Supporting information

Electron-Selective Epitaxial/Amorphous Germanium Stack Contact for Organic-Crystalline Silicon Hybrid Solar Cells

Bingbing Chen¹, Jianhui Chen^{*1}, Kunpeng Ge¹, Linlin Yang¹, Yanjiao Shen¹, Wanbing Lu¹, Li Guan¹, Lizhi Chu¹, Qingxun Zhao¹, Yinglong Wang¹, Ying Xu¹, Yaohua Mai^{*2}

1 Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China

2 Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China

*¹E-mail: <u>chenjianhui@hbu.edu.cn</u> (Jianhui Chen); *²E-mail: <u>yaohuamai@jnu.edu.cn</u>
(Y. Mai)

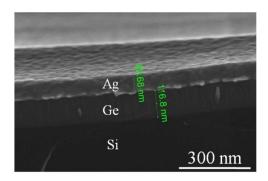
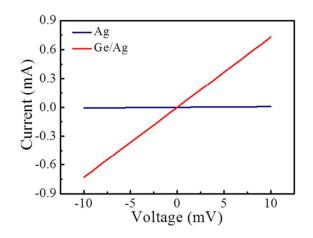
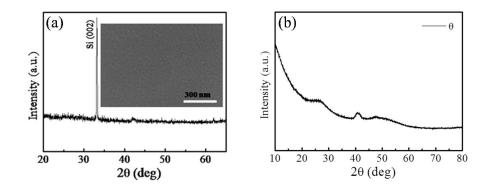




Figure S1 Cross-sectional SEM image of the Si/Ge/Ag heterostructure.

Figure S2 Current-voltage measurements between Ag fingers with and without the Ge thin layer.

Figure S3 Different methods of X-ray diffraction pattern for Ge thin film on Si substrate. (a) is the general method, and (b) is the result using a small angle (2°) X-ray scattering. The peak of Ge is not observed by both methods, implying that the Ge film is amorphous. The inset in (a) is top-view SEM image of the a-Ge thin film on Si substrate, which shows the uniform and compact distribution for grains.

Table S-1 Carrier density and mobility of materials.

	Resistivity ($\Omega \cdot cm$)	Carrier density (cm ⁻³)	Mobility $(cm^{-2} \cdot V^{-1} \cdot s^{-1})$	
a-Ge(120 nm)	867	2.4×10 ¹²	2982	This work
c-Ge	50	2.4×10 ¹³	3900	Ref. [S1]
n-Si	0.1~10	$1 \times 10^{15} \sim 1 \times 10^{18}$	1500	Ref. [S1]
Ag	1.65×10 ⁻¹⁰	-	-	Ref. [S2]

Reference

[S1] Sze S. M. *Physics of Semiconductor Devices*, 2nd ed; Wiley Publications: New York, 1981.

[S2] Matula R. A. Electrical Resistivity of Copper, Gold, Palladium, and Silver. J.

Phys. Chem. Ref. Data. 1979, 8, 1147-1298.