
Supporting Information for

Hybrid Poly(Ionic Liquid) Membranes with In-Situ Grown Layered Double Hydroxide and Preserved Liquid Crystal Morphology for Hydroxide Transport

Na Sun, Xinpei Gao*, Fei Lu, Panpan Sun, Aoli Wu and Liqiang Zheng* Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.

*Corresponding author: Liqiang Zheng E-mail address: lqzheng@sdu.edu.cn

Xinpei Gao E-mail address: gaoxinpei@mail.sdu.edu.cn

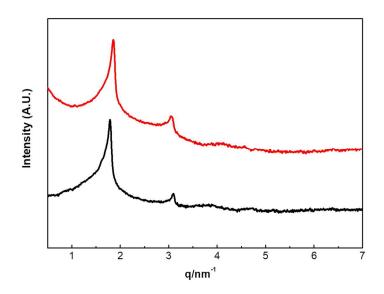


Figure S1. POM images of C_{12} VIMCl aqueous mixture with different concentration of salts: 0 M (a), 0.12 M (b), 0.24 M (c), and 0.36 M (d).

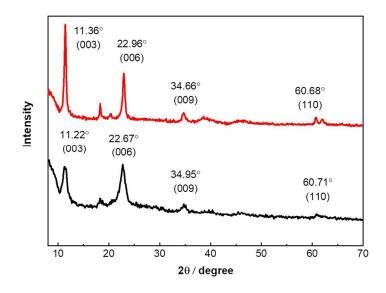
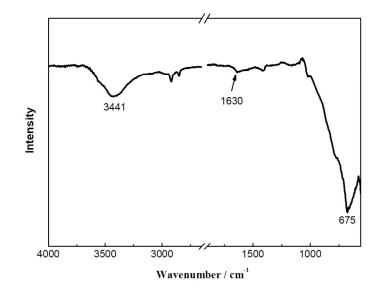
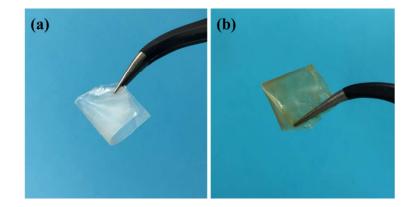
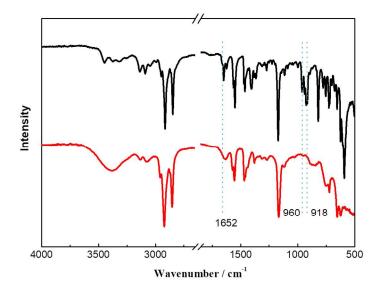

Salt concentration	[C ₁₂ VIM][Cl]	a ₀	$\Phi_{\mathbf{L}}$	$\mathbf{d}_{\mathbf{H}}$	$\mathbf{d}_{\mathbf{w}}$
(mol/L)	(wt%)	(nm)		(nm)	(nm)
	60%	4.076	0.583	1.635	0.806
0	70%	3.904	0.685	1.697	0.509
	80%	3.759	0.789	1.753	0.252
0.12	60%	4.121	0.585	1.656	0.809
	70%	3.945	0.687	1.717	0.510
	80%	3.784	0.790	1.766	0.251
0.24	60%	4.121	0.587	1.658	0.804
	70%	3.945	0.689	1.719	0.506
	80%	3.784	0.791	1.768	0.248
0.36	60%	4.121	0.589	1.661	0.798
	70%	3.945	0.691	1.722	0.502
	80%	3.784	0.793	1.770	0.245

Table S1. Structure parameters for the H_1 phase of C_{12} VIMCl aqueous mixture.

 Φ_L is the volume fraction of hydrophobic alkyl chain in the surfactant molecular. a_0 is the lattice parameter. d_H is the radius of cylinder unit in the H₁ phase. d_w is the thickness of water channel in the LC phase.

Figure S2. SAXS patterns of LC samples with 70% C_{12} VIMCl in 0.36 M salt solution (black) and after coprecipitation for 96 h (red).

Figure S3. XRD patterns of LDHs synthesized in hexagonal LC with 0.36 M salt solution (black) and synthesized from coprecipitation in solution without LC template (red).

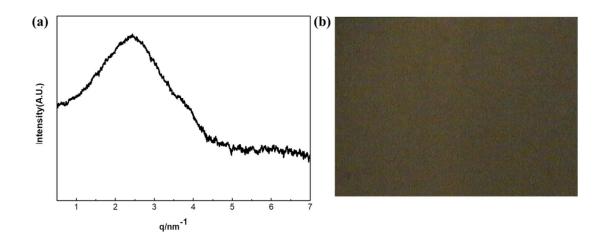

Figure S4. FT-IR spectrum of LDH synthesized in hexagonal LC with 0.36 M salt solution.

Figure S5. The photograph of the membrane: (a) in Cl⁻ form; (b) in OH⁻ form.

Figure S6. Comparative FT-IR spectra of the LC sample (black) and the polymerized LC membrane (red).

Figure S7. SAXS pattern (a) and POM image (b) of the AEM obtained by in-phase photopolymerization of 70% C_{12} VIMCl ethanol solution (AEM-ethanol-70%).

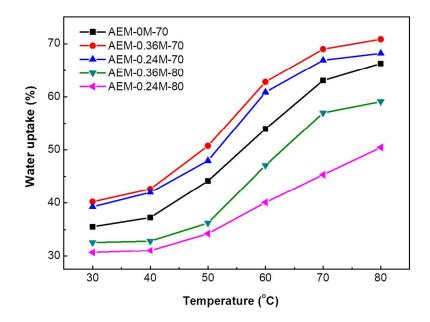


Figure S8. The water uptake of the membranes in OH⁻ form at varied temperatures.

Table S2. Water uptake (WU), swelling degree (SD), and conductivities of recently reported AEMs. In each referenced paper, we choose the AEMs with similar IEC values for comparison with our results.

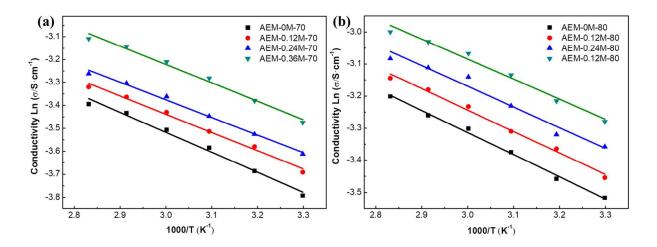
IEC	WU	SD	Conductivity	Ref
(mmol/g)	(%)	(%)	(mS/cm)	
2.13	22.1	10.6	49.79 (80°C)	This work
2.61	107.2	Ν	82 (80°C)	1
2.16	109	Ν	89.0 (80°C)	2
1.95	145	30.5	55.0 (80°C)	3
1.76	43.7	7.1	13.2 (60°C)	4
2.24	51	30	70.2 (80°C)	5
2.27	87.3	19	33.2 (60°C)	6
1.92	95	51	41 (60°C)	7
2.07	47	13.5	68 (80°C)	8
2.0	55	Ν	60 (70°C)	9

(1) Kim, Y.; Moh, L. C. H.; Swager, T. M. Anion Exchange Membranes: Enhancement by Addition of Unfunctionalized Triptycene Poly(Ether Sulfone)s. *ACS Appl. Mater. Interfaces* **2017**, *9*, 42409-42414.

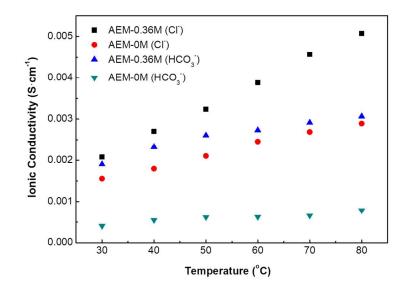
(2) Olsson, J. S.; Pham, T. H.; Jannasch, P. Poly(Arylene Piperidinium) Hydroxide Ion Exchange Membranes: Synthesis, Alkaline Stability, and Conductivity. *Adv. Funct. Mater.* **2017**, 1702758.

(3) Zhu, Y.; He, Y.; Ge, X.; Liang, X.; Shehzad, M. A.; Hu, M.; Liu, Y.; Wu, L.; Xu, T. A Benzyltetramethylimidazolium-Based Membrane with Exceptional Alkaline Stability in Fuel Cells: Role of Its Structure in Alkaline Stability. *J. Mater. Chem. A* **2018**, *6*, 527-534.

(4) Wang, X.; Wang, P.; Sun, Y.; Wang, J.; Fang, H.; Yang, S.; Wei, H.; Ding, Y. A Mechanically Strong and Tough Anion Exchange Membrane Engineered with Non-covalent Modalities. *Chem. Commun.* **2017**, *53*, 12369-12372.


(5) Chen, N.; Liu, Y.; Long, C.; Li, R.; Wang, F.; Zhu, H. Enhanced Performance of Ionic-Liquid-Coated Silica/Quaternized Poly(2,6-Dimethyl-1,4-Phenylene Oxide) Composite Membrane for Anion Exchange Membrane Fuel Cells. *Electrochim. Acta* **2017**, *258*, 124-133.

(6) Ouadaa, A.; Xu, H.; Luo, T.; Gao, S.; Wang, X.; Fang, Z.; Jing, C.; Zhu, C. A Series of Poly(Butylimidazolium) Ionic Liquid Functionalized Copolymers for Anion Exchange Membranes. *J. Power Sources* **2017**, *371*, 77-85.


(7) Ponce-González, J.; Ouachan, I.; Varcoe, J. R.; Whelligan, D. K. Radiation-Induced Grafting of a Butyl-Spacer Styrenic Monomer onto ETFE: the Synthesis of the Most Alkali Stable Radiation-Grafted Anion-Exchange Membrane to Date. *J. Mater. Chem. A* **2018**, *6*, 823-827.

(8) Dong, X.; Lv, D.; Zheng, J.; Xue, B.; Bi, W.; Li, S.; Zhang, S. Pyrrolidinium-Functionalized Poly(Arylene Ether Sulfone)s for Anion Exchange Membranes: Using Densely Concentrated Ionic Groups and Block Design to Improve Membrane Performance. *J. Membr. Sci.* **2017**, *535*, 301-311.

(9) Kim, E.; Lee, S.; Woo, S.; Park, S.-H.; Yim, S.-D.; Shin, D.; Bae, B. Synthesis and Characterization of Anion Exchange Multi-Block Copolymer Membranes with a Fluorine Moiety as Alkaline Membrane Fuel Cells. *J. Power Sources* **2017**, *359*, 568-576.

Figure S9. Arrhenius plots of ionic conductivities of the membranes in OH⁻ form with different LDH contents: (a) the C₁₂VIMCl content is 70 wt%; (b) the C₁₂VIMCl content is 80 wt%.

Figure S10. The conductivities of membranes obtained by in-phase photopolymerization of C_{12} VIMBr in the H₁ phase (70%) in Cl⁻ and HCO₃⁻ form as a function of temperature.

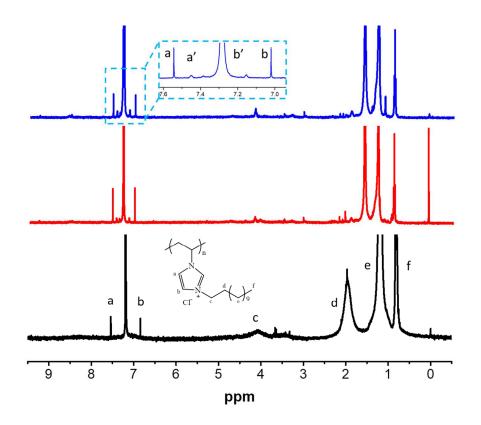


Figure S11. ¹H NMR spectra (CDCl₃) of AEM-0.36M-70 before (black) and after the accelerated alkaline stability test by exposure to 2 M KOH aqueous solution at 80 $^{\circ}$ C for 96 h (red) and 120 h (blue).