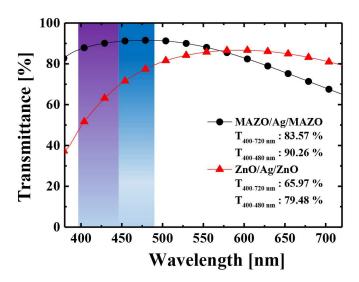

Supporting Information

Robust Transparent and Conductive Gas Diffusion Multi-Barrier Based on Mg- and Al-Doped ZnO as **ITO-Free Electrodes for Organic Electronics**


Jeong Hyun Kwon^{†,‡}, Yongmin Jeon[†], and Kyung Cheol Choi^{*,†}

[†] School of Electrical Engineering, KAIST, Daejeon 34141, Republic of Korea ‡ Advanced Nano-Surface Department, Korea Institute of Materials Science, Changwon, Gyeongnam 51508, Republic of Korea

^{*}E-mail: kyungcc@kaist.ac.kr

Figure S1. Electrical conductivity of the MAZO thin film as a function of the ZnO deposition cycle when the cyclic ratio of Al₂O₃:MgO was fixed as 2:1.

Figure S2. Calculated transmittances of the ZnO/Ag/ZnO and MAZO/Ag/MAZO structures in the visible wavelength.

Figure S3. a) Photographs showing the tested samples fabricated on PET substrates under tensile bending tests. b) \sim f) Surface SEM images of ZnO and MAZO thin films on PET substrates as a function of bending strain.

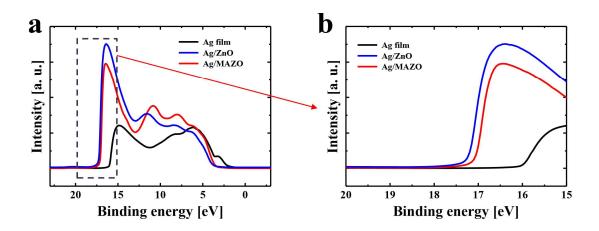


Figure S4. a) He(I) UPS spectra of Ag, Ag/ZnO, Ag/MAZO. b) Enlarged view of secondary electron cut-off regions.