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S.1 Electrostatics of Channels

For channels having a slit geometry consisting of two parallel walls, the electrostatics exhibit

a few interesting features. For channels of finite extent with wall edges immersed in a

reservior, the wall surface charges generate the strongest electric fields near the edges in

the reservior. Through cancellations in the Coulombic interactions the wall charges do not

generate significant net electric forces on the ions toward the middle region of the channel

away from reservior edges. As a result, in the idealized limit of two infinite walls having

equal and uniform surface charge, the electric fields generated by the wall-charges exactly

cancel throughout the channel interior.

This can be seen by considering a single wall with charge σ∗. This contributes to the

electric potential for the ion wall-interactions as

(S1)

φcoul-w (z) =

∫
q1σ(r′)

ε|zez − r′|
dxdy,

where r′ = xex +yey. The ei denotes the standard basis vector pointing in the ith coordinate 

direction. For a constant uniform surface charge σ∗ this can be integrated to obtain the 

equivalent potential

φcoul-w(z) = −(2πq1σ
∗/ε)z. (S2)

For two equally charged parallel walls of infinite extent the net electric field has a Coulombic

potential that is independent of z. We can see this from

φ(z) = φcoul-w (z) + φcoul-w (L− z) = −(2πq1σ
∗/ε) (z + L− z) = −(2πq1σ

∗/ε)L. (S3)

As a consequence, we find E = −dφ/dz = 0 so the net electric field that acts on ions confined

between the walls is in fact zero.
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It is worth mentioning that such cancellations would not hold in the case of two walls

that have a finite extent or non-uniform surface charge. For equal uniform charges this can

be seen by integrating Equation (S1) in polar coordinates for two disk-like walls of radius R.

Our results show that for uniformly charged walls as their extent becomes large the electric

fields contribute negligably toward the middle region of the channel away from the reserviors.

These results suggest a few interesting mechanisms by which ion concentrations are de-

termined in the middle region of the channel and overall electric neutrality is acheived. The

results indicate that the electric fields generated by the walls near the reservior edges of

the channel are primarily responsible for driving ions into the channel or expelling them to

acheive electric neutrality. Also, in the middle region of an infinite channel, the lack of net

electric force acting on the ions from the walls gives an interesting perspective on the electric

double-layers. Rather than conceiving of ions being pulled toward the charged walls, our

results indicate once ionic concentrations are setup from the edge effects, the double-layer

structures should be viewed as arising from how the walls break symmetry. In particualr,

since like-charged ions repel one another within the confined region and there are no bal-

ancing forces from ion charges on the other side of the walls, the like-charged ion repulsions

can be viewed as pushing ions from each other from the channel interior towards the walls.

This occurs in a manner very similar to mechanisms underlying generation of osmotic pres-

sures.S1,S2 It is in this manner that the double layers can arise in the channel middle region

without the need for local net electric forces generated by the two walls. From electric neu-

trality the ion concentrations are determined and such double-layers can be related to the

Poisson-Boltzmann theory (PB) for single and two charged walls.

Our simulations capture such phenomena in the middle region of charged channels. We

use periodic boundary conditions to capture behaviors similar to the limit of walls of infinite

extent. Since in this limit the walls exert no net electric force on the ions, we handle implicitly

the contributions of the wall charge. Our approach is similar to the Ewald summation method

of Ballenegger et al.S3 In this approach the energy of the charged slab system is regularized
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by placing two charged walls above and below the simulation system, with charge densities

that neutralize the system. Thus, we are simulating a system that is overall electrically

neutral with two walls of an appropriately chosen equal charge that serve to balance the

ions.

For mean-field Poisson-Boltzmann theory (PB), charged walls are often handled by em-

ploying Neumann boundary conditions to account for surface charge explicitly.S4–S7 A crucial

consideration linking this to our molecular perspective is the condition of electric neutrality.

For channels this implies the implicit determination of a surface charge for the walls. For our

model, electric neutrality allows us to distinguish different choices for the wall charge which

result in an excess or deficit of ionic species in the interior region driven by the edge electric

fields. In this manner our molecular model gives overall results that can be directly related

to continuum models with explicit Neumann boundary conditions for the wall charge.S5,S7

We discuss how the ionic species concentrations in the channel interior are related to the

implicit choice of the wall charge in Section 2.1.1 in the main text.

S.2 Classical Density Functional Theory (cDFT) Formu-

lation

We provide here some additional discussion and details concerning our formulation of the

cDFT. As we discussed in Section 2.2, the Helmholtz free energy consists of the terms:

F [ρα(r)] = Fid [ρα(r)] + Fhs [ρα(r)] (S4)

+ Fcoul [ρα(r)] + Fcorr [ρα(r)] .

The terms represent respectively the Helmholtz free energies for the ideal gas (id), hard

spheres (hs), mean-field Coulombic interactions (coul), and second order charge correlations

(corr). The term Fid is the free energy of an ideal gas which incorporates the translational
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free energy as

Fid[ρα(r)] = kBT
∑
α

∫
drρα(r)

[
ln(Λ3

αρα(r))− 1
]
. (S5)

Here the thermal de Broglie wavelengths Λα are constants throughout and do not influence

the free energy of the system, so they will be neglected.

For the hard sphere contribution Fhs we use the fundamental measure theory ofS8,S9 given

by

Fhs [ρα(r)] = kBT

∫
drΦ[nγ(r)]. (S6)

We mention this is based on the earlier workS10 and related to the work.S11 The energy

density for the hard sphere system Φ is a functional of the Rosenfeld nonlocal (weighted)

densities nγ given by

Φ = −n0 ln (1− n3)
n1n2 − nV 1 · nV 2

1− n3

(S7)

+
(
n3
2 − 3n2nV 2 · nV 2

)
·

· n3 + (1− n3)
2 ln(1− n3)

36πn2
3(1− n3)2

.

The nonlocal densities are

nγ(r) =
∑
α

∫
dr′ ρα(r)ω(γ)

α (r− r′), (S8)

where ω(γ)
α are the weight functions. The weight functions are based on geometric properties
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of the interactions between hard spheres and are given by the specific forms

ω(2)
α (r) = δ(Rα − |r|), ω(3)

α (r) = θ(Rα − |r|),

ω(0)
α (r) =

ω
(2)
α (r)

4πR2
α

, ω(1)
α (r) =

ω
(2)
α (r)

4πRα

,

ω(V 2)
α (r) =

r

r
δ(Rα − |r|), ω(V 1)

α (r) =
ω
(V 2)
α (r)

4πRα

.

(S9)

The δ(r) denotes the Dirac delta function and the θ(r) denotes the Heaviside step func-

tion. The functional consisting of Equations (S6)–(S9) is designed to match the Mansoori-

Carnahan-Starling-Leland (MCSL) equation of state for multi-component hard-sphere flu-

ids.S12

The contribution to the free energy Fcoul accounts for the mean-field part of the electro-

static interactions as

Fcoul [ρα(r)] =
1

2

∑
αβ

∫
dr

∫
dr′ρα(r)ρβ(r′)

qαqβ
4πε0ε|r− r′|

=
1

2

∑
α

∫
drqαρα(r)φ(r).

Here qα is the charge of species α, ε0 is the permittivity of free space, ε is the dielectric

constant, and φ(r) is the electrostatic potential.

The contribution to the free energy Fcorr accounts for the charge correlations of the

electrostatic interactions. We use for the charge correlation the approach inS13 with

Fcorr [ρα(r)] = −1

2
kBT

∑
αβ

∫
dr

∫
dr′ρα(r)ρβ(r′)∆cαβ(|r− r′|).
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The correlation operator is

∆cαβ(|r− r′|)cαβ(r)
qαqβ

4πε0εkBT |r− r′|
cHSαβ (r). (S10)

where cαβ(r) is the direct correlation function for the bulk charged system.S13 The hard

sphere and Coulombic terms are subtracted from the full direct correlation function cαβ(r)

in equation S10 to avoid double counting relative to the contributions already in the Fhs

and Fcoul terms. The form of cαβ(r) is taken from the known analytic solution of the mean-

spherical-approximation (MSA) for a mixture of charged hard spheres. Detailed expressions

can be found in the reference.S13

The grand free energy for the density field of Equation (12) is minimized, see Eq. (13).

This leads to a set of residual Euler-Lagrange equations given by

R1 = ln ρα(r) + Vα(r)− µα +

∫ ∑
γ

∂Φ

∂nγ
(r′)ω(γ)

α (r− r′)dr′ (S11)

+
∑
β

∫
dr′ρβ(r′)uαβ(r− r′)−

∑
β

∫
dr′ρβ(r′)∆cαβ(r− r′) + Zαφ(r)

R2 = nγ(r)−
∑
α

∫
dr′ ρα(r)ω(γ)

α (r− r′) (S12)

R3 = ∇2φ(r)− 4π`B
d

∑
α

qαρα(r). (S13)

In these expressions we have adopted the convention that all quantities are in reduced units,

so energies are in units of kBT , lengths in units of d, and valence in terms of Zα for species α.

The numerical methods used and other computational details can be found in discussion of

the Tramonto package in.S14–S17 Additional information concerning classical Density Func-

tional Theory (cDFT) in general can be found inS13,S18 and our specific approach to cDFT

in.S14–S17
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S.3 Monovalent Ion Correlations

We performed additional BD simulations for the nanochannel system with a monovalent

1:1 electrolyte with the conditions that σ = −6 and Cm = 2, 8, 10 and Cm = 4, 16, 20.

This allows us to make comparisons with the multivalent cases when changing either the

total charge of the system or while keeping charge fixed and changing only the number of

charge carriers for the counterions. We report the free energy for the nanoparticle position

for constant number density in Figure S1. We report the ion-ion correlations and radial

distribution function g(r) for ions in the bulk and near the wall in Figure S2 and S3. We

discuss the g(r) analysis to distinguish these regions in Section S.4.

We find for all of the monovalent cases that there is no significant free energy minimum

that forms for a preferred location for the nanoparticle within the channel, see Figure S1.

This is in contrast to the free energy minima in comparable regimes seen in Figure 9. It

is interesting to note that the case with Cm = 10 shows some free energy reduction as the

nanoparticle approaches the wall but it is insignificant relative to kBT . From observations

of the simulation trajectory one can see again significant ion condensation on both the walls

and the nanoparticle surface. A mechanism similar to that discussed in Section 4 may be at

play but it appears the free energy gain is much reduced by the strength of the individual

ion charges and entropic penalty associated with monovalent ions.
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Figure S1: Free Energy of the Nanoparticle Position. Monovalent case with values σ = −6,
and Cm = 2, 4, 8, 10, 16, 20.

We further explore the ion-ion correlations in the monovalent cases. We find that there

are correlations between the individual counterions and coions as one may expect. However,

in the bulk there is little to no coordination in the counterion-counterion or coion-coion

interactions, see Figure S2. Near the walls, while we find there is little to no coordination

in the counterion-counterion interactions there is some significant coordination in the coion-

coion interactions, see Figure S3. From examination of the simulation trajectory of the

system this appears to arise from the transient insertion of coions into the counterion-rich

condensed layer near the walls. In contrast to the multivalent case we find for the monovalent

electrolyte there are not significant ion clusters or other discrete ion structures that form in

the bulk electrolyte.

Finally, cDFT calculations for monovalent electrolyte with σ = −3 and Cm = 2, 4 also

show a monotonically increasing free energy as the nanoparticle nears the channel wall, in

agreement with the simulations.
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Figure S2: Ion Correlations in the Bulk. The RDF g(r) for ion-ion correlations in proximity
to the wall for the monovalent case with σ = −6, and Cm = 2, 4, 8, 10, 16, 20.

Figure S3: Ion Correlations near the Wall. The RDF g(r) for ion-ion correlations in proximity
to the wall for the monovalent case with σ = −6, and Cm = 2, 4, 8, 10, 16, 20.

S.4 Ion-Ion Correlation Analysis

We perform analysis of the radial distribution of the ions taking into account the proxmity

of the ions to wall vs the bulk regions and by choosing carefully a normalization taking into

account accessible regions of ions. We split the channel into two sampling regions. The first

corresponds to the wall case when the base ion is within the distance d < 1nm from the

channel wall. The second is the bulk case when the base ion is a distance d > 1nm from

the channel wall. In the confined channel geometry there are limited regions where ions are

permitted given either the excluded volume of the wall or intrusion into the bulk or wall

sampling region. We handle this by a careful normalization by accessible volume to obtain
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a radial distribution function g(r). We give details below with a schematic of our approach

in Figure S4.

For a bulk system the radial distribution function can be sampled for a base ion by

counting the number of ions within a spherical shell at radius rk and thickness δr to obtain

the normalized distribution function ḡ(rk) = Hk/VkC0. The Vk = 4π
3

(R3
k − r3k) is the volume

of the spherical shell of thickness δr, Rk = rk + δr, Hk is the histogram corresponding to

the number of ions within the kth spherical shell, and C0 is a normalizing constant typically

chosen to correspond to the bulk concentration.

Figure S4: Ion Radial Distribution Analysis. To distinguish between the behaviors of the
ions in the bulk vs near the channel wall in the condensed layer we perform regional sampling
of a radial distribution function. To avoid issues with ions excluded from the wall domain or
within other sampling region we perform our radial distribution analysis g(r) with probability
conditioning on being within permissible regions. We normalize the distribution at a given
radius by the accessible volume V (1) of the ions which correspond to spherical caps.

To obtain a more spatially refined description of the ions taking into account excluded

regions we define the radial distribution function as g(rk) = H̃k/ṼkC̃0 where H̃k for a given

base ion is the histogram count for all permissible ions in the sampling region within the

spherical shell of radius rk and thickness δr and C̃0 is a normalization based on the total

concentration of ions. To obtain a radial density we use the volume Ṽk corresponding only

to the part of the spherical shell that is within the permissible sampling region. This can be

computed using the geometry of spherical caps to obtain Ṽk = V (1) = Vk−V (2)−V (3) where

V (2) = π
3

(A2
k (3Rk − Ak)− a2k (3rk − ak)) and V (3) = π

3
(B2

k (3Rk −Bk)− b2k (3rk − bk)) are

the volumes associated with the shell of a spherical cap of thickness δr.S19 We denote by

S11



Ak = ak + δr, Bk = bk + δr, Rk = r + δr, see Figure S4.

Our radial distribution function can be thought of as the conditional probability func-

tion for a pair of ions occupying the sample sampling region. Alternative methods have

been considered in the literature such as sorting ions into z-slabs and sampling only in the

xy-directions.S20,S21 Both approaches provide very similar information and allow for dis-

tinguishing between the behaviors of ions in the bulk region and behaviors of ions in the

condensed layer near to the walls.

The approach we have introduced here allows for a unified observable that can transition

from calculations involving sampling regions that are relatively narrow similar to z-slabs to

intermediate and larger regions that yield results approaching the bulk radial distribution.

By use of this radial distribution function, we are able to obtain a refined understanding

of how the ion correlations change when in regions in the bulk of the nanochannel versus

when an ion occupies the condensed ion layer near to the wall which exhibits a quasi-two

dimensional behavior.
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