Supporting Information ## Evolution of Waste Iron Rust into Magnetically Separable g-C₃N₄-Fe₂O₃ Photocatalyst: An Efficient and Economical Waste Management Approach Santosh Babar^{†§}, Nana Gavade[§], Harish Shinde[§], Prasad Mahajan[■], Ki Hwan Lee[■], Narayan Mane [◊], Ashish. Deshmukh [⋄], Kalyanrao Garadkar*[§] and Vijaykumar Bhuse*[†] *Department of Chemistry, Kongju National University, Gongju, Chungnam 32588, Republic of Korea. [⋄]Cellular Stress Response Laboratory, Cell Biology Division, Department of Zoology, Shivaji University, Kolhapur, Kolhapur, Maharashtra, India-416004. * Corresponding Author. Tel.: +91 0231 2609167; Fax: +91 0231 2692333. Email: kmg_chem@unishivaji.ac.in (K. M. Garadkar), vijaykbhuse13@gmail.com (V. M. Bhuse) ## **Supporting Figures:** Figure S1: EDS spectrum (a) and SEM image (b) of as-obtained iron rust. [†]Thin Film Research Laboratory, Department of Chemistry, Government Rajaram College, Kolhapur, Maharashtra, India-416004. [§]Nanomaterials Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India-416004. **Figure S2:** (a) SEM and corresponding elemental mappings images of C₃N₄-Fe₂O₃: (b) C element, (C) N element, (d) O element, (e) Fe element Figure S3: FT-IR spectra of Rust, Fe₂O₃, g-C₃N₄, and g-C₃N₄-Fe₂O₃ Figure S4: Photoluminescence (PL) spectra of Fe₂O₃, g-C₃N₄, and g-C₃N₄-Fe₂O₃. **Figure S5:** Reusability of the $g-C_3N_4-Fe_2O_3$ for MO and TE degradation under sunlight irradiation. **Figure S6:** Effects of different scavengers on the photodegradation of MO and TE in the presence of the $g-C_3N_4-Fe_2O_3$ under sunlight irradiation.