Supporting Information

Copper-Catalyzed [2 + 3] Cyclization of α-Hydroxyl Ketones and Arylacetonitriles: Access to Multisubstituted Butenolides and Oxazoles

Chaorong Qi,*^{a,b} Youbin Peng,^a Lu Wang,^a Yanwei Ren^a and Huanfeng Jiang*^a

^a Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and

Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China

^b State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou

510640, P. R. China

E-mail: crqi@scut.edu.cn or jianghf@scut.edu.cn

Content

- --

A.	NMR Spectra of all products	S1
B.	X-ray crystal structure of compound 3ad	S51
C.	Crystal structure determination	S52
D.	Mass Spectra of 3aa and 3aa'	S53

A. NMR Spectra of all products

3-(4-Fluorophenyl)-5,5-dimethyl-4-phenylfuran-2(5H)-one (3ab)

3-(4-Chlorophenyl)-5,5-dimethyl-4-phenylfuran-2(5H)-one (3ac)

3-(4-Bromophenyl)-5,5-dimethyl-4-phenylfuran-2(5H)-one (3ad)

3-(4-Iodophenyl)-5,5-dimethyl-4-phenylfuran-2(5H)-one (3ae)

5,5-Dimethyl-4-phenyl-3-(p-tolyl)furan-2(5H)-one (3af)

3-(4-(*Tert*-butyl)phenyl)-5,5-dimethyl-4-phenylfuran-2(5H)-one (3ag)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

5,5-Dimethyl-4-phenyl-3-(4-(trifluoromethyl)phenyl)furan-2(5H)-one (3ai)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

3-(3-Methoxyphenyl)-5,5-dimethyl-4-phenylfuran-2(5H)-ono (3ak)

3-(2-Methoxyphenyl)-5,5-dimethyl-4-phenylfuran-2(5H)-one (3al)

3-(3,4-Dimethoxyphenyl)-5,5-dimethyl-4-phenylfuran-2(5H)-one (3am)

3-(3,5-Dimethoxyphenyl)-5,5-dimethyl-4-phenylfuran-2(5H)-one (3an)

5,5-Dimethyl-4-phenyl-3-(3,4,5-trimethoxyphenyl)furan-2(5H)-one (3ao)

3-(Benzo[d][1,3]dioxol-5-yl)-5,5-dimethyl-4-phenylfuran-2(5H)-one (3ap)

5,5-Dimethyl-3-(naphthalen-2-yl)-4-phenylfuran-2(5H)-one (3aq)

5,5-Dimethyl-4-phenyl-3-(pyridin-2-yl)furan-2(5H)-one (3ar)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm) 80 70 60 50 30 20 10 0 40

3-(Benzofuran-2-yl)-5,5-dimethyl-4-phenylfuran-2(5H)-one (3au)

4-(4-(2-Hydroxyethoxy)phenyl)-5,5-dimethyl-3-phenylfuran-2(5H)-one (3ba)

3,4-Diphenyl-1-oxaspiro[4.4]non-3-en-2-one (3ca)

3,4-Diphenyl-1-oxaspiro[4.5]dec-3-en-2-one (3da)

5,5-Dimethyl-3-phenyl-4-(pyridin-2-yl)furan-2(5H)-one (3ea)

4,5,5-Trimethyl-3-phenylfuran-2(5H)-one (3fa)

5-Ethyl-4,5-dimethyl-3-phenylfuran-2(5H)-one (3ga)

5-Isobutyl-4,5-dimethyl-3-phenylfuran-2(5H)-one (3ha)

5-Hexyl-4,5-dimethyl-3-phenylfuran-2(5H)-one (3ia)

2-Benzyl-4,5-diphenyloxazole (4ma)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

2-(4-Bromobenzyl)-4,5-diphenyloxazole (4md)

2-(4-Iodobenzyl)-4,5-diphenyloxazole (4me)

2-(4-Methylbenzyl)-4,5-diphenyloxazole (4mf)

210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm) 80 70 60 50 40 30 20 10 0 -10

S38

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

4,5-Diphenyl-2-(3,4,5-trimethoxybenzyl)oxazole (4mo)

4,5-Diphenyl-2-(thiophen-2-ylmethyl)oxazole (4ms)

2-Benzhydryl-4,5-diphenyloxazole (4mw)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

2-(4-Bromophenyl)-4,5-diphenyloxazole (4mx)

2-Benzyl-4,5-di-p-tolyloxazole (4na)

S47

2-Benzyl-4,5-bis(4-methoxyphenyl)oxazole (40a)

9,10-Dimethoxy-3,3-dimethylphenanthro[9,10-c]furan-1(3H)-one (5)

3-([1,1'-Biphenyl]-4-yl)-5,5-dimethyl-4-phenylfuran-2(5H)-one (6)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

B. X-ray crystal structure of compound 3ad

Figure S1. X-ray crystal structures of compound 3ad. Ellipses are drawn at the 30% probability level.

C. Crystal structure determination

Single-crystal X-ray diffraction data for **3ad** was collected on an X-ray diffractometer operated at 90 kV and 50 mA using MoK α radiation (λ = 0.71073 Å) at room temperature. All empirical absorption corrections were performed using the CrystalClear program. The structure was solved by a direct method and refined on F^2 by the full-matrix least squares technique using the SHELXTL-97 program package. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to carbon were placed in geometrically idealized positions and refined using a riding model. Crystallographic data for compound **3ad** is given in Table S1.

Table 51. Orystal data and structure reminiments for bad					
Compound	3ad				
Empirical formula	C ₁₈ H ₁₅ BrO ₂				
Formula weight	343.21				
Temperature (K)	293(2)				
Wavelength (Å)	0.71073				
Crystal system	triclinic				
Space group	P-1				
	$a = 9.2983(19)$ Å $\alpha = 107.87(3)^{\circ}$				
	$b = 9.5365(19)$ Å $\beta = 104.21(3)^{\circ}$				
	$c = 10.425(2)$ Å $\gamma = 109.44(3)^{\circ}$				
Volume (Å ³)	764.9(3)				
Z	2				
Density (calcd g cm ⁻³)	1.490				
Absorption coeff. (mm ⁻¹)	2.688				
<i>F</i> (000)	348.0				
Crystal size (mm)	0.1 imes 0.1 imes 0.1				
Crystal color and shape	Colorless block				
θ range for data collection	6.82 to 54.94				
Limiting indices	$-12 \le h \le 10, -12 \le k \le 11, -13 \le l \le 13$				
Reflections collected	7123				
Unique	3437 [$R_{\rm int} = 0.0347$]				
Refinement method	Full-matrix least-squares on F^2				
Data/restraints/parameters	3437/0/191				
Goodness-of-fit on F^2	1.005				
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0558, wR_2 = 0.1499$				
R indexes (all data)	$R_1 = 0.0880, wR_2 = 0.1873$				

Table S1. Crystal data and structure refinements for 3ad

D. Mass Spectra of 3aa and 3aa'

The EI-MS spectrum of 3aa

The EI-MS spectrum of 3aa'

The HRMS spectrum of 3aa'

m/z	Abundant	Relative Abundant	Ion Formula
287.1043	981281.8	14.81	$C_{18}H_{16}O_2Na$
289.1088	6623767.0	100.00	$C_{18}H_{16}O^{18}ONa$

The relative abundant of m/z 289.1088 and m/z 287.1043 are 100.00 and 14.81, respectively. Thus, the percentage of ¹⁸O incorporated product = R.A. (m/z 289.1088)/(R.A (m/z 289.1088) + R.A. (m/z 287.1043))*100% = 14.81/(14.81+100) *100% = 87%

R.A. = relative abundant