On the applicability of molybdite as an electrode material in calcium batteries: a structural study of layer-type Ca_xMoO₃

Marta Cabello, Francisco Nacimiento, Ricardo Alcántara, Pedro Lavela, Carlos Pérez Vicente, José L. Tirado

Departamento de Química Inorgánica e Ingeniería Química, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.

XRD and Rietveld refinement

Figure S1. XRD pattern and Rietveld refinement for pristine MoO₃.

		Rietveld refinement	Geometry optimization	
Unit cell parameters	a / Å	3.96156(8)	3.903	
	b / Å	13.8550(3)	14.018	
	c / Å	3.69642(8)	3.675	
Crystallographic sites 4c (x, y, ¹ / ₄)				
Oxygen 1	Х	0.480(3)	0.500	
	У	0.4222(7)	0.434	
Oxygen 2	Х	0.577(3)	0.520	
	У	0.0922(8)	0.088	
Oxygen 3	X	0.048(3)	0.033	
	У	0.2297(8)	0.222	
Molybdenum	X	0.0727(3)	0.076	
	У	0.1013(1)	0.104	
Reliability Factor	R _{wp}	5.6		
	R _B	3.0		

Table S1. Structural parameters of MoO₃ refined by Rietveld method, and after geometry optimization (GGA-LBE+Grimme+U=3) (s.g. Pbnm, 62)

Geometry Optimization of CaMoO₃

The different positions studied are illustrated in Fig. S2. Departing from these positions, the geometrical optimization allowed inferring several structures with minimized energy (Fig. S2). The most favored CaMoO₃ structure is that represented by point "d". It results in the lower free energy, and thus in the higher voltage of the reaction (1) with x=1 as reflected in the voltage values included in Table S2.

Figure S2. Projection on the ab plane of the different starting coordinates of Ca atoms used for the geometrical optimization of the CaMoO₃ phase. In solid black circle, the position used, in open circle, position generated by symmetry operations; in red color the different minima obtained during the optimization.

Table S2. Calculated voltage of the reaction $MoO_3 + Ca \rightarrow CaMoO_3$ for the different minima obtained during the geometry optimization process.

Minimum	а	b	с	d	e	f
Voltage, V	1.80	1.70	1.60	2.23	1.16	0.88