Supporting Information

Wurtzite AlN(0001) Surface Oxidation: Hints from Ab Initio Calculations

Zhi Fang,[†] Enhui Wang,[†] Yafeng Chen,[†] Xinmei Hou,^{*,†} Kuo-Chih Chou,[†] Weiyou Yang,[§] Junhong Chen,[‡] and Minghui Shang^{*,§}

[†] Collaborative Innovation Center of Steel Technology and [‡] School of Material Science and Technology, University of Science and Technology Beijing, Beijing 100083, China

[§] Institute of Materials, Ningbo University of Technology, Ningbo City 315016, China

Tel/Fax: +86 10 6233 2570.

^{*} Corresponding author. E-mail: <u>houxinmeiustb@ustb.edu.cn</u>; (X.H.), <u>smh2875@hotmail.com</u> (M.S.)

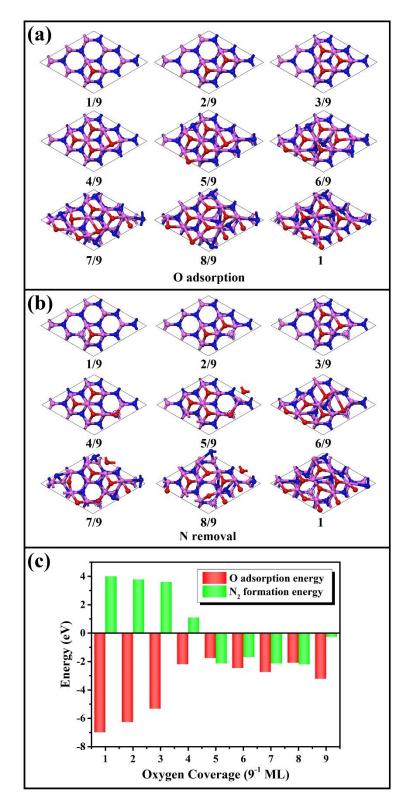


Figure S1. Optimized structures after (a) adsorption of O and (b) emission of N_2 at different oxygen coverages (ranging from 1/9 to 1). (c) Adsorption energies of O adsorption and formation energies of N_2 emission. Removed N atoms are labeled by dashed blue circles.

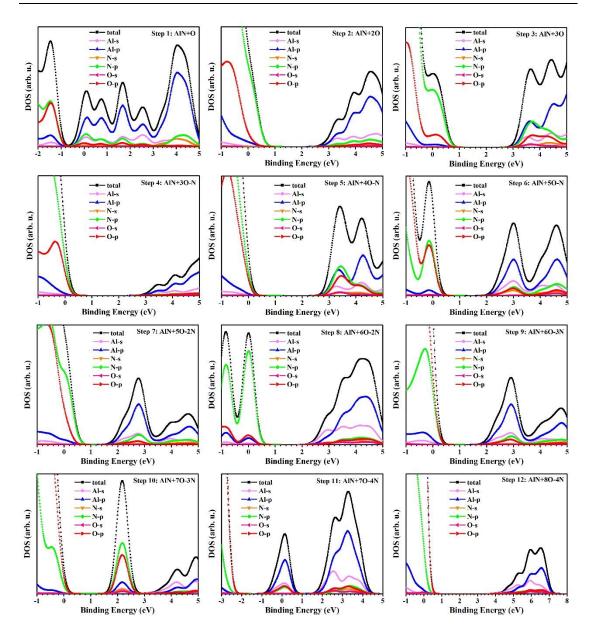
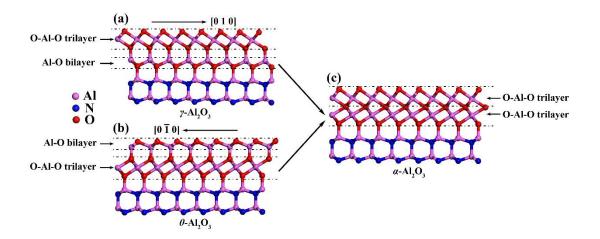



Figure S2. Total and partial density of states for s and p orbitals of each element on the AlN (0001) surface in every step of the oxidation process.

Figure S3. Models of the AlN surface with (a) γ -Al₂O₃-like (b) θ -Al₂O₃-like and (c) α -Al₂O₃-like oxide layers. Models a and c are simulated structures in our work and Model b is quoted from Reference 6.