Supporting Information Nanoplastic Ingestion Enhances Toxicity of Persistent Organic Pollutants (POPs) in the Monogonont Rotifer *Brachionus koreanus* via Multixenobiotic Resistance (MXR) Disruption Chang-Bum Jeong^{a,#}, Hye-Min Kang^{a,#}, Young Hwan Lee^a, Min-Sub Kim^a, Jin-Sol Lee^a, Jung Soo Seo^b, Minghua Wang^c, and Jae-Seong Lee^{a,*} ^aDepartment of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea ^bPathology Division, National Institute of Fisheries Science, Busan 46083, South Korea ^cKey Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China Tel.: 82 31 290 7011; E-mail: jslee2@skku.edu (J.-S. Lee) S1 ^{*}Corresponding author: Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea. ## **Supplementary Figure legend** **Fig. S1** Survival rate of rotifers exposed to BDE-47 (A) and TCS (B) in the absence or presence of inhibitors that are specific to P-gp (verapamil) and MRP (MK571). Different letters above columns indicate significant differences (P < 0.05). B)