Supporting Information

Metallic Transition Metal Dichalcogenide Nanosheets as an Effective and Biocompatible Transducer for Electrochemical Detection of Pesticide

Fengnian Zhao, Yao Yao, Xunjia Li, Lingyi Lan, Chengmei Jiang, Jianfeng Ping*

School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road,

Hangzhou 310058, P.R. China

Corresponding author: Prof. Jianfeng Ping

E-mail: jfping@zju.edu.cn

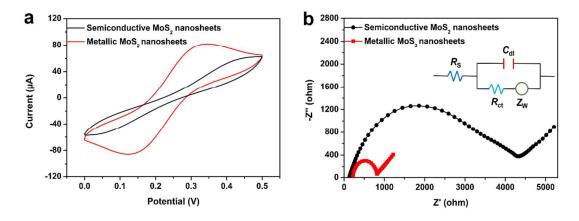


Figure S1. (a) CV and (b) EIS of semiconductive MoS_2 (2H-phase) and metallic MoS_2 (1T-phase dominated) modified SPE in 0.1 M KCl solution containing 5.0 mM K_3 [Fe(CN)₆]. For CV, the experimental conditions were as follows: scan potential from 0 to +0.5 V, scan rate is 0.1 V s⁻¹. For EIS, the experimental conditions were as follows: frequency ranges from 100 kHz to 0.01 Hz, and AC amplitude is 5 mV.

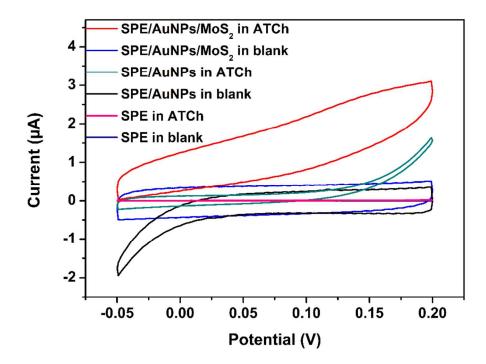


Figure S2. CV response of bare SPE, SPE/AuNPs, and SPE/AuNPs/MoS₂ with/without the addition of 500 μ M ATCh. The experimental conditions were as follows: scan potential is from – 0.05 to +0.2 V, scan rate is 0.02 V s⁻¹, and electrolyte is 0.01 M PBS (pH 7.4).

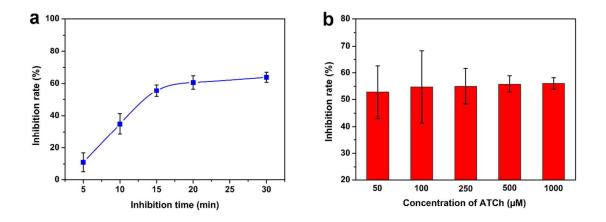


Figure S3. Optimization of (a) paraoxon inhibition time and (b) ATCh concentration.

Sensor	Method	Pesticide	Linear range	LOD	Ref.
GCE/WS2/GA/AChE	Amperometry	fenitrothion	1.0-1000 nM	2.86 nM	1
GCE/MoS2-GR	Amperometry	methyl parathion	10-1.9×10 ⁶ nM	3.23 nM	2
SPE/GR/Fe ₃ O ₄ NPs+CS/A	DPV	chlorpyrifos	0.1–285 nM	0.06 nM	3
ChE					
MoS ₂ QDs	Fluorescence	methyl parathion	379.9-1.1×10 ⁵ nM	322.9 nM	4
SPE/AuNPs/MoS ₂ /GA/A	Amperometry	paraoxon	3.6–3634 nM	0.04 nM	This work
ChE					

Table S1. Comparison of different sensors for the detection of organophosphorus pesticides.

GCE: glassy cerbon electrode; GR: graphene; Fe₃O₄NPs: magnetic nanoparticles; CS: chitosan; DPV: differential pulse voltammetry; QDs: quantum dots.

REFERENCES

- (1) Nasir, M. Z. M.; Mayorga-Martinez, C. C.; Sofer, Z.; Pumera, M. ACS Nano 2017, 11, 5774-5784.
- (2) Govindasamy, M.; Chen, S. M.; Mani, V.; Akilarasan, M.; Kogularasu, S.; Subramani, B.
 Microchim. Acta 2017, 184, 725-733.
- (3) Wang, H.; Zhao, G.; Chen, D. F.; Wang, Z. Q.; Liu, G. Int. J. Electrochem. Sci. 2016, 11, 10906-10918.
- (4) Fahimi-Kashani, N.; Rashti, A.; Hormozi-Nezhad, M. R.; Mahdavi, V. Anal. Methods 2017, 9, 716-723.