Supporting Information

Dopamine-Assisted Synthesis of MoS₂ Nanosheets on Carbon Nanotube for Improved

Lithium and Sodium Storage Properties

Han Zhou, Ruifang Zhang, Shili Song, Chunhui Xiao, Guoxin Gao, Shujiang Ding*

Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an-710049, China

* Corresponding author: dingsj@xjtu.edu.cn

Experimental Section

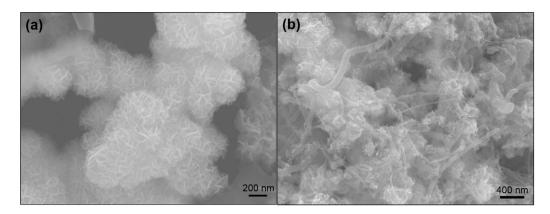
1. Materials synthesis:

1.1 Synthesis of polydopamine@CNTs (PDA@CNT).

The synthesis of PDA@CNT were according a previously reported method.^[27] First, CNTs (50 mg) were washed with 50 mM tris(hydroxymethyl) aminomethane-chloride acid (Tris-HCl) buffer (pH = 8.5) and centrifuged for three times. Then the washed CNT (50 mg) were dispersed into 100 mL 50 mM Tris-HCl by sonication, then added with 200 mg DA. The mixture was strong stirred for 24 h at room temperature, and the product was collected by centrifugation, washed with Tris-HCl buffer, and followed by drying in vacuum at 60 °C overnight, respectively.

1.2 Synthesis of MoS₂@CNT

In a typical synthesis of MoS₂@CNT, PDA@CNT (50 mg) was dispersed into 10 mL ethanol and 25 m deionized water by ultrasonication for 5 min. Then, 0.3 g sodium molybdate hexahydrate (Na₂MoO₄·6H₂O) and 0.6 g thiourea was added with continuous stirring. The solution was transferred into a Teflon-lined stainless steel autoclave (50 mL) and reacted at 200 °C for 24 h. The autoclave was then cooled to room temperature. The black precipitate was collected by centrifugation, washed thoroughly with ethanol, and finally dried at 80 °C for 12 h. The as-prepared MoS₂@PDA@CNT material was further treated at 500 °C in an atmosphere of H₂-N₂ (5:95, Volume/Volume) for 3 h with a heating rate of 1 °C min⁻¹ obtain MoS₂@CNT.


2. Characterization

SEM was carried out using a JSM-7000F field-emission scanning electron microscopy (JEOL, Tokyo, Japan). TEM was performed by using a JEM-2100 transmission electron microscope (JEOL, Tokyo, Japan). Crystallographic information of the sample was collected using powder X-ray diffraction (XRD; SHIMADZU, Lab X XRD-6000). Thermogravimetric analysis (Perkin-Elmer TGA 7) was carried out under a flow of air with a temperature ramp of 10 oC/min from room temperature to 800 °C. The surface properties of the as-made samples were studied by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific ESCALAB Xi+).

3. Electrochemical Measurements

For electrochemical measurements, the working electrode was prepared by mixing 70 wt% of the active material ($MoS_2@CNT$), 20 wt% of conducting agent (carbon black, super-P-Li), and

10 wt% of binder (polyvinylidene difluoride, PVDF, Aldrich). Then it was uniformly cast onto a Cu foil and vacuum dried at 60 °C overnight. The loading mass of the active materials was ~ 1.0 mg cm⁻². The cells (CR 2016) were assembled in an Ar-filled glove box ($O_2 \le 0.3$ ppm, H₂O ≤ 0.1 ppm). Sodium (lithium for LIBs) serves as both the counter electrode and the reference electrode. For NIBs, the electrolyte is 1M NaClO₄ in ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1 v/v) with 5% fluoroethylene carbonate (FEC) additive. For LIBs, the electrolyte is 1.0 M LiPF₆ in EC and DEC (1:1 v/v). Cyclic voltammetry was performed using an electrochemical workstation (CHI 660D). The charge–discharge tests were performed using a NEWARE battery tester.

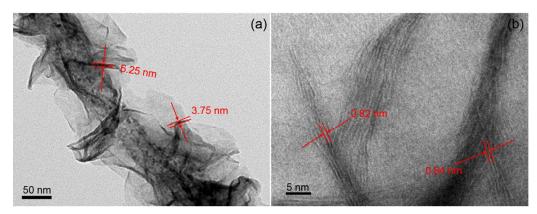


Figure S2 a) TEM iamge and b) HRTEM iamge of Mo₂@CNT.

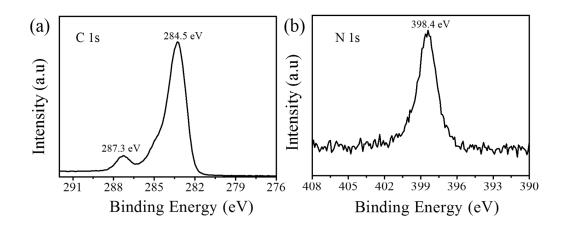


Figure S3. XPS partterns of a) C 1s and b) N 1s in MoS₂@CNT.

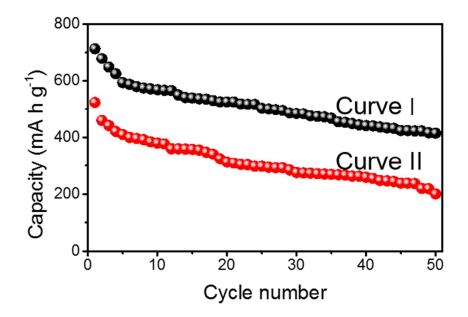


Figure S4 Cycling performance of $MoS_2@CNT$ without polydopamine at current density of 200 mA g⁻¹. Curve I is the lithium ion storage property and Curve II is the sodium ion storage property.

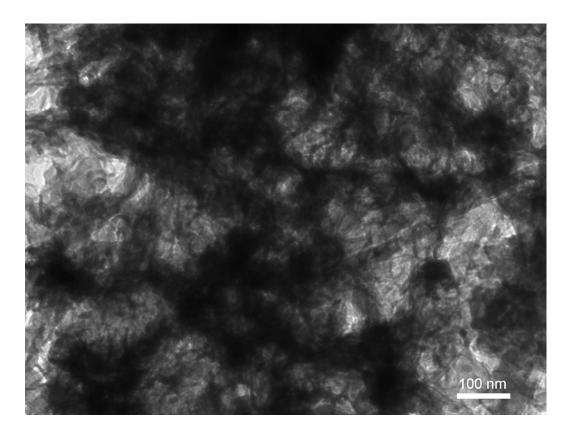


Figure S5 TEM images of MoS₂@CNT after 30 cycles.

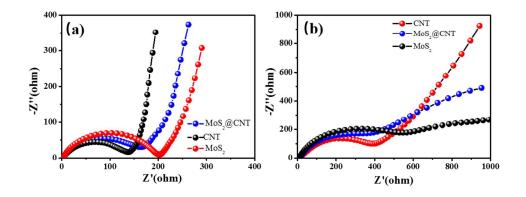


Figure S6. Nyquist plots of the $MoS_2@CNT$, pure MoS_2 and CNT anode a) incipient state; b) after 5 cycles.

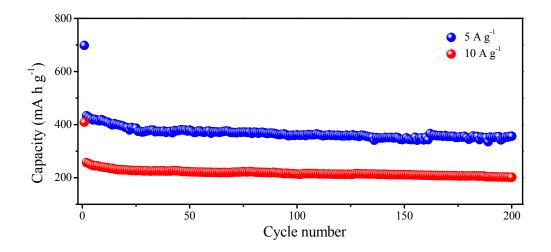


Figure S7 Cycling performance of $MoS_2@CNT$ at 5 current density of 5 A g⁻¹ and 10 A g⁻¹.

Table S1 Comparison of sodium ion storage performance of this present work with

Materials	Capacity	Current	Cycles	Ref.
	$(mAh g^{-1})$	density(mAg ⁻¹)		
MoS ₂ @rGo	305	100	50	1
MoS ₂ @C nanosheets	475	200	200	2
MoS ₂ @graphene foam	290	100	50	3
MoS ₂ @Carbon Fiber	286	80	100	4
MoS ₂ @C core shell	337	100	300	5
MoS ₂ @CNT	420.5	200	80	6
MoS ₂ @rGo	284	1000	160	7
MoS ₂ nanosheets	161	20	100	8
MoS ₂ @rGo	339	500	300	9
MoS ₂ @Go paper	218	25	20	10
MoS ₂ @C network	443	1000	500	11
MoS ₂ @C	319	1000	1500	12
MoS ₂ @CNT	512.4	200	100	This work

previous works.

Reference

- 1. Qin, W.; Chen T.; Pan L.; Niu L; Hu B.; Li D.; Li J.; Sun Z. MoS₂-reduced Graphene Oxide Composites via Microwave Assisted Synthesis for Sodium Ion Battery Anode with Improved Capacity and Cycling Performance. *Electrochim. Acta* **2015**, *153*, 55-61.
- 2. Shi Z.; Kang W.; Xu J.; Sun Y.; Jiang M.; Ng T.; Xue H.; Yu D.; Zhang W.; Lee C.

Hierarchical Nanotubes Assembled from MoS₂-carbon Monolayer Sandwiched Superstructure Nanosheets for High-Performance Sodium Ion Batteries. *Nano Energy* **2016**, *22*, 27-37.

- Xiang J.; Dong D.; Wen F.; Zhao J.; Zhang X.; Wang L.; Liu Z. Microwave Synthesized Self-standing electrode ff MoS₂ Nanosheets Assembled on Graphene Foam for High-Performance Li-Ion and Na-Ion Batteries. J. Alloy. Compd. 2016, 660, 11-16.
- Xie X.; Taron M.; Zhao M.; K. L. Van Aken; Gogotsi Y.; Wang G. MoS₂ Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium-Ion Batteries. *Adv. Energy Mater.* 2016, *6*, 1502161.
- Wang B.; Xia Y.; Wang G.; Zhou Y.; Wang H.; Core Shell MoS₂/C Nanospheres Embedded in Foam-like Carbon Sheets Composite with an Interconnected Macroporous Structure as Stable and High-Capacity Anodes for Sodium Ion Batteries. *Chem. Eng. J.* 2017, 309, 417-425.
- Zhang S.; Yu X.; Yu H.; Chen J.; Gao P.; Li C.; Zhu C. Growth of Ultrathin MoS₂ Nanosheets with Expanded Spacing of (002) Plane on Carbon Nanotubes for High-Performance Sodium-Ion Battery Anodes. ACS Appl. Mater. Inter. 2014, 6, 21880-21885
- Che Z.; Li Y.; Chen K.; Wei M. Hierarchical MoS₂@RGO Nanosheets for High Performance Sodium Storage. J. Power Sources 2016, 331, 50-57.
- Bang G.; Nam K.; Kim J.; Shin J.; Choi J.; Choi S. Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS₂ Nanosheets. *ACS Appl. Mater. Inter.* 2014, *6*, 7048-7089.
- Qin W.; Li Y.; Teng Y.; Qin T. Hydrogen Bond-Assisted Synthesis of MoS₂/reduced Graphene Oxide Composite with Excellent Electrochemical Performances for Lithium and Sodium Storage. J. Colloid. Interf. Sci. 2018, 512, 826-833.
- David L.; Bhandvat R.; Singh G. MoS₂/Graphene Composite Paper or Sodium-Ion Battery Electrodes. ACS Nano, 2014, 8, 1759-1770.
- Hu X.; Li Y.; Zeng G.; Jia J.; Zhan H.; Wen Z. Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS₂ for Lithium and Sodium storage. *ACS Nano*, **2018**, *12*, 1592-1602.
- Wang H.; Jiang H.; Saha P.; Cheng Q.; Li C. Interface-engineered MoS₂/C Nanosheet Heterostructure Arrays for Ultra-Stable Sodium-Ion Batteries. *Chem. Eng. J.* 2017, *174*, 104-111.