Electrochemical Tuning of Metal Insulator

Transition and Non-Volatile Resistive

Switching in Superconducting Films

Anna Palau* ${ }^{\text {§ }}$, Alejandro Fernandez-Rodriguez ${ }^{\S}$, Juan Carlos Gonzalez-Rosillo ${ }^{\S \dagger}$, Xavier Granados ${ }^{\S}$, Mariona Coll ${ }^{\S}$, Bernat Bozzo ${ }^{\S}$, Rafael Ortega-Hernandez ${ }^{\S}$, , Jordi Suñé ${ }^{\neq}$, Narcís Mestres ${ }^{\S}$, Xavier Obradors ${ }^{\S}$, Teresa Puig ${ }^{\S}$
\dagger Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
\ddagger Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
*E-mail: palau@icmab.es
\dagger Present address: Electrochemical Materials Laboratory Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Figure S1. $d\left(\ln (I) / d(\ln (V))\right.$ as a function of $|V|^{0.5}$ at 100 K (squares) and 400 K (circles) for the HRS and LRS, measured at positive (closed symbols) and negative (solid symbols) voltage.

Figure S2. Minor $I-V$ loops measured 100 nm thick, $100 \mu \mathrm{~m}$ wide $V E R$-gate device ramping the voltage to $2 \mathrm{~V}, 3 \mathrm{~V}$ and 4 V . Inset shows the temperature dependence of the different resistance states obtained with the minor loops.

Figure S3. (a) Multiple-branch hysteresis loops performed in a 150 nm thick, $10 \mu \mathrm{~m}$ wide $V E R$-gate device, inducing different resistance states. (b) Retention characteristics of multi-level resistance states.

Figure S4. Voltage pulses and volume bridge resistance evolution obtained for a 50 nm thick, $30 \mu \mathrm{~m}$ wide VERT-gate device.

Figure S5. (a) Simulated hysteresis loops starting from an initial homogenous oxygen concentration (resistance of the initial point is indicated with a star). Dashed lines show the evolution to a stable switching performance (solid lines). (b) Electric field induced at different stages of the switching process, after the application of a sinusoidal voltage pulse of amplitude 2.5 V with a frequency of 50 Hz at the left contact with the right one grounded. Images are acquired every 2.5 ms . Colours in the bar show the value of the electric field in logarithmic scale.

