Supporting information

Radiative enhancement of single quantum emitters in WSe₂ monolayers using site-controlled metallic nano-pillars

Tao Cai,^{a,b} Je-Hyung Kim,^{a,c} Zhili Yang,^a Subhojit Dutta,^a Shahriar Aghaeimeibodi,^a Edo Waks^{a,b}

^a Department of Electrical and Computer Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA.

^b Joint Quantum Institute, University of Maryland and the National Institute of Standards and Technology, College Park, Maryland 20742, USA.

^c Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

* Corresponding author E-mail: edowaks@umd.edu

1. Position dependence of Purcell enhancement to an emitter

Figure S1. Purcell factor as a function of the x-position of an emitter at 780 nm

2. Photoluminescence spectrum of a bare WSe₂ monolayer area

Figure S2. Photoluminescence spectrum of a bare WSe₂ monolayer area. Peaks correspond to the exciton and ensemble of defects and impurities.

3. Photoluminescence spectra of representative nano-pillar induced single defects

Figure S3. Photoluminescence spectra of representative nano-pillar induced single defects in WSe₂ monolayer exhibiting a (a) singlet. (b) doublet.

4. Photoluminescence spectra of representative nano-pillars exhibiting multiple peaks

Figure S4. Photoluminescence spectra of two representative nano-pillars (P1 and P2). Each nanopillar induces multiple emitters, corresponding to multiple peaks in the spectrum.

5. Lifetime versus photoluminescence intensity of naturally existing single defects in WSe₂

Figure S5. Lifetime versus photoluminescence intensity of natural single defects in WSe₂ monolayers. Each point corresponds to a single emitter.

6. Time-resolved photoluminescence measurements of single-defect emitters in WSe₂ monolayers

Figure S6. Time-resolved photoluminescence measurements of plasmonic nano-pillar induced emitters (black circles), fitted to a single exponential decay function (solid red curve)

Figure S7. Lifetime versus photoluminescence intensity of plasmonic nano-pillar induced single defects in WSe₂ monolayers. Each point corresponds to a single emitter.

8. Lifetime versus wavelength of plasmonic nano-pillar induced emitters

Figure S8. Lifetime versus wavelength of plasmonic nano-pillar induced single defects in WSe₂ monolayers. Each point corresponds to a single emitter.

9. Linewidth of single-defect emitters in WSe₂ monolayers

	Plasmonic nano- pillar induced emitters	Non-plasmonic nano-pillar induced emitters	Natural emitters
Linewidth (nm)	0.50±0.24	0.45 ± 0.22	0.45 ± 0.29

Table S1. Linewidth (FWHM) of single-defect emitters in WSe2 monolayers