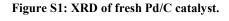

## Synthesis of ethylene glycol from syngas via oxidative double carbonylation of

## ethanol to diethyl oxalate and its subsequent hydrogenation


Anilkumar Satapathy,<sup>[a,b]</sup> Sandip T. Gadge<sup>[a]</sup> and Bhalchandra M. Bhanage<sup>\*[a]</sup>

 <sup>a</sup>Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai-400019. India. Tel.: +91-2233612603 Fax: +912222692102
<sup>b</sup>Reliance Industries limited, Patalganga, Rasayani, Raigad, Maharashtra 410 220 India.

Email: bm.bhanage@gmail.com, bm.bhanage@ictmumbai.edu.in



## **Supporting Information**



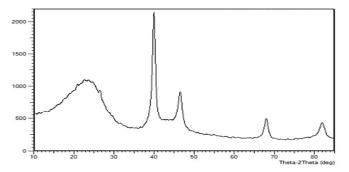



Figure S2: XRD of 1<sup>st</sup> recycled Pd/C catalyst.

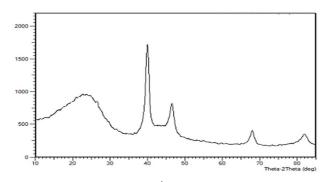



Figure S3: XRD of 4<sup>th</sup> recycled Pd/C catalyst.

Structural changes of fresh ,1<sup>st</sup> and 4<sup>th</sup> recycled Pd/C catalyst was studied by X-ray diffraction (XRD. The XRD pattern showed the, diffracted peaks for the Pd/C catalyst and no significant structural change found in fresh and recycled catalyst.

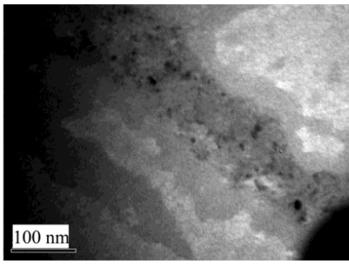
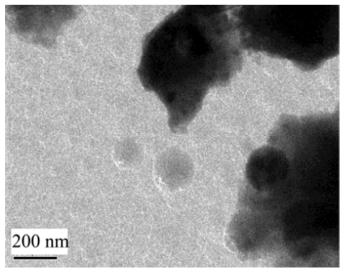
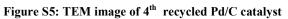





Figure S4: TEM image of Fresh Pd/C catalyst





The TEM analysis showed that the components of the Pd uniformly distributed over the carbon surface and no agglomeration happen.