol})$ in 1,4-dioxane (1.3 mL). After stirring for 5 h , chromium (II) chloride ($73.7 \mathrm{mg}, 0.600 \mathrm{mmol}, 6.0$ equiv) and iodoform ($78.7 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added to the reaction mixture. After stirring for 19 h , the reaction was quenched by
adding $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc (2 x 5.0 mL). The combined organic layer was washed successively with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \times 15 \mathrm{~mL})$ and brine (10 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filteration and concentration under reduced pressure furnished the crude product, which was pureified by silica gel column chromatography (n-hexane : $\mathrm{EtOAc}=9: 1)$ to give $9(32.5 \mathrm{mg}, 0.0680 \mathrm{mmol}, 68 \%$ yield, $E / Z=93: 7)$ as a colorless oil.

Data for (E)-9: colorless oil; $\mathrm{R}_{f} 0.41$ ($2 / 1 n$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.09(\mathrm{~m}, 3 \mathrm{H}), 2.64-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{dq}, J=$ $14.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.82(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.4,133.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.1\right.$ $\mathrm{Hz}), 129.0,128.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}\right), 124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.6 \mathrm{~Hz}\right), 71.1,61.8,31.7,31.2,29.3$; ${ }^{19}$ F-NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.39$; IR (neat) $v=2953,1296,1132 \mathrm{~cm}^{-1}$; HRMS (EI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{13}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{4}[\mathrm{M}]^{+} 370.0811$, found 370.0803 .

3-(2-(2,6-Bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propanoic acid (10)

5

86\%

10

To a stirred solution of $5(35.4 \mathrm{mg}, 0.100 \mathrm{mmol})$ and 2-methyl-2-butene $(0.340 \mathrm{~mL}, 3.20 \mathrm{mmol}$, 32 equiv) in t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}\left(1.5 \mathrm{~mL}, t-\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}=5: 1,0.067 \mathrm{M}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ ($23.4 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{NaClO}_{2}(13.6 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv). After stirring for 2 h at room temperature, the reaction was quenched by adding 1 M aqueous $\mathrm{HCl}(2.0 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was washed with brine $(10 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3}\right.$: $\mathrm{MeOH}=9: 1)$ to give $\mathbf{1 0}(30.0 \mathrm{mg}, 0.0811 \mathrm{mmol}, 86 \%$ yield $)$ as a white solid.

Data for 10: white solid; $\mathrm{R}_{f} 0.41$ ($2 / 1 n$-hexane/EtOAc); mp 119-124 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.09(\mathrm{~m}, 3 \mathrm{H}), 2.64-2.47(\mathrm{~m}, 2 \mathrm{H})$, $2.05(\mathrm{dq}, J=14.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.82(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.4,133.7(\mathrm{q}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.1 \mathrm{~Hz}\right), 129.0,128.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}\right), 124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.6 \mathrm{~Hz}\right), 71.1,61.8,31.7,31.2$, 29.31; ${ }^{19}$ F-NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.39$; IR (KBr) $v=2969,2934,1712,1294,1135 \mathrm{~cm}^{-1}$; HRMS (EI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{13}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{4}[\mathrm{M}]^{+} 370.0811$, found 370.0803 .

Methyl 3-(2-(2,6-bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propanoate (11)

To a stirred solution of $10(74.0 \mathrm{mg}, 0.200 \mathrm{mmol})$ in $\mathrm{MeOH}(1.3 \mathrm{~mL}, 0.15 \mathrm{M})$ at room remperature was added p-toluenesulfonic acid monohydrate ($1.90 \mathrm{mg}, 0.0100 \mathrm{mmol}, 5 \mathrm{~mol} \%$). After stirring for 3 h , the reaction was quenched by adding saturated aqueous $\mathrm{NaHCO}_{3}(2.0 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc ($2 \times 5.0 \mathrm{~mL}$). The combined organic layer was washed successively with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ and brine (10 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filteration and concention under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane $: \operatorname{EtOAc}=9: 1$) to give $\mathbf{1 1}(56.9 \mathrm{mg}$, $0.148 \mathrm{mmol}, 74 \%$ yield) as a colorless oil.

Data for 11: colorless oil; $\mathrm{R}_{f} 0.33\left(9 / 1 n\right.$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.09(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.04$ $(\mathrm{dq}, J=14.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.8,133.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}\right.$ $=36.9 \mathrm{~Hz}), 129.0,128.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.4 \mathrm{~Hz}\right), 124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.0 \mathrm{~Hz}\right), 71.2,61.9,51.6,31.7,31.5$, 29.4; ${ }^{19}$ F-NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.39$; IR (neat) $v=2957,1740,1296,1131 \mathrm{~cm}^{-1} ;$ HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{4}[\mathrm{M}]^{+} 384.0968$, found 384.0973 .

N-Benzyl-3-(2-(2,6-bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)propanamide (12)

To a stirred solution of $\mathbf{1 0}(37.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ and benzylamine $(13.1 \mu \mathrm{~L}, 0.120 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}, 0.10 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{EDCI}(28.7 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv) and HOBt ($20.3 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv). After stirring for 1 h at room temperature, the reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0$ $\mathrm{mL})$. The combined organic layer washed with brine $(10 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane $: \operatorname{EtOAc}=2: 1$) to give $12(56.9 \mathrm{mg}, 0.0828 \mathrm{mmol}, 83 \%$ yield) as a colorless oil.

Data for 12: colorless oil; $\mathrm{R}_{f} 0.31$ (2/1 n-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.85(\mathrm{br}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, 4.20-4.07 (m, 3H), 2.45-2.33 (m, 2H), 2.11-1.78 (m, 4H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3$,
$138.2,133.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.0 \mathrm{~Hz}\right), 129.0,128.65,128.56\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.4 \mathrm{~Hz}\right), 127.7,127.4,124.3(\mathrm{q}$, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.1 \mathrm{~Hz}\right), 71.4,62.0,43.6,32.1,31.9,31.8 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.35$; IR (neat) $v=3299,2925,1650,1296,1130 \mathrm{~cm}^{-1} ;$ HRMS (EI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{20}{ }^{11} \mathrm{BF}_{6} \mathrm{NO}_{3}[\mathrm{M}]^{+}$ 459.1440, found 459.1433 .

2-(2,6-Bis(trifluoromethyl)phenyl)-4-(2-(oxiran-2-yl)ethyl)-1,3,2-dioxaborinane (13)

To a stirred solution of $\mathbf{3 c}(45.0 \mathrm{mg}, 0.130 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL}, 0.10 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added $70 \% m$-CPBA ($126 \mathrm{mg}, 0.520 \mathrm{mmol}, 4.0$ equiv). After stirring for 20 h at $0^{\circ} \mathrm{C}$, the reaction was quenched by adding saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2.0 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic layer was washed successively with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtered and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane : $\operatorname{EtOAc}=4: 1$) to give $13(45.0 \mathrm{mg}, 0.122 \mathrm{mmol}, 94 \%$ yield) as a colorless oil.

Data for 13: colorless oil; $\mathrm{R}_{f} 0.49\left(4 / 1 n\right.$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.09(\mathrm{~m}, 3 \mathrm{H}), 2.91-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.72(\mathrm{~m}, 1 \mathrm{H})$, 2.50-2.45 (m, 1H), 2.08-2.01 (m, 1H), 1.99-1.64 (m, 4H), 1.59-1.51 (m, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 133.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.0 \mathrm{~Hz}\right), 128.9,128.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=271.9 \mathrm{~Hz}\right)$, $72.1,71.5,61.9,61.8,52.2,51.7,47.1,47.0,33.0,32.5,31.8,31.7,28.4,27.6 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}(377 \mathrm{MHz}$, CDCl_{3}) $\delta-59.37,-59.38$; IR (neat) $v=2926,1433,1296,1131 \mathrm{~cm}^{-1} ;$ HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{3}[\mathrm{M}]^{+} 368.1018$, found 368.1017 .

(E)-6-(2-(2,6-Bis(trifluoromethyl)phenyl)-1,3,2-dioxaborinan-4-yl)hex-3-en-2-one (14)

3c

81\%

To a stirred solution of $\mathbf{3 c}(35.2 \mathrm{mg}, 0.100 \mathrm{mmol})$ and methyl vinyl ketone $(16.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}$, 2.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}, 0.10 \mathrm{M})$ at room temperature was added Grubbs 2nd catalyst (4.24 $\mathrm{mg}, 0.00500 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added. After stirring for 6 h , the reaction mixture was
concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (n-hexane $: ~ E t O A c=9: 1$) to give $14(32.1 \mathrm{mg}, 0.0814 \mathrm{mmol}, 81 \%$ yield $)$ as a colorless oil.
Data for 14: colorless oil; $\mathrm{R}_{f} 0.24$ ($9 / 1 n$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dt}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dt}, J=16.0,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21-4.09(\mathrm{~m}, 3 \mathrm{H}), 2.49-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{dq}, J=14.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.89$ $(\mathrm{m}, 1 \mathrm{H}), 1.85-1.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.6,147.3,133.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.0 \mathrm{~Hz}\right)$, $131.6,129.0,128.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.1 \mathrm{~Hz}\right), 71.4,61.8,34.8,31.7,27.9$, 26.9; ${ }^{19} \mathrm{~F}$-NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.37$; IR (neat) $v=3343,2925,1676,1296,1129 \mathrm{~cm}^{-1}$; HRMS (EI) m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{17}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{3}[\mathrm{M}]^{+}$394.1175, found 394.1173.

(E)-2-(2,6-Bis(trifluoromethyl)phenyl)-4-(hexa-3,5-dien-1-yl)-1,3,2-dioxaborinane (15)

$63 \%(E / Z=93: 7)$

15

To a stirred solution of $9(47.8 \mathrm{mg}, 0.100 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL}, 0.10 \mathrm{M})$ at room temperature was added tributylvinyltin ($87.3 \mu \mathrm{~L}, 0.300 \mathrm{mmol}, 3.0$ equiv). After stirring for 10 min , bis(triphenylphosphine)palladium dichloride ($14.0 \mathrm{mg}, 0.0200 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added to the mixture. After stirring for 1 h , the reaction mixture was concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (silica / $\mathrm{K}_{2} \mathrm{CO}_{3}=$ 9:1, n-hexane : $\mathrm{EtOAc}=19: 1)$ to give $15(23.8 \mathrm{mg}, 0.0629 \mathrm{mmol}, 63 \%$ yield, $E / Z=93: 7)$ as a colorless oil.

Data for 15: colorless oil; $\mathrm{R}_{f} 0.29$ (19/1 n-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dt}, J=17.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=15.2$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dt}, J=15.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.21-4.08 (m, 3H), 2.35-2.16 (m, 2H), $2.03(\mathrm{dq}, J=14.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.73$ $(\mathrm{m}, 1 \mathrm{H}), 1.68-1.06(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.1,134.1,134.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.1 \mathrm{~Hz}\right)$, $131.6,128.9,128.6\left(q,{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.3 \mathrm{~Hz}\right), 124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.1 \mathrm{~Hz}\right), 115.1,71.5,61.9,35.9,31.6$, 27.9; ${ }^{19} \mathrm{~F}$-NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.39$; IR (neat) $v=3327,2921,1644,1296,1069 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{3}[\mathrm{M}]^{+}$378.1226, found 378.1233.
6. Experimental procedures for the deprotection of 2,6-bis(trifluoromethyl)phenylboronic ester 3 e and the formation of $\boldsymbol{o}-\mathrm{FXylB}(\mathrm{OH})_{2}$ from potassium trifluoroborate 17

Deprotection of boronic ester 3e by transesterification

6-(Benzyloxy)hexane-1,3-diol (2e)

To a stirred solution of $\mathbf{3 e}(44.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(1.0 \mathrm{~mL}, 0.10 \mathrm{M})$ at room temperature was added 2-amino-2-methyl-1,3-propanediol (16) ($31.5 \mathrm{mg}, 0.300 \mathrm{mmol}, 3.0$ equiv). After stirring for 24 h at $50^{\circ} \mathrm{C}$, the reaction mixture was concentrated under reduced pressure. The resulting mixture was diluted EtOAc (5.0 mL), and washed successively with 1 M aqueous HCl $(3.0 \mathrm{~mL})$ and brine $(3.0 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtered and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (EtOAc) to give $2 \mathbf{e}(20.8 \mathrm{mg}, 0.0927 \mathrm{mmol}, 93 \%$ yield) as a colorless oil.

Table S2. Optimization of deprotection conditions by transesterification using diol 16

		Bn		 2e		
					ratio	isolated yield
entry	16 (equiv)	solvent	temp.	time	3e/2e	2e
1	10	$\mathrm{MeOH}(0.1 \mathrm{M})$	rt	24 h	0:100	90\%
2	3	$\mathrm{MeOH}(0.1 \mathrm{M})$	rt	24 h	25:75	ND
3	3	MeOH (0.1 M)	$50{ }^{\circ} \mathrm{C}$	24 h	0:100	93\%
4	1.2	$\mathrm{MeOH}(0.1 \mathrm{M})$	$50^{\circ} \mathrm{C}$	36 h	12:88	ND

Deprotection and recovering method of $\boldsymbol{o}-\mathrm{FXylB}(\mathrm{OH})_{2}(1 \mathrm{a})$

 6-(Benzyloxy)hexane-1,3-diol (2e) and (2,6-bis(trifluoromethyl)phenyl)trifluoro- λ^{4}-borane, potassium salt (17)

To a stirred solution of $\mathbf{3 e}(22.3 \mathrm{mg}, 0.0500 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(1.0 \mathrm{~mL}, 0.050 \mathrm{M})$ at room temperature was added a aqueous solution of potassium bifluoride (4.5 M in $\mathrm{H}_{2} \mathrm{O}, 33.3 \mu \mathrm{~L}$, 0.150 mmol , 3.0 equiv). After stirring for 2 h , the reaction mixture was concentrated under reduced pressure to remove MeOH . The resulting mixture was filtrated and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Trifluoroborate 17 ($18.3 \mathrm{mg}, 0.0500 \mathrm{mmol}$, quant) was obtained as a white solid after drying. Concentration of the filtrate under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (EtOAc) to give 2e ($10.2 \mathrm{mg}, 0.0460 \mathrm{mmol}, 91 \%$ yield) as a colorless oil.

Data for 17: white solid; $\mathrm{R}_{f} 0.60\left(4 / 1 \mathrm{CHCl}_{3} / \mathrm{MeOH}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.6\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.7 \mathrm{~Hz}\right)$, $129.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=5.6 \mathrm{~Hz}\right), 127.4,126.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.5 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-56.3$ (q, $J=23.8 \mathrm{~Hz}, 6 \mathrm{~F}),-134.3(\mathrm{~m}, 3 \mathrm{~F})$; IR (neat) $v=3367,1293,1120 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z Calcd for $\mathrm{C}_{8} \mathrm{H}_{3}{ }^{11} \mathrm{BF}_{9}[\mathrm{M}-\mathrm{K}]^{+}$281.0184, found 281.0188 .

2,6-Bis(trifluoromethyl)phenylboronic acid (1a)

1a

To a stirred solution of $17(16.0 \mathrm{mg}, 0.0500 \mathrm{mmol})$ in $\mathrm{MeCN}(0.50 \mathrm{~mL}, 0.10 \mathrm{M})$ at room temperature was added trimethylsilylchloride ($18.5 \mu \mathrm{~L}, 0.150 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{H}_{2} \mathrm{O}(2.70 \mu \mathrm{~L}$, $0.150 \mathrm{mmol}, 3.0$ quiv) were added. After stirring for 1 h , the reaction was quenched by adding saturated aqueous $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc ($2 \times 2 \mathrm{~mL}$). The combined organic layer was washed with brine (3.0 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtered and concentration under reduced pressure furnished the crude product, which was purified by silicagel column chromatography (n-hexane $: ~ E t O A c=2: 1$) to give $\mathbf{1 a}(9.50 \mathrm{mg}, 0.0368 \mathrm{mmol}, 74 \%$ yield) as a white solid.

7. Experimental procedures for the synthsis of enetriyne natural product 18

(\boldsymbol{E})-2-(2,6-Bis(trifluoromethyl)phenyl)-4-(undeca-3-en-5,7,9-triyn-1-yl)-1,3,2-dioxaborinane (20)

To a stirred solution of $9(62.1 \mathrm{mg}, 0.130 \mathrm{mmol})$ in THF $(1.3 \mathrm{~mL}, 0.10 \mathrm{M})$ at room temperature was added $19^{2}(147 \mathrm{mg}, \quad 0.390 \mathrm{mmol}, 3.0$ equiv). After stirring for 10 min , bis(triphenylphosphine)palladium dichloride ($18.2 \mathrm{mg}, 0.0260 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added to the mixture. After stirring for 12 h , the reaction mixture was concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (silica $/ \mathrm{K}_{2} \mathrm{CO}_{3}=$ 9:1, n-hexane : $\operatorname{EtOAc}=19: 1)$ to give $20(48.5 \mathrm{mg}, 0.110 \mathrm{mmol}, 85 \%$ yield, $E / Z=93: 7$) as a colorless oil.

Data for 20: colorless oil; $\mathrm{R}_{f} 0.32$ ($9 / 1 n$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dt}, J=15.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.21-4.08 (m, 3H), 2.39-2.22 (m, 2H), 2.04-1.87 (m, 2H), $1.98(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.59(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.1,133.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.0 \mathrm{~Hz}\right), 129.0,128.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.3 \mathrm{~Hz}\right)$, $124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.1 \mathrm{~Hz}\right), 108.9,77.7,74.3,73.5,71.2,66.5,64.9,61.9,59.2,35.2,31.7,28.7$, 4.6; IR (neat) $v=2927,2223,1295,1130 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{17}{ }^{11} \mathrm{BF}_{6} \mathrm{O}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 461.1123$, found 461.1139.

(E)-tetradeca-6-en-8,10,12-triyne-1,3-diol (18)

To a stirred solution of $\mathbf{2 0}(20.3 \mathrm{mg}, 0.0460 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{MeOH}(0.46 \mathrm{~mL}, 0.10 \mathrm{M})$ at room temperature was added 2-amino-2-methyl-1,3-propanediol (16) ($14.6 \mathrm{mg}, 0.140 \mathrm{mmol}, 3.0$ equiv). After stirring for 22 h at $50^{\circ} \mathrm{C}$, the reaction mixture was concentrated under reduced pressure. The resulting mixture was diluted with EtOAc (3.0 mL), washed successively with 1 M aqueous $\mathrm{HCl}(2.0 \mathrm{~mL})$ and brine $(2.0 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtered and concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography (n-hexane : $\mathrm{EtOAc}=1: 4$) to give $18(9.8 \mathrm{mg}, 0.045 \mathrm{mmol}, 98 \%$ yield) as a white
solid.
Data for 18: white solid; $\mathrm{R}_{f} 0.29\left(1 / 4 n\right.$-hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.39(\mathrm{dt}$, $J=15.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.80(\mathrm{~m}, 3 \mathrm{H}), 2.34-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~S}, 3 \mathrm{H})$, $1.71-1.53(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8149.5,108.7,77.8,74.3,73.5,71.2,66.6,64.9$, $61.8,59.2,38.3,36.3,29.4,4.6$; IR (neat) $v=3326,2932,2222,1054 \mathrm{~cm}^{-1} ;$ HRMS (FAB) m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}] 216.1150$, found 216.1149.

8. Estimation of the half-lives of boronic esters 3e, 31-n

General procedure for the formation of boronic esters 31-n of diol 2 e

To a solution of $2 \mathbf{e}\left(0.200 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1.0 \mathrm{~mL}, 0.20 \mathrm{M})$ at room temperature was added boronic acid $\mathbf{1 b}-\mathbf{d}(0.200 \mathrm{mmol}, 1.0$ equiv), respectively. After stirring for 24 h under reflux, the reaction mixture was concentrated under reduced pressure to give the boronic ester 31-n, respectively.

4-(3-(Benzyloxy)propyl)-2-phenyl-1,3,2-dioxaborinane (31)

4-(3-(Benzyloxy)propyl)-2-(2-(trifluoromethyl)phenyl)-1,3,2-dioxaborinane (3m)

Data for $\mathbf{3 m}$: colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 87.67-7.62 (m, 2H), 7.50-7.43 (m, 2H), 7.35-7.27 (m, 5H), 4.52 (s, 2H), 4.22-4.09 (m, 3H), 3.59-3.49 (m, 3H), $2.03(\mathrm{dq}, J=14.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.68(\mathrm{~m}, 5 \mathrm{H})$.

4-(3-(Benzyloxy)propyl)-2-(2,6-dimethylphenyl)-1,3,2-dioxaborinane (3n)

Estimation of half-lives of boronic esters $\mathbf{3 1 - n}$ by ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CD}_{3} \mathrm{OD} / \mathbf{D}_{2} \mathrm{O}(\mathbf{9}: 1)$

A $5-\mathrm{mm}$ NMR tube was charged with the boronic ester (0.050 mmol), $\mathrm{CD}_{3} \mathrm{OD}(540 \mu \mathrm{~L})$ and $\mathrm{D}_{2} \mathrm{O}(60.0 \mu \mathrm{~L})$. The tube was capped with a septum, shaken, and left at room temperature. Conversion of boronic ester to diol $\mathbf{2 e}$ was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Scheme S1. Stabilities of arylboronic esters 3a, $\mathbf{1 - n}$ in aqueous media

9. DFT calculations of boronic esters 30-r

The geometric optimizations of four boronic esters 30-r were performed by the long-range correction $^{5 \mathrm{a}}$ for Becke 1988 exchange ${ }^{6}$ and one-parameter progressive correlation ${ }^{5 b}$ functional (LC-BOP) with the cc-pVTZ basis set on the development version of Gaussian 09 program (Figure S1).

 30

$3 q$

$3 r$

	3o	3p	3q	3r
dihedral angle (deg) O1-B1-C1-C2 bond distance (A)	71.3	0.1	45.9	114.4
B1-C1	1.584	1.557	1.570	1.567
B1-O1	1.350	1.360	1.357	1.360
B1-O2	1.350	1.360	1.352	1.360
B1-F1	2.623	-	2.806	-
B1-F2	2.597	-	-	-
B1-H1	-	-	-	2.965
B1-H2	-	-	-	2.820

Figure S1. Optimized structures of boronic esters 30-r

Incorporating a bulky trifluoromethyl group to both the ortho positions is considered to sterically shield the boron atom of the 1,3,2-dioxaborinane ring from the attacks of water and oxygen molecules and other nucleophiles coming from the perpendicular to the 1,3,2-dioxaborinane ring. In the optimized structure of 2,6-bis(trifluoromethyl)phenyl boronic ester 30, both B-F distances (B1-F1:2.623 $\AA, ~ B 1-F 2: 2.597 \AA$) are shorter than the sum of the van der Waals radii ($3.3 \AA$). We therefore performed the atoms-in-molecules (AIM) analysis ${ }^{7}$ for the optimized structure of 2,6-bis(triflulromethyl)phenylboronic ester $\mathbf{3 o}$ to investigate the possibility of the penta-coordination of boron atom via three-center four-electron (3c-4e) F-B-F bond. ${ }^{8}$ As a result, we found no bond path between the boron atom and the two fluorine atoms.

We also compared the electronic structures of these esters $\mathbf{3 o}-\mathbf{3 r}$ to analyze a significant difference in the stability of the boronic esters (Table S2 and Figure S2). Calculated results showed that the trifluoromethylations at the both ortho positions of benzene ring remarkably increased LUMO energy by 2.544 eV and decreased HOMO energy by 1.008 eV , from those of phenylboronic ester 3p. Consequently, the 2,6-bis(triflulromethyl)phenylboronic ester 30 replaces LUMO with the LUMO +1 , compared to those of other boronic ester $\mathbf{3 p}, \mathbf{3 q}$ and $\mathbf{3 r}$. In terms of LUMO distribution, the each LUMO of $\mathbf{3 p}, \mathbf{3 q}$ and $\mathbf{3 r}$ mainly delocalized on benzene ring and 1,3,2-dioxaborinane ring containing boron atom. In contrast, the LUMO of $\mathbf{3 o}$ is well distributed on benzene ring, but not localized on boron atom. These differences may cause the high stability of boronic ester $\mathbf{3 0}$ against nucleophiles such as water and alcohols.

Table S3. Molecular orbital energy levels (eV) of 3o-3r

	3o	3p	3q	3r
LU M 0 + 5	5.439	4.110	4.126	4.043
LU M 0 + 4	5.087	3.862	3.754	3.771
LU M 0 + 3	4.809	3.825	3.616	3.481
LU M 0 + 2	4.727	3.038	3.000	2.882
LU M 0 + 1	4.370	2.590	1.993	2.822
LU M 0	4.218	1.826	1.521	2.228
H O O	-10.530	-9.522	-10.010	-9.035
H O M 0-1	-10.700	-9.561	-10.169	-9.195
H O M 0 -2	-11.518	-11.339	-11.410	-11.344
H O 0 -3	-11.776	-11.571	-11.743	-11.429
H O M 0-4	-12.282	-11.792	-12.159	-11.611
H O M 0-5	-12.483	-12.307	-12.381	-12.029

30

3q

$3 r$

Figure S2. Comparison of molecular orbital surfaces and their energy levels (eV) of $\mathbf{3 o}-\mathbf{3 r}$

Cartesian coordinates of the optimized structures of boronic esters 3o-r

Boronic ester 30

C	0.2563970	-0.5319190	0.0019310
C	-0.5411680	-1.6647470	-0.0532260
C	-0.0033980	-2.9328920	-0.0678880
C	1.3587090	-3.1031030	-0.0277490
C	2.1750630	-2.0005130	0.0270150
C	1.6269390	-0.7366430	0.0415800
B	-0.3600000	0.9266680	0.0232200
C	-2.0372440	-1.5418980	-0.0670970
C	2.5703660	0.4307740	0.0708930
O	-0.9931190	1.3349470	1.1431650
O	-0.2232070	1.6941960	-1.0791190
F	-2.5427840	-1.4445760	1.1633970
F	-2.6192940	-2.5983860	-0.6397160
F	-2.4478260	-0.4631260	-0.7451790
F	2.0713160	1.4650580	0.7594800
F	2.8519750	0.8773240	-1.1537840
F	3.7350380	0.1159500	0.6431620
C	-1.5737130	2.6248790	1.2054260
C	-0.7346830	3.0141440	-1.0824630
C	-1.9324430	3.1231280	-0.1724570
H	-0.6570510	-3.7910470	-0.1166590
H	1.7841100	-4.0960650	-0.0390030
H	3.2477080	-2.1192810	0.0649450
H	-0.8617780	3.2973180	1.6874740
H	-2.4521490	2.5534780	1.8430100
H	-0.9925530	3.2584180	-2.1104280
H	0.0592560	3.6925840	-0.7641450
H	-2.7491950	2.5243100	-0.5759050
H	-2.2725160	4.1563300	-0.1197790

Boronic ester 3p

C	0.9019610	0.0000200	-0.0296440
C	1.6124560	1.1891860	-0.0059050
C	2.9884280	1.1930140	0.0410500
C	3.6777930	-0.0000070	0.0646540
C	2.9884060	-1.1930150	0.0411140
C	1.6124310	-1.1891630	-0.0057950
B	-0.6537980	-0.0000040	-0.0838750
H	1.0705660	2.1252650	-0.0249640
H	1.0705170	-2.1252290	-0.0247000
O	-1.3151320	1.1879880	-0.1059930
O	-1.3150850	-1.1880410	-0.1058560
C	-2.7257820	1.2316260	-0.1514050
C	-2.7257290	-1.2315530	-0.1517270
C	-3.3238780	-0.0000600	0.4799890
H	3.5279080	2.1303360	0.0591270
H	4.7590150	-0.0000120	0.1013590
H	3.5278650	-2.1303470	0.0592610
H	-3.0398540	1.3192900	-1.1939180
H	-3.0419570	2.1351410	0.3664170
H	-3.0421200	-2.1352460	0.3656450
H	-3.0395210	-1.3187640	-1.1943660
H	-3.1121800	-0.0002140	1.5498960
H	-4.4060150	-0.0000680	0.3564090

Boronic ester 3q

C	0.4980280	0.8668970	0.0765080
C	1.4980880	-0.0920760	-0.0176630
C	2.8289850	0.2603780	0.0069940
C	3.1926690	1.5823110	0.1298600
C	2.2202530	2.5501660	0.2078060
C	0.8912360	2.1901890	0.1719570
B	-1.0445970	0.5755410	0.1090340
C	1.1555910	-1.5458430	-0.1668180
H	0.1317550	2.9589360	0.2160180
O	-1.5359500	-0.3639600	0.9475010
O	-1.8466820	1.3493550	-0.6650180
F	0.8485900	-2.1219460	0.9959840
F	2.1717500	-2.2479350	-0.6811460
F	0.1142750	-1.7329190	-0.9883600
C	-2.9168200	-0.6649240	0.9800370
C	-3.2482700	1.1570700	-0.6455740
C	-3.5852790	-0.2745140	-0.3140080
H	3.5872120	-0.5029750	-0.0815100
H	4.2389650	1.8531030	0.1517180
H	2.4956670	3.5926320	0.2906730
H	-3.3655120	-0.1341540	1.8219980
H	-3.0118180	-1.7320490	1.1700660
H	-3.6273680	1.4377750	-1.6258830
H	-3.6850080	1.8368940	0.0892480
H	-3.2342610	-0.9236140	-1.1168920
H	-4.6640130	-0.4001330	-0.2333510

Boronic ester 3r

H	3.8364470	-0.3083310	-0.0020180
C	-0.5825010	2.7218090	-0.1976470
H	1.9287890	3.4621390	-0.3584380
C	3.0124820	1.6385910	
C	2.9289790	0.2777130	-0.0
C	1.6982380	-0.3458180	. 0
C	0.5288990	0.4085240	-0.0398270
C	0.6155940	1.7958950	-0.
C	1.8609310	2.3872860	-0.
H	3.9780610	2.1216010	-0.26
C	1.6525040	-1.8513170	0.1
B	-0.8223830	-0.3918690	0
O	-1.2179570	-1.0821760	-1.0892080
O	-1.5399470	-0.4395410	1.1707730
C	-2.3722800	-1.8958110	-1.0689890
C	-2.7156550	-1.2179420	1.2739000
C	-3.3794490	-1.3865460	-0.0691620
H	-2.7833940	-1.9037230	-2.
H	-2.0741270	-2.9182850	-0.8249400
H	-3.3748580	-0.7199280	1.9
H	-2.4505860	-2.1899930	1.
H	-4.2156130	-2.0799320	0.0100900
H	-3.7782470	-0.4294310	-0.4056660
C	2.5031630	-2.3431830	0
C	2.0359900	-2.5466580	-1.1090820
H	0.6259380	-2.1388170	0.4155310
H	1.9678350	-3.6293000	-1.0039850
H	3.0600860	-2.3033520	-1.390
H	1.3822280	-2.2383940	-1.
H	2.3689720	-3.4151220	
H	2.2330150	-1.8418180	
H	3.5632240	-2.1696110	1.1714490
C	-1.6929110	2.3003920	-1.1444590
C	-1.1196050	2.9676170	1.20542
H	-0.2082270	3.6766460	-0.5687810
H	-1.9382150	3.6870730	1.182
H	-0.3415000	3.3620960	. 8
H	-1.4869190	2.0442080	1.64
H	-2.4043470	3.1162560	-1.2666040
H	-1.3054450	2.0359900	-2.12619
H	-2.2542470	1.4498010	-0.7

10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

(

$\begin{array}{lc}\text { Comment } & \text { su21023_20170831_01 } \\ \text { Date } & \text { 2017/Aug/31 } \\ \text { ObsNuc } & 13 \mathrm{C} \\ \text { ExMode } & \text { CARBON_001 } \\ \text { ObsFreq } & 100.66 \mathrm{MHz} \\ \text { Scan } & 512.3631 \\ \text { AcqTime } & 1.361 \mathrm{~s} \\ \text { Acc. Interval } & 3.3631 \mathrm{~s} \\ \text { Spinning } & 20.0 \mathrm{~Hz} \\ \text { Temperature } & 25.0{ }^{\circ} \mathrm{C} \\ \text { Solvent } & \text { cdcl3 }\end{array}$

$\begin{array}{lc}\text { Comment } & \text { HRS02-10_C_20160831_01 } \\ \text { Date } & 2016 / \text { Aug } / 31 \\ \text { ObsNuc } & 13 \mathrm{C} \\ \text { ExMode } & \text { CARB0N_001 } \\ \text { ObsFreq } & 100.45 \mathrm{MHz} \\ \text { Scan } & 512 \\ \text { AcqTime } & 1.3631 \mathrm{~s} \\ \text { Acc. Interval } & 3.3631 \mathrm{~s} \\ \text { Spinning } & 20.0 \mathrm{~Hz} \\ \text { Temperature } & 25.0^{\circ} \mathrm{C} \\ \text { Solvent } & \text { cdcl }\end{array}$

$\begin{array}{lc}\text { Comment } & \text { sul4007-13C_20160911_01 } \\ \text { Date } & 2016 / \text { Sep } / 11 \\ \text { ObsNuc } & 13 \mathrm{C} \\ \text { ExMode } & \text { CARBON_001 } \\ \text { ObsFreq } & 100.66 \mathrm{MHz} \\ \text { Scan } & 512.3631 \mathrm{~s} \\ \text { AcqTime } & 1.33631 \mathrm{~s} \\ \text { Acc. Interval } & 3.3631 \mathrm{~s} \\ \text { Spinning } & 20.0 \mathrm{~Hz} \\ \text { Temperature } & 30.0{ }^{\circ} \mathrm{C} \\ \text { Solvent } & \text { cdcl } 3\end{array}$

(

[^0]

$\begin{array}{lc}\text { Comment } & \text { HRS02-09_C_20160905_01 } \\ \text { Date } & 2016 / \text { Sep/05 } \\ \text { ObSNuc } & 13 \mathrm{C} \\ \text { ExMode } & \text { CARBON_001 } \\ \text { ObsFreq } & 100.45 \mathrm{MHz} \\ \text { Scan } & 512.31 \\ \text { AcqTime } & 1.3631 \mathrm{~s} \\ \text { Acc. Interval } & 3.3631 \mathrm{~s} \\ \text { Spinning } & 20.0 \mathrm{~Hz} \\ \text { Temperature } & 25.0{ }^{\circ} \mathrm{C} \\ \text { Solvent } & \text { cdcl3 }\end{array}$

$\begin{array}{lc}\text { Comment } & \text { su-TES-13C_20160816_02 } \\ \text { Date } & 2016 / \text { Aug } / 16 \\ \text { ObsNuc } & 13 \mathrm{C} \\ \text { ExMode } & \text { CARBON_001 } \\ \text { ObsFreq } & 100.45 \mathrm{MHz} \\ \text { Scan } & 512.3631 \\ \text { AcqTime } & 1.361 \mathrm{~s} \\ \text { Acc. Interval } & 3.3631 \mathrm{~s} \\ \text { Spinning } & 20.0 \mathrm{~Hz} \\ \text { Temperature } & 25.0{ }^{\circ} \mathrm{C} \\ \text { Solvent } & \text { cdcl3 }\end{array}$

$\begin{array}{lc}\text { Comment } & \text { hrs01-01pure_20160407_01 } \\ \text { Date } & 2016 / \mathrm{Apr} / 07 \\ \text { ObsNuc } & 1 \mathrm{H} \\ \text { ExMode } & \text { PROTON_001 } \\ \text { ObsFreq } & 399.45 \mathrm{MHz} \\ \text { Scan } & 8 \\ \text { AcqTime } & 2.569 \mathrm{~s} \\ \text { Acc. Interval } & 5.569 \mathrm{~s} \\ \text { Spinning } & 16.0 \mathrm{~Hz} \\ \text { Temperature } & 25.0{ }^{\circ} \mathrm{C} \\ \text { Solvent } & \text { cdcl }{ }^{2}\end{array}$

[^1]

References

(1) (a) Wilen, S. H.; Shen, D.; Licata, J. M.; Baldwin, E.; Russell, C. S. Heterocycles 1984, 22, 1747-1757. (b) Manoharan, M.; Jayaraman, M.; Rajeev, K. G.; Eltepu, L.; Ansell, S.; Chen, J. U.S. Patent WO 2010054401, May 14, 2010.
(2) (a) Mukai, C.; Miyakoshi, N.; Hanaoka, M. J. Org. Chem. 2001, 66, 5875-5880. (b) Kumar, C. R.; Tsai, C.-H.; Chao, Y.-S.; Lee, J.-C. Chem. Eur. J. 2011, 17, 8696-8703.
(3) Cornet, S. M.; Dillon, K. B.; Entwistle, C. D.; Fox, M. A.; Goeta, A. E.; Goodwin, H. P.; Marder, T. B.; Tompson, A. T. Dalton Trans. 2003, 4395-4405.
(4) Schlosser, M.; Katsoulos, G.; Takagishi, S. Synlett 1990, 747-748.
(5) (a) Tsuneda, T.; Hirao, K. WIREs Comput Mol Sci 2014, 4, 375-390. (b) Tsuneda, T.; Suzumura, T.; Hirao, K. J. Chem. Phys. 1999, 110, 10664-10678.
(6) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
(7) (a) Bader, R. F. W. Chem. Rev. 1991, 91, 893-928. (b) Dunitz, J. D.; Gavezzotti, A. Angew. Chem., Int. Ed. 2005, 44, 1766-1787.
(8) (a) Lee, D. Y.; Martin, J. C. J. Am. Chem. Soc. 1984, 106, 5745-5746. (b) Yamashita, M.; Yamamoto, Y.; Akiba, K.; Nagase, S. Angew. Chem., Int. Ed. 2000, 39, 4055-4058. (c) Yamashita, M.; Yamamoto, Y.; Akiba, K.; Hashizume, D.; Iwasaki, F.; Takagi, N.; Nagase, S. J. Am. Chem. Soc. 2005, 127, 4354-4371. (d) Nakatsuji, J.; Moriyama, Y.; Matsukawa, S.; Yamamoto, Y.; Akiba, K. Main Group Chem. 2006, 5, 277-285. (e) Yano, T.; Yamaguchi, T.; Yamamoto, Y. Chem. Lett. 2009, 38, 794-795. (f) Nakatsuji, J.; Yamamoto, Y. Bull. Chem. Soc. Jpn. 2010, 83, 767-776. (g) Hirano, Y.; Kojima, S.; Yamamoto, Y. J. Org. Chem. 2011, 76, 2123-2131. (h) Dou, C.; Saito, S.; Yamaguchi, S. J. Am. Chem. Soc. 2013, 135, 9346-9349.

[^0]: $\lll \ll$

[^1]:

