Supporting Information α-Fe₂O₃ Nanodisk/Bacterial Cellulose Hybrid Membranes as High-Performance Sulfate-Radical-Based Visible Light Photocatalysts under Stirring/Flowing States Zhong-Shuai Zhu a,b , Jin Qu $^{a^*}$, Shu-Meng Hao a , Shuang Han b , Kun-Le Jia b , and Zhong-Zhen Yu^{a,b^*} ^a State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. ^b Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: qujin@mail.buct.edu.cn (J. Qu), yuzz@mail.buct.edu.cn (Z.-Z. Yu) Figure S1. (a, b) TEM images of BFO-30. **Figure S2.** Digital photographs of (a) BFO-10, (b) BFO-20, and (c) BFO-40 membranes with the substrates. **Figure S3.** Digital photographs of a piece of BFO-30 membrane in water (a) before and (b) after 14 days. **Figure S4.** The degradation rate constants (Kapp) of RhB under different conditions with or without 0.2 g L^{-1} of PMS. **Figure S5.** UV-vis diffuse reflectance spectra of BC, α -Fe₂O₃ and BFO-30. **Figure S6.** Degradation rate constants (Kapp) of RhB using BFOs as catalysts with 0.2 g L⁻¹ of PMS. **Figure S7.** Degradation rate constants (Kapp) of RhB using BFO-30 as the catalyst with different amounts of PMS. Figure S8. UV-vis spectra of RhB using BFO-30 with 0.4 g L⁻¹ of PMS. **Figure S9.** Degradation rate constants (Kapp) of RhB using BFO-30 as the catalyst with the same molar amounts of PMS and H_2O_2 . Figure S10. Molecular structures of organic dyes. **Figure S11.** Degradation rate constants (Kapp) of different dyes using BFO-30 as the catalyst with 0.2 g L^{-1} of PMS. **Figure S12.** Relative concentration (C_1/C_0) changes of RhB using BFO-30 with BQ and EDTA (BQ or EDTA: 10 mM; RhB: 50 mL 10 ppm; PMS: 0.4 g L⁻¹). Table S1. Photodegradation performances of BFO-30 membrane with different flow rates | <i>Q</i> (mL h ⁻¹) | m _m (mg) | t
(h) | m
(mg) | <i>D_f</i> (%) | Q_t (10 ⁻³ h ⁻¹) | |--------------------------------|---------------------|----------|-----------|--------------------------|---| | 3 | 7.5 | 84 | 2.52 | 100 | 4.0 | | 6 | 7.5 | 62 | 3.52 | 93 | 7.6 | | 9 | 7.5 | 42 | 3.30 | 87 | 10.5 | Q: the flow rate of RhB per hour; m_m : the mass of BFO-30 membrane; t: total reaction time; m: the consumption of RhB caused by 7.5 mg of BFO-30 membrane in the total reaction time; D_f : the final degradation efficiency until the final reaction time; Q_t : the consumption of MB caused by 1 mg of BFO-30 membrane per hour.