Solid-Phase Synthesis of Phosphorothioate Oligonucleotides Using Sulfurization Byproducts for *in situ* Capping

Jimin Yang, Jessica A. Stolee,[†] Hong Jiang,[†] Li Xiao, William F. Kiesman, Firoz D. Antia,
Yannick A. Fillon, Austen Ng, Xianglin Shi*

Antisense Oligonucleotide Development and Manufacturing; [†]Analytical Development, Biogen, 115 Broadway, Cambridge, MA 02142

Xianglin.shi@biogen.com

Table of Contents

HPLC chromatograms and MS spectra	S6
Figure S1. A Representative Full-Scale UPLC UV Chromatogram (Crude DMT-on 9)	S7
Figure S2. A Representative Full-Scale Mass Spectrum of the Product Peak (Crude DMT-o	n 9)
	S7
DMT-on phosphorothioate oligonucleotide 9	S 8
Figure S3. UPLC UV chromatograms of crude DMT-on 9 synthesized with PADS as the	
sulfurization agent	S8
Figure S4. Overlaid MS spectra of crude DMT-on 9 synthesized with PADS as the sulfurization	ation
agent	S9
Figure S5. UPLC UV chromatograms of crude DMT-on 9 synthesized with ADTT as the	
sulfurization agent	S 9
Figure S6. Overlaid MS spectra of crude DMT-on 9 synthesized with ADTT as the sulfuriz	ation
agent	S10
DMT-on phosphorothioate oligonucleotide 10	S11
Figure S7. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 10	
synthesized with ADTT as the sulfurization agent	S12

Figure S8. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 10	
synthesized with PADS as the sulfurization agent	S13
Figure S9. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 10	
synthesized with DDTT as the sulfurization agent	S14
DMT-on phosphorothioate oligonucleotide 11	S15
Figure S10. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 11	
synthesized with ADTT as the sulfurization agent	S16
Figure S11. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 11	
synthesized with PADS as the sulfurization agent	S17
DMT-on phosphorothioate oligonucleotide 12	S18
Figure S12. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 12	
synthesized with ADTT as the sulfurization agent	S19
Figure S13. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 12	
synthesized with PADS as the sulfurization agent	S20
DMT-on phosphorothioate oligonucleotide 13	S21
Figure S14. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 13	
synthesized with ADTT as the sulfurization agent	S22
DMT-on phosphorothioate oligonucleotide 14	S23

Figure S15. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 14
synthesized with ADTT as the sulfurization agent
Figure S16. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 14
synthesized with PADS as the sulfurization agent
DMT-on phosphorothioate oligonucleotide 15
Figure S17. Overlaid RPIP HPLC UV chromatograms of the Crude DMT-on 15 Using PADS
S26
Figure S18. Overlaid MS spectra of Crude DMT-on 15
NMR Experiments
Esterification reaction of n -BuOH in the reaction mixture of $P(OMe)_3$ and $PADS$ aged in the
presence of 3-picoline (1.0 equiv)
Figure S19. Partial 1H NMR spectra (region 4.1-0.9 ppm) of the reaction mixture of n-BuOH
(1.0 equiv), P(OMe) ₃ (1.0 equiv), PADS (1.0 equiv) aged with picoline (1.0 equiv) at different
reaction time points
Figure S20: Zoomed-in spectrum region (1.80-0.85 ppm) showing the signals of
CH ₃ CH ₂ CH ₂ - of BuOH and BuO ₂ CCH ₂ Ph
Esterification reaction of n-BuOH in the reaction mixture of P(OMe) ₃ and PADS aged in the
presence of NMI (1.0 equiv)

Figure S21: Partial ¹ H NMR spectra (region 4.1-0.9 ppm) of the reaction mixture of n-BuOH	
(1.0 equiv), P(OMe) ₃ (1.0 equiv), PADS (1.0 equiv) aged with NMI (1.0 equiv) at different	
reaction time points	S32
Figure S22: Zoomed-in spectrum region for the signals of CH ₃ CH ₂ CH ₂ CH ₂ - of n-BuOH and	
PhCH ₂ CO ₂ Bu.	S33

HPLC chromatograms and MS spectra.

This section provides the UPLC-UV-MS chromatograms and spectra of the DMT-on products obtained from the syntheses with (4-reaction synthesis) and without (3-reaction synthesis) Ac₂O capping step. Zoomed-in chromatograms and spectra are provided to show details of the failure sequences (the small peaks eluting before the main peaks) and the (n-1) impurities. For a visual inspection of product quality, a representative full-scale LC chromatogram and a mass spectrum of product peak of crude DMT-on 9 are provided in Figure S1 and S2, respectively.

When a reference sample was available, the DMT-on product yield was obtained by the UPLC-UV-MS analysis and reported. For other compounds that we do not have reference standards, overlaid mass spectra are provided for MS purity comparison and optical density per μ mol measured at 260 nm (OD₂₆₀) and UV purity were reported for yield comparison. The HRMS data of these compounds are also provided.

Figure S1. A Representative Full-Scale UPLC UV Chromatogram (Crude DMT-on 9)

Figure S2. A Representative Full-Scale Mass Spectrum of the Product Peak (Crude DMT-on 9)

Sequence:

a 18-mer 2' methoxyethoxy (MOE) ribose phosphorothioate oligonucleotide.

Figure S3. UPLC UV chromatograms of crude DMT-on 9 synthesized with PADS as the sulfurization agent

Black 3-reaction process; red: 4-reaction process

Figure S4. Overlaid MS spectra of crude DMT-on 9 synthesized with PADS as the sulfurization agent

Black: 3-reaction; Red: 4-reaction process

Figure S5. UPLC UV chromatograms of crude DMT-on 9 synthesized with ADTT as the sulfurization agent $\frac{1}{2}$

Black: 3-reaction with ADTT; Red: 4-reaction process with PADS

Figure S6. Overlaid MS spectra of crude DMT-on 9 synthesized with ADTT as the sulfurization agent

Black: 3-reaction with ADTT; Red: 4-reaction process (with PADS as the sulfurization agent)

Sequence:

a 20-mer 2'H ribose phosphorothioate oligonucleotide

n-1 impurities appear between m/z: 1613-1620.

Figure S7. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 10 synthesized with ADTT as the sulfurization agent

Black: 3-reaction; Red: 4-reaction process

Figure S8. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 10 synthesized with PADS as the sulfurization agent

Normalized AU (%) 8 6 2 0 -4.0 1.5 2.0 2.5 3.0 3.5 0.5 1.0 Time (min) Normalized Intensity (%) 3 2 0 1600 1640 1660 1680 1700 1720 1740 1620 m/z

Black: 3-reaction; Red: 4-reaction process

Figure S9. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 10 synthesized with DDTT as the sulfurization agent

Black: 3-reaction; Red: 4-reaction process

Sequence:

a 20-mer 2'H (black) and 2' OMe (red) ribose phosphorothioate oligonucleotide

n-1 impurities appear between m/z: 1671-1690.

Figure S10. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 11 synthesized with ADTT as the sulfurization agent

Black: 3-reaction; Red: 4-reaction process

Figure S11. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 11 synthesized with PADS as the sulfurization agent

Black: 3-reaction; Red: 4-reaction process

m/z

Sequence:

a 20-mer 2'H (black) and 2' methoxyethoxy (MOE) (blue) ribose phosphorothioate oligonucleotide

n-1 impurities appear between m/z: 1780-1804.

Figure S12. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 12 synthesized with ADTT as the sulfurization agent

Black: 3-reaction; Red: 4-reaction process

Figure S13. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 12 synthesized with PADS as the sulfurization agent

Black: 3-reaction; Red: 4-reaction process

Sequence:

a 20-mer 2'H (black) and 2' cEt (green) ribose phosphorothioate oligonucleotide

n-1 impurities appear between m/z: 1699-1718.

Figure S14. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 13 synthesized with ADTT as the sulfurization agent

Black: 3-reaction; Red: 4-reaction process

Sequence:

a 20-mer 2'H (black) and 2' F (purple) ribose phosphorothioate oligonucleotide

n-1 impurities appear between m/z: 1636- 1645.

Figure S15. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 14 synthesized with ADTT as the sulfurization agent

Black: 3-reaction; Red: 4-reaction process

Figure S16. Overlaid UPLC UV Chromatograms and Mass Spectra of crude DMT-on 14 synthesized with PADS as the sulfurization agent

Black: 3-reaction; Red: 4-reaction process

Sequence:

15. s for PS linkage and o for PO linkage

a 20-mer 2'H (black) and 2' MOE (blue) ribose oligonucleotide; s: PS linkage, o: PO linkage PADS used as sulfurization agent.

(n-1) impurities appear between m/z: 1750-1784

Figure S17. Overlaid RPIP HPLC UV chromatograms of the Crude DMT-on 15 Using PADS

Figure S18. Overlaid MS spectra of Crude DMT-on 15

NMR Experiments

Esterification reaction of n-BuOH in the reaction mixture of P(OMe)₃ and PADS aged in the presence of 3-picoline (1.0 equiv)

Scheme S1: Conversion of n-BuOH into PhCH₂CO₂Bu during the Sulfurization of P(OMe)₃ with PADS Aged in 3-Picoline

Ph S Ph 1.3-picoline(1 eq), Ph S X 2.
$$n$$
-BuOH(1 eq), + CD₃CN, 12 h Major, X = PhCH₂CO 3. P(OMe)₃ (1 eq) Ph O Bu

Figure S19 and **Figure S20** show the full and partial spectra obtained at different times. From the spectra, the ratios of n-BuOH to PhCH₂CO₂Bu at the corresponding reaction times were obtained and listed in **Table S1**.

Figure S19. Partial 1H NMR spectra (region 4.1-0.9 ppm) of the reaction mixture of n-BuOH (1.0 equiv), P(OMe)₃ (1.0 equiv), PADS (1.0 equiv) aged with picoline (1.0 equiv) at different reaction time points.

Figure S20: Zoomed-in spectrum region (1.80-0.85 ppm) showing the signals of CH₃CH₂CH₂CH₂- of BuOH and BuO₂CCH₂Ph.

The P(OMe)₃ (doublet at ~3.55 ppm) is very quickly sulfurized to $S=P(OMe)_3$ (doublet at 3.75 ppm). The n-BuOH is progressively esterified as shown by the decrease of $-C\underline{H}_2OH$ (t, 3.6 ppm) and increase of $-C\underline{H}_2OCO$ - (t, 4.1 ppm) signals.

Table S1. Ratios of n-BuOH: PhCH2CO2Bu

Time	n-BuOH: PhCH ₂ CO ₂ Bu ^a
2 min	100:0
30 min	89:11
1 h	85:15
3 h	74:26
5 h	71 : 29

^a Ratios were calculated by ¹H integration: δ 1.48-1.55 (m, 2H) for *n*-BuOH, δ 1.57-1.65 (m, 2H) for PhCH₂CO₂Bu.

Esterification reaction of n-BuOH in the reaction mixture of P(OMe)₃ and PADS aged in the presence of NMI (1.0 equiv)

Scheme S2: Conversion of n-BuOH into PhCH₂CO₂Bu during the Sulfurization of P(OMe)₃ with PADS Aged in NMI

Ph S S Ph 1. NMI (1 equoiv), Ph S S X 2.
$$n$$
-BuOH(1 equiv), + CD₃CN, 12 h PADS disappeared 3. P(OMe)₃ (1 equiv) Ph O Bu

In this reaction, sulfurized of P(OMe)₃ (doublet at ~3.55 ppm) stalled quickly with about half of P(OMe)₃ was converted into S=P(OMe)₃ (doublet at 3.75 ppm). This result indicates the sulfurization reaction is fast and is consistent with literature data that PADS generates less than one equivalent of active sulfurization species. The n-BuOH is progressively esterified as shown by the decrease of -CH₂OH (t, 3.6 ppm) and increase of -CH₂OCO- (t, 4.1 ppm) signals.

Figure S21 and Figure S22 show the full and partial spectra obtained at different times.

Figure S21: Partial ¹H NMR spectra (region 4.1-0.9 ppm) of the reaction mixture of n-BuOH (1.0 equiv), P(OMe)₃ (1.0 equiv), PADS (1.0 equiv) aged with NMI (1.0 equiv) at different reaction time points.

Figure S22: Zoomed-in spectrum region for the signals of CH₃CH₂CH₂CH₂- of n-BuOH and PhCH₂CO₂Bu.

