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Purcell-enhanced spontaneous emission

The total spontaneous emission rate of the chromophores from levels 2 to 1 (γ21) includes

several channels. The electronic excitation in the dye system can either decay into a resonant

(in the present case dipolar) surface plasmon, or it can decay into higher order (non-resonant,

multipolar) surface plasmons. It can also decay radiatively (into far-field photons) or non-

radiatively (into phonons). Spontaneous emission contributes to noise in a spaser,S1,S2 which

we are not able to simulate within the current frequency-domain framework. Thus, we

assume that our systems are ”good” single-mode spasers, where the spontaneous emission

primarily yields dipolar surface plasmons.

The spontaneous emission rate is Purcell-enhanced,S3 since the nanoparticle acts as a res-

onator with a very small mode volume. Quantum-mechanics predicts that the stimulated

emission into a given single mode is always a factor ns stronger than the spontaneous emis-

sion into it (see Section 8.3 in Yariv,S4 Supplement 2 in Khurgin et al.S2 and Supplement

Section 2 in Kewes et al.S5), where ns is the number of resonant surface plasmons:

γ21 =
Ws

ns

. (S1)

ns can be expressed in terms of the total electromagnetic (spasing) energy in the system

(see §80 in Landau and LifshitzS6),

nsh̄ωs =
1

4

∫
dV

(
ε0
∂(ωε′)

∂ω
|Es|2 + µ0|Hs|2

)
. (S2)

To get an estimate for γ21 used in the rate equations results in the main text, it is convenient

to average the number of transitions per unit volume over the gain material,

γ̃21n2 =

∫
G

dV γ21N2 with n2 =

∫
G

dV N2, (S3)
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where N2 is the population density and n2 the total population of level 2. Inserting the

equation for the spasing rate Ws, similar to Eq. (3) in the main text,

Ws =
cε0
√
εhσ21

2h̄ωs

|Es|2, (S4)

yields (assuming spasing in the center of the line with ωs = ω21)

γ̃21 =
σ21c√
εh

(
1
2

∫
G
dV ε0εh|Es|2N2

nsh̄ωsn2

)
. (S5)

The ratio in parentheses quantifies the overlap between the density profiles of the electro-

magnetic energy w and the population inversion N2. The result has the dimension of inverse

volume:

2
4

∫
G
dV ε0εh|Es|2N2

nsh̄ωsn2

=
2
∫
G
dV wN2∫

all
dV w

∫
G
dV N2

≈ 2WGN2

WVGN2

=
2f

VG
. (S6)

The dimensionless factor f = WG/W is the fraction of electromagnetic energy stored in the

gain material (neglecting small magnetic contributions) vs. total electromagnetic energy in

the system, while VG is the modal volume in the gain material, modified by the distribution

of population inversion. We assume that half of the energy is located in the gain material,

2f = 1, approximate VG by the gain volume, (which, for our geometries, is related to the

volume of the nanoparticle), and use the averaged value γ21 = γ̃21 everywhere. This leads to

our final approximation for the spontaneous emission rate:

γ21 =
σ21c

VG
√
εh

= γ21,bulk
ω

γL

λ3

(2π)2n3
hVG

. (S7)

The last equality in Eq. (S7) was obtained expressing σ21 via the bulk (unmodified) radiative

decay rate in the host medium, γ21,bulk (refractive index nh =
√
εh), (see Eq. (20) in Arnold

et al.S7 and references therein). It contains the quality factor of the atomic line QL = ω/γL,
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rather than that of the resonator QR = ω/γR, which enters the conventional Purcell factor

(Eq. (13.3-47) in Saleh and TeichS8). The latter is derived for a narrow atomic line γL � γR,

while for organic dyes (or semiconductors) the situation is reversed, or the linewidths are

comparable. In such situations, the emission linewidth becomes the dominant factor, see

Eq. (37) in Khurgin,S9 or Eq. (40) in the Supplementary Materials to Khurgin and Sun,S2

which explicitly discusses this issue.

The first expression in Eq. (S7), (Eq. (5) in the Main Text) elucidates the corpuscular origin of

the Purcell enhancement as an increase in collision frequency between the emitter/absorber

and the photon, which ”moves” with the velocity c/
√
εh within the small modal volume.

More detailed expressions for the Purcell factor depend on position (Supplementary Materials

to Khurgin and SunS2), include orientational and spatial averaging (Figs. 2ab in Kewes et

al.S5) and even time dependence, due changes in the field distribution with temperature.

To incorporate all this into the model, going beyond the mesoscopic description, would be

an overshot in accuracy, diluting the main message of the work, which lies in the analysis

of retardation, light extraction and thermal effects, keeping the key parameters within the

physically admissible range.

Similarly, quantum coherence effects are smeared out by both strong dephasing of the chro-

mophores, and the fast decay of plasmons. This can be illustrated as follows. The quantum

dynamics of a spaser can be described by three equations: see (4)-(6) in ref.,S1 or (64)-(67)

in ref.,S10 or (34) in ref.S11 (the latter discusses also more elaborate models):

ρ̇ =− (i(ω − ω21) + Γ21)ρ+ ianΩ∗

ṅ =− γ21(1 + n) + g(1− n)− 4Im(aρΩ) (S8)

ȧ =(i(ω − ωM)− γM)a+ iaρ∗Ωntot.

Here, ρ and n are complex amplitudes of non-diagonal and diagonal elements of the density

matrix, which describe polarization and population inversion; a is the complex amplitude of
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(quasi-classical) plasmon number operator; ω, ω21 and ωM are the frequencies of operation,

atomic transition and plasmon, respectively. Γ21 = γL/2 is the decay of non-diagonal part of

density matrix, (i.e., dephasing rate of chromophores, decay of macroscopic polarization), γ21

is the depopulation rate of the upper level, including non-radiative and (Purcell-enhanced)

radiative contributions, and γM is the plasmon decay rate. g is the pumping rate parameter,

Ω is the (normalized) Rabi frequency of the spasing transition, and ntot the total number of

(identical) chromophores.

These equations contain quantum coherence effects. For example, if the spasing field a is

enforced externally (and pumping g is correspondingly removed), all frequencies are equal

and damping and dephasing are absent, the last terms in the first two equations in (S8) are

oscillatory, with the Rabi frequency 2|aΩ|.

All three rates in equations (S8): the dephasing Γ21, Purcell-enhanced relaxation γ21 and

plasmon decay γM, damp any oscillatory processes. These rates are in the range 3× 1011 to

2×1014 s−1. Thus, any quantum coherence oscillations will be suppressed at least within few

picoseconds, which is well below the timescales of interest for practical spaser operation.

For such long times, calculations based on quantum density matrix (optical Bloch) equations

for the spaser (section 2.1 in ref.S1), which do include (strongly damped) coherent effects,

result in the (quasi-static) threshold expression (Eq. (82) in similar ref.S10), which is iden-

tical to the one derived from the purely electrodynamic considerations (using appropriate

microscopic expression for ε′′gain), as noted in ref.S12 (end of section 3 there). Post-threshold

behavior in long pulses is also the same, as discussed in ref.S7

Heat source in the gain material

The gain material is heated by non-radiative relaxation and decay of electronic states into

various vibronic excitations of the dye chromophores. The corresponding heat source follows
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from the corresponding terms in an idealized 4-level system:

QG = h̄ω20γ20,nrN2 + (h̄ω30γ30,nr + h̄ω32γ32)N3 + h̄ω10γ10N1. (S9)

Here, we additionally included non-radiative relaxations from levels 3→ 0 and 2→ 0 (which

are not shown in Fig. 1). The term with h̄ω20 is more appropriate for non-radiative transitions

than h̄ω21. Indeed, in a typical 4-level dye, the vibrational-rotational structure is very

complex and includes many eigenmodes. As a result, the electronic excitation energy will

primarily thermalize through available vibronic states directly to the lowest energy level,

which is 0.

From the quasi-stationary solution of the rate equations for the population densities Ni in

an idealized 4-level system, it follows (see Kristanz,S13 Sections 2.2.4 and 2.2.1) that

N2 =
NtotWp

Wp +Ws + γ21
and Ws + γ21 = γ32

N3

N2

= γ10
N1

N2

, (S10)

with which we can transform Eq. (S9) to

QG =
(
h̄ω20γ20,nr + (h̄ω30γ30,nr/γ32 + h̄ω10 + h̄ω32)(Ws + γ21)

) NtotWp

Wp +Ws + γ21
. (S11)

Neglecting the non-radiative decay channel γ20,nr � Ws + γ21 and assuming fast relaxation

γ32 � γ30,nr finally yields

QG = Ntot(h̄ω10 + h̄ω32)
Wp(Ws + γ21)

Wp +Ws + γ21
(S12)

for the heat source in the gain material.
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The stationary solution for a continuously heated, spher-

ical nanoparticle with Kapitza resistance

In the ambient, the stationary heat equation is

∆T (r) = 0 with r > a, (S13)

with the solution

T (r > a) =
a

r
T2 + T0, (S14)

where T2 is the stationary surface temperature rise (with respect to the background temper-

ature T0) on the ambient side and a is the nanoparticle radius. The flux J over the boundary

S is continuous and fulfills Eq. (11),

J
∣∣
S

= G(T1 − T2) = −ka
∂

∂r
T (r)

∣∣
r=a

=
ka
a
T2, (S15)

where ka is the thermal conductivity of the ambient and T1 is the stationary surface tem-

perature rise on the particle side of the interface. Then, the relative change in temperature

at the boundary is

T1 − T2
T2

=
ka
Ga

, (S16)

which is inversely proportional to the nanoparticle radius a.

Quasistatic spasing condition for confocal spheroidal core-

shell structures

Before solving Maxwell’s equations for a spaser numerically, it is often a good idea to look

at their quasistatic approximation (i. e., neglecting retardation). It can be used when the
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structure under study is much smaller than the typical wavelength. Practically, this means

that the wave vector k is neglected in Maxwell’s equations. The resulting equations can

often be solved analytically and do not contain magnetic fields.

Bohren and HuffmanS14 derived a quasistatic solution for the polarizability α of a confocal

spheroidal core-shell structure in an infinite ambient (see Section 5.4, Eq. (5.35)),

α =
V
(
(ε2 − ε3)

(
ε2 + (ε1 − ε2)(L1 − hL2)

)
+ hε2(ε1 − ε2)

)(
ε2 + (ε1 − ε2)(L1 − hL2)

)(
ε3 + (ε2 − ε3)L2

)
+ hL2ε2(ε1 − ε2)

, (S17)

where ε1, ε2 and ε3 are the dielectric functions of core, shell and ambient, V is the total

volume of the structure and h < 1 is the volume fraction of the core spheroid to the entire

structure. The function Li = L(ei) depends on (i) the eccentricities e1 and e2 of the core

and shell spheroids, (ii) the polarization of the incident electric field and (iii) on whether the

spheroids are oblate or prolate. Note that the definition of the eccentricity depends on the

shape of the spheroid,

e =

√
1− c2

a2
with c < a (oblate),

e =

√
1− a2

c2
with c > a (prolate), (S18)

where c is the semi-axis parallel to the axis of revolution. If the incident electric field is

parallel to the axis of revolution, then

L(e) = Lz(e) = e−2
(
1− e−1

√
1− e2 arcsin(e)

)
(oblate),

L(e) = Lz(e) = (1− e−2)
(

1− (2e)−1 ln

(
1 + e

1− e

))
(prolate). (S19)

If the polarization of the incident field is perpendicular to the axis of revolution, then

L(e) = Lx,y(e) =
1− Lz(e)

2
, (S20)
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where Lz is the appropriate function from Eqs. (S19). By neglecting saturation effects (which

is usually justified near the threshold) and tuning the spaser to the 2→ 1 transition of the

chromophores (meaning ωs = ω21), the gain dielectric function (1) simplifies to

εG = εh − iεL,thr (S21)

at the threshold. The spasing threshold corresponds to the polarization going to infinity in

the unsaturated case, meaning that the fields in the structure become very high for very

small incident fields. In other words, sustained oscillations become mathematically possible

as a solution of a homogeneous equation, i. e., without incident field at all. This yields the

following condition for the denominator of Eq. (S17),

(
L1ε1 + (1− L1)ε2

)(
L2ε2 + (1− L2)ε3

)
+ hL2(1− L2)(ε1 − ε2)(ε2 − ε3) = 0, (S22)

which can be solved to estimate the spasing threshold. Since the complex-valued condi-

tion (S22) should be fulfilled at the threshold wavelength ωthr, we can numerically look

for solution-pairs (ωthr, εL,thr). By doing a sweep over several aspect ratios, we can es-

timate which aspect ratio is favorable in terms of spasing frequency and threshold. For

gain-core/metal-shell structures, there exist three solution branches per polarization of the

incident field that all fulfill condition (S22). They represent different surface plasmon os-

cillations:S15 the highest-wavelength solution branch corresponds to the surface charges at

the inner and outer surface of the metal shell oscillating in phase (”bonding” plasmon),

while for the lowest-wavelength branch the charges oscillate in anti-phase (”antibonding”

plasmon). It can be shown that the middle-wavelength branch always has the highest gain

threshold and is thus of no interest for us. When plotted over the aspect ratio, the three

solution branches only exist up until some aspect ratio κ0. At κ = κ0, two branches merge

and vanish simultaneously: for κ > κ0, only one branch remains (see e. g., Fig. S1b). Thus,

finding a single solution point is usually not sufficient for a complete analysis of a spaser.
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Table S1: Quasistatic results for eight different core/shell spaser configurations with shell
thickness (along all semi-axes) equal to major semi-axis h = a. The core aspect ratio is varied
from 1 (spherical) to 8 (spheroidal), larger aspect ratios would lead to unrealistically thin
structures. The shape of the spasers can be either prolate (cigar-shaped) or oblate (pancake-
shaped) spheroidal. The pumping field can either be parallel (E ‖ z) or perpendicular
(E ‖ x) to the axis of revolution z. In the reference FEM calculations (see Main Text),
the values for the shell thickness and major semi-axis are h = a = 23 nm for the prolate
metal-core/gain-shell and h = a = 30 nm for the oblate gain-core/metal-shell spaser. Every
gain-core/metal-shell configuration has three solution branches for the quasistatic spasing
condition (S22), each corresponding to different surface plasmon oscillations.S15 The middle-
wavelength branch was omitted in the table, since it always has much higher gain threshold.

Core/Shell Pol. Shape Gain threshold Generation wavelength
Metal/Gain E ‖ z Prolate 0.02 < εL,thr < 0.12 395 nm < λthr < 1177 nm
Metal/Gain E ‖ z Oblate 0.12 < εL,thr < 1.66 329 nm < λthr < 395 nm
Metal/Gain E ‖ x Prolate 0.12 < εL,thr < 0.25 359 nm < λthr < 395 nm
Metal/Gain E ‖ x Oblate 0.04 < εL,thr < 0.12 395 nm < λthr < 697 nm

Gain/Metal E ‖ z Prolate

{
0.53 < εL,thr < 34.52
0.96 < εL,thr < 14.44

412 nm < λthr < 455 nm
326 nm < λthr < 333 nm

Gain/Metal E ‖ z Oblate

{
0.07 < εL,thr < 0.53
0.83 < εL,thr < 1.74

401 nm < λthr < 537 nm
333 nm < λthr < 351 nm

Gain/Metal E ‖ x Prolate

{
0.52 < εL,thr < 1.11
0.39 < εL,thr < 0.96

370 nm < λthr < 412 nm
333 nm < λthr < 353 nm

Gain/Metal E ‖ x Oblate

{
0.53 < εL,thr < 6.13
0.96 < εL,thr < 4.51

412 nm < λthr < 419 nm
327 nm < λthr < 333 nm

Quasistatic calculations often underestimate the gain threshold for structures of realistic

size, where retardation and radiative losses start to play a role comparable with absorption.

For a system with a small gain core and a thick metal shell, however, quasistatic predictions

can be very accurate.

Table S1 shows the quasistatic results of eight core/shell spaser configurations with equal

major semi-axis and shell thickness a = h. The aspect ratio is varied from 1-8 to avoid

unrealistically thin structures. As long as geometrical similarity a = h is preserved, these

results hold for quasistatic structures of arbitrary size. Here, we imply a = h = 30 nm for an

oblate spaser, and a = h = 23 nm for a prolate one. Strictly speaking, Eq. (S22) only holds

for confocal (quasistatic) spheroids – however, it still gives a reasonable approximation for
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Figure S1: Quasistatic calculations for three spaser configurations: prolate metal-core/gain-
shell E ‖ z (red), oblate metal-core/gain-shell E ‖ x (green) and oblate gain-core/metal-
shell E ‖ z (blue). (a) Gain thresholds and (b) generation wavelengths over the range of
realistic aspect ratios. The dotted grey lines indicate the aspect ratios with a generation
wavelength of 520 nm, where the gain thresholds have local minima. For the gain-core/metal-
shell structure, the gain thresholds of the first and second branches are out of range in the
plot (see Table S1).

our geometries.

Three spaser configurations have low gain thresholds (εL,thr < 0.15) and generation frequen-

cies in the visible range (see Figs. S1a-b). We choose to simulate the oblate gain-core/metal-

shell structure with E ‖ z and the prolate metal-core/gain-shell structure with E ‖ z. The

spasers are tuned to a generation wavelength of 520 nm: there, the gain threshold has a local

minimum and the (quasistatic) aspect ratios are realistic.

Due to appreciable retardation effects, the quasistatic approximation provides a rough es-
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Table S2: Exact numeric threshold values and core aspect ratios for the spaser configurations
under study.

Spaser configuration κ εL,thr λthr
Oblate gain-core/metal-shell 6.25 0.1133 519.96 nm
Prolate metal-core/gain-shell 1.94 0.1159 519.78 nm

timation of the gain threshold, generation frequency and necessary shape of a core-shell

spaser. Using FEM simulations, we can find the exact numeric values, see Table S2. The

final geometries are shown in Fig. 2 in the Main Text.

Temperature-dependent Drude model

Since the thermal and electromagnetic problems are coupled via a temperature-dependent

dielectric function of the metal component in the spaser, a proper description of the thermal

behavior of the latter is necessary. This has been extensively measured for various metals.

For example, an overview of the temperature dependence of the dielectric function of gold can

be found in PernerS16 (Section 2.1). For silver, measurements by Sundari et al.S17 exist, but

since their imaginary part is questionably high and their real part changes with temperature,

we choose not to use their data. A different approach would be to correct a reliably measured

dielectric function using a temperature-dependent Drude model,

εAg(T ) = εJCAg + χDr
Ag(T )− χDr

Ag(T0), (S23)

εDr
Ag(T ) = ε∞ + χDr

Ag(T ), (S24)

χDr
Ag(T ) = − ωP(T )2

ω(ω + iγ(T ))
. (S25)

Here, εJCAg are the well-known measurements by Johnson and ChristyS18 (measured at room

temperature T0) and εDr
Ag is a Drude interpolation of the data with temperature-dependent

plasma and collision frequency. Do not confuse the Drude plasma frequency ωP with the
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pumping frequency of the spaser ωp.

The temperature-dependence of the plasma frequency is determined by the density and

effective mass of free electrons.S19,S20 Assuming an isotropic material, the density ρ changes

due to thermal expansion with

ρ(T ) =
ρ(T0)√

1 + 3α(T − T0)
, (S26)

where α is the linear thermal expansion coefficient. Since α is on the order of 10−5 K−1 for

metals, the total change of ωP over the available temperature range is negligible. According

to Reddy et al.,S20 the change in ωP due to a temperature-dependent electronic effective

mass is less than 10 % from 300 K to 900 K. Since both of these effects are small, we omit

the temperature-dependence of the plasma frequency for all further purposes.

The thermal behavior of the Drude collision frequency depends on the electron-phonon inter-

action. According to Ujihara,S21 the temperature-dependence of electron-phonon scattering

can be described via

γ(T ) = γ(T0)
f(T )

f(T0)
with f(T ) = T 5

∫ θ/T

0

z4dz

ez − 1
, (S27)

where γ(T0) is the collision frequency at room temperature calculated via Drude interpolation

and θ is the Debye temperature. Using the temperature-dependent measurements for the

Debye temperature by SimerskáS22 (θ(300 K) ≈ 210 K and θ(1000 K) ≈ 190 K), the tempera-

ture-dependent dielectric function for silver can be calculated. The parameters of the Drude

fit are h̄ωP = 9.169 eV, h̄γ = 0.021 eV and ε∞ = 3.58. The data was fitted with a least-square

method in the range 190-1900 nm, which emphasizes longer wavelengths. The results agree

with the measurements of the temperature-dependent dielectric function of silver thin films

by Reddy et al.S20
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Because of ω � γ, Eq. (S23) can be Taylor-expanded as:

εAg(T )− εJCAg = i
ω2
P

ω3

(
γ(T )− γ(T0)

)
+O

(
γ2

ω2

)
. (S28)

This shows that the changes in the real part of the dielectric function are negligible. The

integrand of f in Eq. (S27) can also be Taylor-expanded at elevated temperatures, which

yields for γ:

γ(T ) ≈ γ(T0)
5T − 2θ

5T0 − 2θ
. (S29)

Thus, the imaginary part of εAg increases approximately linearly with temperature.

Quasistatic estimation for the temperature dependence

of the spasing field at the threshold generation frequency

In a quasistatic core/shell spaser, the electric field E in the gain core is almost constant and

is given by Eq. (34) in Arnold et al.:S7

|E(ω)|2 = E2
sat

(
1 +

(
ω − ωthr

γL/2

)2
)(

εL
εL,thr

− 1)

)
. (S30)

Considering it on resonance (ω = ωthr) and using the two-material approximation for the

spasing threshold (Eq. (11) in Arnold et al.S12),

εL,thr =
ε′′M
|ε′M|

εh, (S31)

yields

|E(ωthr)|2 = E2
sat

(
εL|ε′M|
εhε′′M

− 1

)
. (S32)
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The spasing field in the metal, Es, is linearly related via boundary conditions to the (approx-

imately constant) electric field in the core of the structure. Thus, the expected temperature

dependence of the metal spasing field Es at the threshold generation frequency ωthr is:

|Es(ωthr, T )|2 ∝ E2
sat

(
εL|ε′M|
εhε′′M(T )

− 1

)
. (S33)

This is Eq. (14) from the main text. Due to approximations used, especially the assump-

tions of the gain core and the two-materials threshold (S31), it can serve as a guideline

only. With three materials, one can find the threshold from the zero of the denominator

in (S17) (expression (S22)). This replaces εh by εh+f , where f is a cumbersome combination

of parameters, which, however, does not change the qualitative trends. Numerical results

confirm that a similar decrease of metal field with temperature persists also for the prolate

metal-core/gain-shell geometry. However, such analytical estimations are less justified there

due to variations in saturation across the gain material.

Cooling time

Figure S2 shows the same data as in Fig. 3, but in a linear scale for both axes and on a far

longer time scale including a purely thermal cooling simulation. The metal-core/gain-shell

structure has much shorter cooling times. This is related to the higher temperature gradients

leading to a larger heat flux to the ambient; besides, in non-stationary regime, the cooling

time for an arbitrary structure is typically similar to its heating time.

Polystyrene as gain host material

In Kristanz,S13 we also simulated similar spasers with polystyrene (PS) as gain host ma-

terial. PS was recently used as a matrix for organic dyes in microresonators,S23–S25 and
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Figure S2: The average temperature T in the respective spaser components (metal and
gain). Solid curves are for the oblate gain-core/metal-shell, dashed curves for the prolate
metal-core/gain-shell spaser. The maximum operation time is 650 ps and 60 ps, respectively.
The dotted grey lines indicate the end of spaser operation and the start of a purely thermal
cooling simulation.

was also modeled in other spaser simulations.S7,S12 The PS-based spasers turn out to be

much more heat sensitive than the silica-based ones because of lower thermal stability of

PS (melting point is 510-540 K instead of 1986 K for silicaS26,S27) and its inferior thermo-

physical properties (thermal conductivity is 0.155 vs. 2.4 W/(m K), thermal diffusivity is

1.2× 10−3 vs. 8.5× 10−3 cm2/s for silicaS27–S32). As a result, the PS spasers can only oper-

ate for 110 ps (oblate gain-core/metal-shell) and 45 ps (prolate metal-core/gain-shell), before

the PS melting point is reached. This compares unfavorably with the 650 ps and 60 ps for

the silica case.
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(S22) Simerská, M. The Temperature Dependence of the Debye Temperature θ of Silver by

X-ray Diffraction Measurements. Acta Crystallographica 1961, 14, 1259–1262.

(S23) Wei, C.; Liu, S. Y.; Zou, C. L.; Liu, Y.; Yao, J.; Zhao, Y. S. Controlled Self-Assembly of

Organic Composite Microdisks for Efficient Output Coupling of Whispering-Gallery-

Mode Lasers. Journal of the American Chemical Society 2015, 137, 62–65.

S18



(S24) Ta, V. D.; Chen, R.; Sun, H. D. Tuning Whispering Gallery Mode Lasing from Self-

Assembled Polymer Droplets. Scientific Reports 2013, 3, 1362.

(S25) Okada, D.; Nakamura, T.; Braam, D.; Dao, T. D.; Ishii, S.; Nagao, T.; Lorke, A.;

Nabeshima, T.; Yamamoto, Y. Color-Tunable Resonant Photoluminescence and

Cavity-Mediated Multistep Energy Transfer Cascade. ACS Nano 2016, 10, 7058–

7063.
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