Two-Dimensional Ti₃C₂ MXene for High-Resolution Neural Interfaces

Nicolette Driscoll,^{†,‡,#} Andrew G. Richardson,^{‡,¶} Kathleen Maleski,^{§,∥} Babak Anasori,^{§,∥} Oladayo Adewole,^{†,#} Pavel Lelyukh,^{§,∥} Lilia Escobedo, D. Kacy Cullen,^{†,#} Timothy H. Lucas,^{‡,¶} Yury Gogotsi,^{§,∥} and Flavia Vitale^{*,‡,‡‡,#,Δ}

**Corresponding author: E-mail: vitalef@pennmedicine.upenn.edu*

[†]Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

[‡]Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

[¶]Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

[§]Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104.

^{II}A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104.

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853.

^{‡‡}Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

[#]Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104.

^ADepartment of Physical Medicine & Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

SUPPORTING INFORMATION

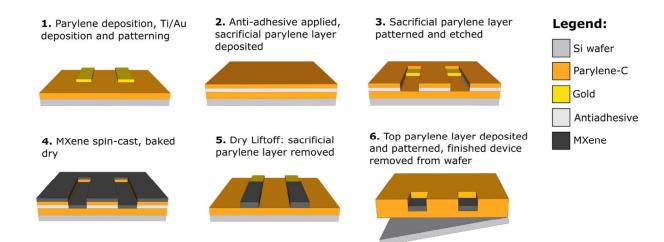
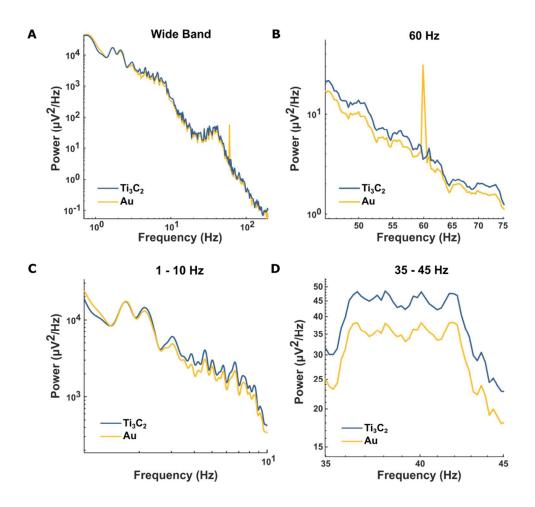



Figure S1. Fabrication of multi-channel Ti_3C_2 neural sensors. Fabrication process: pattern metal traces and connection pads on bottom parylene-C layer; deposit an anti-adhesive layer (1% Micro 90) and a sacrificial parylene-C layer; etch pattern the sacrificial parylene-C layer; spin coat Ti_3C_2 and thoroughly dry; peel up the sacrificial layer, leaving Ti_3C_2 patterns behind; deposit top parylene-C layer; pattern and etch open electrode and Au bonding pad contacts; release completed device from wafer.

Figure S2. *In vivo* **noise characteristics.** (**A**) Wide band power spectral density from representative Ti_3C_2 and Au electrodes from the intracortical array. (**B**) A significant peak in power at 60 Hz, attributed to mains noise, was seen on Au electrodes but was not observed on Ti_3C_2 electrodes. (C,D) Ti_3C_2 electrodes recorded higher power across a broadf range of frequencies, including 1-10 Hz delta and theta rhythms (**C**) and 35-45 Hz gamma rhythms (**D**).