Supporting Information for Publication

Effective Design of a PVSA Process to Recover Dilute Helium from a Natural Gas Source in a Methane-Rich Mixture with Nitrogen

Parisa Eghbal Jahromi, Shohreh Fatemi^{*1}, Ali Vatani

School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran

¹ shfatemi@ut.ac.ir

S1: The parameters in the DPL model of equations 4~6 are as summarized in **Table S1-a** and the parameters of Toth model are as in **Table S1-b**.

a- DPL Model Parameter	N_2	CH_4	
$B_{I,i}(K)$	3770.8	4826.2	
$B_{2,i}(K)$	1254.9	599.5	
$B_{2,i}(K) \\ b_{1,i}^{0}(KPa^{-1}) \\ b_{2,i}^{0}(KPa^{-1})$	4.03e-09	2.60e-10	
$b_{2,i}^{0}(KPa^{-1})$	1.29e-05	1.35e-4	
$q^{s}_{l,i}$ (mol/kg)	1.30	1.83	
$q^{s}_{2,i}$ (mol/kg)	2.09	2.54	
b- Toth Model Parameter			
ΔH_i (Kj/mol)	17.38	19.82	
$b_{i}^{0}(KPa^{-1})$	9.29e-7	5.82e-7	
q_{i}^{s} (mol/kg)	3.26	4.12	
t_i	1.035	1.31	

Table S1-Model parameters obtained from fitting the experimental equilibrium adsorption data for CH₄ and N₂ on zeolite 13X. S1-a- DPL Model, and S1-b-Toth Model

S2- Initial and boundary conditions for solving the PSA mathematical model at each process step are as below:

Table S2- Initial and boundary conditions used for solving the governing model equations for PSA cyclic model

Initial Conditions										
@t=0										
$y_i = y_{feed} \& q_i = 0$			$P=P_{Feed}$ $T_g=T_p=1$							
Boundary Conditions										
Feed	EqD	BD	Vac.	EqU	FP	PP				
@z=0:	<i>az=0</i> :	@z=0:	(az=0:	@z=0:	@z=0:	@z=0:				
$u_g C_g$	u=0	P=from	P=from	u=0	$u_g C_g$	$u_g C_g$				
$= u_{feed} C_{feed}$	<i>@z=L:</i>	CV	CV	@z=L:	$= u_{feed} C_{feed}$	$= u_{product}C_{product}$				
$T_g = T_{feed}$	P=from	Equation	Equation	$P=from \ CV$	$T_g = T_{feed}$	$T_g = T_{feed}$				
$P = P_{feed}$	CV	(14)	(14)	Equation	P = from CV	P = from CV				
• • Jeed	Equation	@z=L:	<i>az=L:</i>	(14)	Equation (14)	Equation (14)				
	(14)	u=0	u=0		Equation (11)	Equation (17)				

S3-Derivation of Equation for Estimation of valve Coefficient (Cv):

The derivation of the expression used to estimate the linear valve constant Cv form the bed conditions and stage time starts with ideal gas equation:

$$P_B V_B = n R T_B$$

S3-1

where:

 P_B = Pressure of the bed V_B = Effective volume of the bed n= Number of moles of material in the bed R= Gas constant T_B = Bed temperature The rate of change of pressure is related to the rate of change of material holdup (assuming constant temperature and volume):

$$\frac{\partial P}{\partial n} = \frac{RT_B}{V_B}$$
S3-2

The flowrate through a valve can be expressed as a linear function of the pressure drop across the valve:

$$F = C_V \Delta P = C_V \left(P_B - P_{Downstream} \right)$$
S3-3

Where:

F= Flowrate through the valve

 C_v = Linear valve constant

 $P_{Downstream}$ = Pressure downstream of the valve.

This expression can be re-expressed as the molar flux:

$$\frac{\partial n}{\partial t} = C_V \left(P_B - P_{Downstream} \right)$$
S3-4

Assuming a constant downstream pressure from the valve, the rate of change of pressure in the bed can be found from the following expression:

$$\frac{\partial P_B}{\partial t} = \frac{\partial P_B}{\partial n} \times \frac{\partial n}{\partial t} = \frac{RT_B}{V_B} C_V (P_B - P_{Downstream})$$
S3-5

This expression can then be integrated between the bed's start and end pressure for a given stage length and constant downstream pressure:

$$\frac{RT_BC_V}{V_B}d_t = \int_{P_{Bstart}}^{P_{Bend}} \frac{1}{P_B - P_{Downstream}} dP_B$$
S3-6

Giving:

$$\frac{RT_BC_V}{V_B}stag_Time = \ln(P_B - P_{downstream})] \frac{P_{Bend}}{P_{Bstart}} = \ln(\frac{P_{Bstar} - P_{downstream}}{P_{Bend} - P_{downstream}})$$
S3-7

By rearranging the above expression, the estimate of the constant valve C_v is given by:

$$C_V = \frac{V_B}{RT_B stage_time} = \ln(\frac{P_{Bstart} - P_{downstream}}{P_{Bend} - P_{downstream}})$$
S3-8