Supporting Information for Publication

Effective Design of a PVSA Process to Recover Dilute Helium from a Natural Gas Source in a Methane-Rich Mixture with Nitrogen
Parisa Eghbal Jahromi, Shohreh Fatemi* ${ }^{\mathbf{1}}$, Ali Vatani
School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran

[^0]S1: The parameters in the DPL model of equations $4 \sim 6$ are as summarized in Table S1-a and the parameters of Toth model are as in Table S1-b.

Table S1-Model parameters obtained from fitting the experimental equilibrium adsorption data for CH_{4} and N_{2} on zeolite 13X. S1-a- DPL Model, and S1-b-Toth Model

a- DPL Model Parameter	N_{2}	CH_{4}
$B_{l, i}(K)$	3770.8	4826.2
$B_{2, i}(\mathrm{~K})$	1254.9	599.5
$b^{0}{ }_{l, i,}\left(\mathrm{KPa}^{-1}\right)$	$4.03 \mathrm{e}-09$	$2.60 \mathrm{e}-10$
$b^{0}{ }_{2, i}\left(\mathrm{KPa}^{-1}\right)$	$1.29 \mathrm{e}-05$	$1.35 \mathrm{e}-4$
$q_{l, i}^{\text {s, }}$ ($\mathrm{mol} / \mathrm{kg}$)	1.30	1.83
$q_{2, i,}^{s}(\mathrm{~mol} / \mathrm{kg})$	2.09	2.54
b- Toth Model Parameter		
$\Delta H_{i}(\mathrm{Kj} / \mathrm{mol})$	17.38	19.82
$b^{0}{ }_{i}\left(K P a^{-1}\right)$	$9.29 \mathrm{e}-7$	$5.82 \mathrm{e}-7$
q_{i}^{s} ($\mathrm{mol} / \mathrm{kg}$)	3.26	4.12
t_{i}	1.035	1.31

S2- Initial and boundary conditions for solving the PSA mathematical model at each process step are as below:

Table S2- Initial and boundary conditions used for solving the governing model equations for PSA cyclic model

Initial Conditions						
					$r_{\mathrm{g}}=T_{p}={ }_{i}$	
Boundary Conditions						
Feed	EqD	BD	Vac.	EqU	FP	PP
$@_{z}=0$:	$@_{z}=0$:	$@_{z}=0$:	$\mathfrak{a r z}_{\boldsymbol{z}}=0$:	$@_{z}=0$:	$@_{z}=0$:	$@_{z}=0$:
$u_{g} C_{g}$	$u=0$	$P=$ from	$P=$ from	$u=0$	$u_{g} C_{g}$	$u_{g} C_{g}$
$=u_{\text {feed }} C_{\text {feed }}$	$@ z=L$:	CV	CV	$@ z=L$:	$=u_{\text {feed }} C_{\text {feed }}$	$=u_{\text {product }} C_{\text {product }}$
$T_{g}=T_{\text {feed }}$	$P=$ from	Equation	Equation	$P=$ from $C V$	$T_{g}=T_{\text {feed }}$	$T_{g}=T_{\text {feed }}$
$P=P_{\text {feed }}$	${ }_{\text {Cl }}$	(14)	(14)	Equation	$P=$ from $C V$	$P=$ from $C V$
	Equation (14)	$\begin{aligned} & \text { @z}=L:= \\ & u=0 \end{aligned}$	$\begin{array}{\|l\|l} \text { @z}=L: ~ \end{array}$	(14)	Equation (14)	Equation (14)

S3-Derivation of Equation for Estimation of valve Coefficient ($\mathbf{C}_{\mathbf{V}}$):

The derivation of the expression used to estimate the linear valve constant Cv form the bed conditions and stage time starts with ideal gas equation:
$P_{B} V_{B}=n R T_{B}$
where:
$P_{B}=$ Pressure of the bed
$V_{B}=$ Effective volume of the bed
$n=$ Number of moles of material in the bed
$R=$ Gas constant
$T_{B}=$ Bed temperature

The rate of change of pressure is related to the rate of change of material holdup (assuming constant temperature and volume):
$\frac{\partial P}{\partial n}=\frac{R T_{B}}{V_{B}}$
The flowrate through a valve can be expressed as a linear function of the pressure drop across the valve:
$F=C_{V} \Delta P=C_{V}\left(P_{B}-P_{\text {Downstream }}\right)$

Where:
$F=$ Flowrate through the valve
$C_{v}=$ Linear valve constant
$P_{\text {Downstream }}=$ Pressure downstream of the valve.
This expression can be re-expressed as the molar flux:
$\frac{\partial n}{\partial t}=C_{V}\left(P_{B}-P_{\text {Downstream }}\right)$
S3-4

Assuming a constant downstream pressure from the valve, the rate of change of pressure in the bed can be found from the following expression:
$\frac{\partial P_{B}}{\partial t}=\frac{\partial P_{B}}{\partial n} \times \frac{\partial n}{\partial t}=\frac{R T_{B}}{V_{B}} C_{V}\left(P_{B}-P_{\text {Downstream }}\right)$
This expression can then be integrated between the bed's start and end pressure for a given stage length and constant downstream pressure:
$\frac{R T_{B} C_{V}}{V_{B}} d_{t}=\int_{P_{\text {Bstart }}}^{P B_{\text {end }}} \frac{1}{P_{B}-P_{\text {Downstream }}} d P_{B}$
Giving:

$$
\left.\frac{R T_{B} C_{V}}{V_{B}} \text { stag_Time }=\ln \left(P_{B}-P_{\text {downstream }}\right)\right]_{P_{\text {Bstart }}}^{P_{\text {Bend }}}=\ln \left(\frac{P_{\text {Bstar }}-P_{\text {downstream }}}{P_{\text {Bend }}-P_{\text {downstream }}}\right)
$$

By rearranging the above expression, the estimate of the constant valve C_{v} is given by:

$$
C_{V}=\frac{V_{B}}{R T_{B} \text { stage_time }}=\ln \left(\frac{P_{\text {Bstart }}-P_{\text {downstream }}}{P_{\text {Bend }}-P_{\text {downstream }}}\right)
$$

[^0]: ${ }^{1}$ shfatemi@ut.ac.ir

