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I. DETAILS OF AB INITIO CALCULATIONS OF XANES 

Similarly to our previous works,
1-2

 for simulations of Cu K-edge XANES spectra we relied on 

two state-of-the art ab initio codes: FEFF
3
 and FDMNES.

4
 In both cases the non-structural 

parameters for XANES simulations were chosen to ensure an as good as possible agreement 

between the simulated spectrum for bulk copper and experimental Cu foil XANES data. 

FEFF version 9.6.4 was used for self-consistent calculations within full multiple scattering (FMS) 

and muffin-tin (MT) approximations. For nanoparticles FMS cluster size is chosen at a large enough 

value so that the whole cluster is included in the FMS calculations. We used the default value (1.4 Å) 

for Cu MT radius, complex exchange–correlation Hedin–Lundqvist potential and random phase 

approximation (RPA) to model core-hole. For FDMNES calculations we used FDMNES II program 

(revision 9) and FMS and MT approximations (as in FEFF). For FDMNES calculations we used real 

Hedin–Lundqvist exchange–correlation potential. 

Cluster models for XANES calculations were constructed by cutting with (100) and (111) 

planes the face-centered cubic structure of bulk copper with lattice constant a0 =3.615 Å.
5
 To 

model an interface with the support, regular structure models were further truncated with an 

additional (100) or (111) plane. In  addition, icosahedral and hexagonal close-packed clusters 

were constructed as in Ref.
6
 To explore also the sensitivity of XANES data to interatomic 

distances, we constructed additional structure models by isotropically stretching or compressing 

the models from the original set, so that the distance between nearest neighbors R changed 

between 2.2 and 2.6 Å. 

Using both FDMNES and FEFF, XANES calculations for all non-equivalent sites in all cluster 

models were performed. Particle averaged XANES spectra were obtained by averaging corresponding 

site-specific spectra.
7-8

 The obtained spectra were shifted in energy by ΔE to align the energy scale 
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used in theoretical calculations with the energy scale of experimental data. The values of ΔE (different 

for FEFF and FDMNES) were chosen so that experimental and calculated Cu K-edge XANES for 

bulk Cu are aligned. Next, we re-interpolated the theoretical and experimental spectra on a non-

uniform mesh that spanned energies from Emin = 8986.9 eV to Emax  = 9066.0 eV. Mesh step size was 

0.2 eV for data points near the absorption edge, and gradually increased up to 1.0 eV for points 

at E = Emax. 

 

II. DETAILS OF NEURAL NETWORK IMPLEMENTATION AND TRAINING 

Similarly to our previous works
1-2, 9

, to construct and train neural network (NN) we rely on the 

off-the-shelf available NN implementation in Wolfram Mathematica 11.3.
10

 Our NN is a 

composite function that takes as input discretized XANES spectrum and yields as output a vector 

that describes relevant structure parameters (coordination numbers (CNs) for the first four 

coordination shells (C1, C2, C3, C4) and effective interatomic distance R). NN can be represented 

as a network of nodes. The output layer of our NN thus contains five nodes, corresponding to the 

number of output parameters. The number of nodes in the input layer (115) is determined by the 

number of points in the discretized spectrum. The number of nodes in the intermediate (hidden 

layers), as well as the number of hidden layers itself are hyperparameters of the NN and are 

optimized to ensure optimal performance of NN on validation set (see below). In our case we 

have found that good accuracy can be achieved with two hidden layers with 300 nodes in each. 

Each node in the NN adds all its inputs 𝑥[𝑛−1](𝑖), weighted with weights 𝜃[𝑛](𝑖,𝑗). Unit feature 

𝑥[𝑛−1](0) = 1 accounts for the bias term. A non-linear, differentiable activation function f is then 

applied to the sum, and the output 𝑥[𝑛]𝑗 = 𝑓(∑ 𝑥[𝑖−1]𝑗𝜃[𝑛](𝑖,𝑗)
𝑗 ) is then similarly processed in the 
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nodes in the consequent NN layers. For hidden layers as activation function we use hyperbolic 

tangent function, while identity function is used for the output nodes. 

To establish relation between the features in averaged XANES 𝜇(𝐸) and structure parameters 

{𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝑅}, and to find the values of NNs weights 𝜃[𝑛](𝑖,𝑗), we train artificial NN on 

theoretical XANES data, calculated with FEFF and FDMNES codes for Cu particles of different 

sizes and shapes and with different interatomic distances. During this procedure, 𝜃[𝑛](𝑖,𝑗) are 

iteratively updated so that the difference between NN outputs {�̃�1 �̃�2, �̃�3, �̃�4, �̃�} and the known 

true values of structure parameters for the models in the training set {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝑅} is 

minimized for all training spectra. 

To reduce the number of XANES calculations, similarly as in our previous works
1, 11

 we use 

for NN training an artificial dataset, created by linearly combining site-specific theoretical 

XANES spectra for a small ensemble of 21 particles of different sizes and shapes. For each of 

the sites we perform both FEFF and FDMNES calculations, resulting in site-specific spectra 

𝜇(𝐸). Sets of site-specific coordination numbers {𝑐1, 𝑐2, 𝑐3, … } for each of those sites are 

known. To construct one training example, we select randomly n of these sites, and create the 

corresponding average spectrum as 𝜇𝑖(𝐸) = ∑ 𝜇𝑗(𝐸)/𝑛𝑛
𝑗=1 , where 𝜇𝑗(𝐸) are site-specific spectra 

calculated either with FEFF or FDMNES for j-th of the randomly chosen sites. The 

corresponding average CNs can be obtained as {𝐶1, 𝐶2, 𝐶3, … }𝑖 = ∑ {𝑐1, 𝑐2, 𝑐3, … }j /𝑛𝑛
𝑗=1 . Note 

that the selected n sites do not need to correspond to the same particle, but we require that Cu—

Cu distance R is the same for all used particles. We repeat this process 𝑁𝑡 times to generate as 

many training examples as required. We have found that a good performance of NN can be 

achieved with n = 3 and 𝑁𝑡 equal to 200,000.  
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In addition, as previously,
1
 instead of using XANES spectra 𝜇(𝐸) directly, as input for NN we 

provide Δ𝜇(𝐸) = 𝜇(𝐸) − 𝜇𝑏𝑢𝑙𝑘(𝐸), where 𝜇𝑏𝑢𝑙𝑘 is XANES spectrum for bulk material. For 

theoretical spectra calculated with FDMNES and FEFF 𝜇𝑏𝑢𝑙𝑘(𝐸) is obtained in, correspondingly, 

FDMNES and FEFF calculations for bulk Cu. For experimental XANES spectra as 𝜇𝑏𝑢𝑙𝑘 we use 

experimental XANES for Cu foil. 

For NN training we use "Adam" optimization algorithm (stochastic gradient descent with an 

adaptive learning rate) with default parameters values (𝛽1 =  0.9 and 𝛽2 =  0.999). Batch size 

was 256; NN training was performed for 100 training rounds. Loss function was defined as the 

L2-norm between output and target vectors averaged across the batch. 

To validate the NN accuracy we used another set of theoretical spectra that were not used for 

NN training. We compared the structure parameter values, yielded by NN from the 

corresponding XANES spectra, with the true values of these structure parameters. Importantly, 

unlike it was for NN training, for the validation of our NN we used particle-averaged XANES 

spectra, corresponding to realistic Cu NPs of specific size and geometry. To construct validation 

data set we used structure models that were indirectly used for generation of training data set (as 

explained above), as well as additional 17 particles of different sizes and shapes. Results of such 

validation for the first coordination number and interatomic distances are shown in Fig.2 in the 

main text. Results for the 2
nd

, 3
rd

 and 4
th

 coordination shells are shown in Supporting Figure S1. 

The performance of NN on validation data set was also used to find the optimal values for NN 

hyperparameters: number of hidden nodes and layers, types of activation functions, number of 

iterations for training, etc, were chosen, so that NN yields as good as possible accuracy of 

structure parameters for the spectra in the validation data set.  
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To estimate the error bars of the analysis, we repeated NNs training five times with different 

sets of training examples. The structure parameter values, reported here and in the main text, 

correspond to average prediction of all five neural networks. The standard deviation of the 

predictions by five NNs is used as an estimate for the uncertainty.  

III. DETAILS OF GISAXS AND GIXANES EXPERIMENTS 

In situ GISAXS and GIXANES measurements were performed at beamline 12-ID-C of the 

Advanced Photon Source at the Argonne National Laboratory. The experimental setup has 

previously been reported elsewhere.
12-13

 Cun clusters were deposited on the oxide supports with a 

surface coverage of 5% of atomic monolayer equivalent. The cluster-decorated supports were 

placed in a home-built cell reactor of 40 cm
3
 internal volume, equipped with Kapton windows 

that allow X-ray transmission.
13-14

 The reaction gas, composed of 20% CO2, 60% H2 and 20% 

He, was mixed in a gas manifold mixer to maintain a 20 sccm flow. After an initial 2 hour long 

purge of the reactor with the gas mixture, the samples were heated stepwise from 25 °C up to 

375 °C under in situ reaction conditions at a constant pressure of 1.25 atm. To maximize the 

sensitivity of the experiment to the particles on the surface of the support, the X-ray beam was 

scattered off the sample surface close to the angle of total reflection, i.e., the critical grazing 

incident angle (αc = 0.2°). An additional advantage of the low incident angle is that a long stripe 

of the sample surface is illuminated by the X-ray beam, which significantly increases measured 

signal levels in samples with very low surface coverage. The X-ray absorption near edge 

structure (XANES) data were collected at Cu K edge (8.987 keV) on a fluorescence detector 

(Vortex) mounted parallel to the sample surface and perpendicular to the incident beam to 

minimize background from elastic scattering. The spectra of the Cu metal foil, Cu2O, CuO, and 
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Cu(OH)2 bulk standards were collected at the 12-BM beamline of the Advanced Photon Source 

in transmission mode as reference spectra. 

During the processing of the GISAXS data, the two-dimensional X-ray images were analyzed 

by taking cuts in the qxy direction for information about the particle size in the sample plane, and 

in the qz direction for information on particle size in vertical direction. Scattering vectors q are 

calculated as q=(4π/λ)sin(θf) where θf is the scattering half angle and λ is the wavelength of the 

X-rays. The GISAXS images were collected at the energy of 8.9 keV. Using a MATLAB based 

program the two-dimensional images were processed to obtain one-dimensional intensity profiles 

(i.e., scattering intensity I as a function of scattering vector q) for horizontal and vertical planes 

of the sample. Temperature dependencies of horizontal cuts are shown in Fig. S3. Intensity 

profiles were further analyzed  by using the IRENA tool suite to obtain the size distribution of 

the particles distributed on the support.
15

 Modelling II tool was used to fit the GISAXS cuts 

which employs a combination of unified fit tool and size distribution tool. Examples of GISAXS 

data fitting are shown in Fig. S4. The obtained particle size distributions are shown in Fig. S5. 

The size of the smallest resolvable particle is 2 nm. No changes of particle sizes in vertical 

direction were detected upon temperature increase. The GISAXS data / particle sizes in the 

horizontal plane are discussed in the main text. 

IV. SUPPORTING FIGURES 
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Figure S1. Validation of NN accuracy with theoretical particle-averaged XANES spectra for 

distant coordination shells. Results of NN-based analysis of theoretical XANES data, obtained  

in FDMNES
4
 and FEFF

3
 simulations for Cu particles of different sizes (2

nd
 shell coordination 

number �̃�2, 3
rd

 shell coordination number �̃�3 and 4
th

 shell coordination number �̃�4) are compared 

with the true values C2, C3 and C4 for the corresponding particle model. 
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Figure S2. Experimental, temperature-dependent in situ XANES for Cu4, Cu12 and Cu20 clusters 

on ZrO2 and ZnO and temperature-dependencies of the reduced metal fraction wred (see the inset) 

obtained by linear combination analysis. Applied temperature ramp is also shown in the insets. 
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Figure S3: Horizontal cuts of GISAXS data for Cu4, Cu12 and Cu20 clusters on ZnO and ZrO2 

supports under the temperature ramp shown in the insets in Fig. S2. For comparison, the 

horizontal cuts of GISAXS data for oxide supports without clusters deposited are also shown. 
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The lack of bulge formation in the cuts of GISAXS data confirms that morphology of the support 

is stable. 

 

 

Figure S4: GISAXS data for Cu4 on ZrO2 sample (red dots) and fit (green line) obtained by 

using a log-normal distribution. 
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Figure S5: Particle size distributions obtained from GISAXS data for Cu4, Cu12 and Cu20 

clusters on ZrO2 and ZnO supports. Results for Cu12 and Cu20 samples on ZrO2 at temperatures 

225 and 375
0
C are multiplied by 10 for clarity. 
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Figure S6: Cluster diameters d estimated from GISAXS data for Cu4, Cu12 and Cu20 clusters on 

ZrO2 and ZnO supports.  Dashed lines – guides to the eye. As uncertainties we report here full 

widths at half maximum for particle size distributions shown in Fig. S5. Note: the smallest 

resolvable particle size by GISAXS in this experiment is ~ 2 nm. At low temperatures the size of 

the as-deposited clusters and their assemblies is below the GISAXS detection limit. 
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