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Supporting Section I. Synthesis and Characterisation 

1. General remarks 

All compounds, if commercially available, were used as received. 4-Acetylthioiodobenzene and 

4,12-bisethynyl[2.2]paracyclophane were synthesised according to literature known 

procedures.1,2 1H- and 13C-NMR spectra were recorded on an Oxford 400 MHz NMR with an 

Avance III 400 spectrometer. The chemical shifts are reported in parts per million (ppm) relative 

to the residual solvent peak and the J values are given in Hz (± 0.1 Hz). Deuterated CD2Cl2 was 

purchased from Sigma Aldrich. The spectra were recorded at 298 K. High resolution ESI-TOF 

was performed on a Bruker maxisTM 4G. The melting point was measured on a Büchi M-565 

melting point apparatus and is uncorrected. The MS spectrum was measured in m/z (%). Silica 

gel for column chromatography (40-63 µm, 230-400 mesh) was purchased from Silicycle Inc and 

TLC was performed on TLC silica gel 60 F254 aluminium sheets from Merck KGaA. 

2. Synthetic procedure and analytical data 

To a stirred solution of CuI (2.79 mg, 14.6 µmol, 0.05 eq), Pd(PPh3)4 (33.9 mg, 29.3 µmol, 

0.1 eq), and 4-acetylthioiodobenzene (204 mg, 732 µmol, 2.5 eq) in 10 mL THF (7.5 mL) and 

diisopropylamine (2.5 mL) under Ar was added 4,12-bisethynyl[2.2]paracyclophane (75 mg, 



2 
 

293 µmol, 1.0 eq). The reaction mixture was heated to 55 °C overnight. Subsequently, it was 

cooled to room temperature, filtered through a plug of celite, and the solvent was removed under 

reduced pressure. The crude product was purified by column chromatography in toluene/CH2Cl2 

(1:1). 4,12-bis(((4’-acetylthio)phenyl)ethynyl)[2.2]paracyclophane was isolated as a white solid 

(88 mg, 158 µmol, 54%). mp: 192-193 °C; 1H NMR (400 MHz, CD2Cl2): δ 7.67 – 7.62 (m, 4H), 

7.48 – 7.44 (m, 4H), 7.04 (dd, J = 7.9, 1.9 Hz, 2H), 6.63 (d, J = 1.9 Hz, 2H), 6.54 (d, J = 7.9 Hz, 

2H), 3.67 (ddd, J = 13.1, 10.4, 2.9 Hz, 2H), 3.23 (ddd, J = 12.8, 10.4, 4.6 Hz, 2H), 3.12 – 2.91 

(m, 4H), 2.44 (s, 6H); 13C NMR (101 MHz, CD2Cl2) δ 193.98, 143.03, 140.32, 137.82, 135.04, 

133.81, 132.47, 131.25, 128.74, 125.52, 124.83, 92.55, 91.99, 34.58, 34.41, 30.69; HRMS (ESI, 

+): m/z calcd. for C36H28NaO2S2 [M+Na]+ 579.1429; found: 579.1423. 
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Figure S1. 1H NMR spectrum (400 MHz, 298 K; CD2Cl2). 
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Figure S2. 13C NMR spectrum (126 MHz, 298 K; CD2Cl2). 
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Figure S3. HR ESI spectrum. 
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3. Crystal data and structure refinement 

Table S1 Single crystal data 

Empirical Formula C36H28O2S2 
Formula Weight 556.75 
Crystal habit colorless plates 
Temperature/K 123 
Crystal system monoclinic 
Space group P 21/n 
a/Å 6.96730(10) 
b/Å 10.7521(2) 
c/Å 18.3959(3) 
α/° 90 
β/° 90.5290(10) 
γ/° 90 
Volume/Å3 1378.04(4) 
Z 2 
ρcalc/g cm-3 1.342 
µ/mm-1 1.313 
F(000) 583.997 
Crystal size/mm3 0.030 x 0.130 x 0.250  
Radiation GaKα (λ = 1.34143 Å) 
Θmax/° 59.338 
Reflections collected 27529 
Independent reflections 3022 merging (r = 0.028) 
Observed reflections 2956 
Parameters 181 
Goodness-of-fit on F2 1.0848 
Final R indices [I≥2σ(I)] 0.0343 
Final R indices [all data] 0.0372 
Largest diff. peak hole/e Å-3 -0.31/0.28 
CCDC number 1836317 
 

Single crystals suitable for crystal structure determination were grown by slow evaporation of a 

solution of hexane and dichloromethane at room temperature. The crystal was measured on a 

Stoe StadiVari. Minimal/maximal transmission 0.84/0.96. The STOE X-AREA suite has been 

used for data collection and integration. The structure was solved by other methods using the 

program Superflip. Least-squares refinement against F was carried out on all non-hydrogen atoms 
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using the program CRYSTALS. Chebychev polynomial weights were used to complete the 

refinement. Plots were produced using CAMERON. Crystallographic data (excluding structure 

factors) for the structure in this paper have been deposited with the Cambridge Crystallographic 

Data Center. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 

Union Road, Cambridge CB2 1EZ, UK [fax: +44-1223-336033 or e-mail: 

deposit@ccdc.cam.ac.uk]. Molecular drawings were generated using Mercury. 

 

Figure S4. ORTEP diagrams of molecule 1, ellipsoids shown at the 50% probability level. 
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Supporting Section II. Transport Measurements 

1. Fast-breaking measurements 

The conductance histograms for fast-breaking and distance-modulation measurements are 

displayed in Fig. S5. The most probable conductance values (3.7·10-6 G0 and 2.7·10-6 G0, 

respectively) match well despite the measurement being performed on different samples and with 

different techniques. Distance-modulation measurements were recorded for a maximum time of 

120 s, and therefore the histogram highlights the most stable configurations, as opposed to the 

fast-breaking measurements, where metastable ones have a bigger impact on the conductance 

histogram. 

 

Figure S5. One-dimensional histogram a) of a fast-breaking measurement of sample A and b) of a 

distance-modulation measurement of sample B. The applied bias is 100 mV in both cases, fast-breaking 

measurements were recorded at 4.0 nm/s. The dashed orange line shows the fit result. 

Figures S6-S9 show the two-dimensional histograms of samples A-D. The concentrations of the 

molecular solution dropcasted were 9 µM for sample A and B, 90 µM for sample C, and 900 µM 

for sample D. As can be seen from the histograms, no significant dependence on the 

concentration is observed and all samples show similar conductance oscillations.  
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For each measurement we perform a thorough characterisation of the bare device before 

dropcasting the molecular solution to ensure that the electrodes are clean and well aligned. The 

characterisation of the bare device used for sample A is shown in Fig. S10. 

 

Figure S6. a) Two-dimensional conductance histogram of sample A with no data selection. b) Examples 

of the 3,000 consecutive breaking traces. The applied bias is 100 mV and the electrode speed is 4.0 nm/s.  
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Figure S7. a) Two-dimensional conductance histogram of sample B with no data selection. b) Examples 

of the 3,000 consecutive breaking traces. The applied bias is 100 mV and the electrode speed is 4.0 nm/s.  

 

Figure S8. a) Two-dimensional conductance histogram of sample C with no data selection. b) Examples 

of the 3,000 consecutive breaking traces. The applied bias is 100 mV and the electrode speed is 4.0 nm/s.  



10 
 

 

Figure S9. a) Two-dimensional conductance histogram of sample D with no data selection. b) Examples 

of the 5,000 consecutive breaking traces. The applied bias is 100 mV and the electrode speed is 4.0 nm/s. 

 

Figure S10. a) Two-dimensional conductance histogram and b) examples of conductance traces from the 

characterisation of the pristine sample used for measurements A. The applied bias is 100 mV and the 

electrode speed is 8.0 nm/s. 
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Estimation of the oscillation periodicity 

To estimate the periodicity of the conductance variations, we selected 315 breaking traces from 

the 3,000 of sample A that showed particularly clear oscillations. For each trace we then 

identified the position of peaks with a prominence of at least 30% and calculated the distance 

between consecutive peaks. We fit a Gaussian to the histogram and find the parameters shown in 

the inset of Fig. S11. 

 

Figure S11. Distribution of the separation between consecutive peaks found in the selected breaking 

traces from sample A. The Gaussian fitted to it is represented as an orange line. 

2. Distance-modulation measurements 

Additional measurements of sample B are shown in Fig. S12. These measurements were taken 

with a peak-to-peak amplitude of 2.5 Å, smaller than those presented in the main text and in the 

following figures. Also in this case, both traces in-phase and in antiphase are observed. 
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More examples of traces in-phase (Fig. S13), in antiphase (Fig. S14) and with doubled frequency 

(Fig. S15-S16) are reported here. Figure S17 shows a trace for which the behaviour changes from 

antiphase to in-phase. The inset shows the moment of the transition. Figure S18 presents the 

Fourier Transform of the distance-modulation traces showing that it is mainly at the same 

frequency of the driving modulation. Figure S19 shows another full distance-modulation trace 

with the initial opening of the gap, the gap size modulation, and the final breaking to the noise level. 

 

 

Figure S12. Examples of distance-modulation traces. The total modulation time is 120 s at a frequency of 

0.5 Hz. The blue, green and orange lines (bottom panel) represent three different conductance 

measurements, whereas the purple line (top panel) represents the voltage applied to the piezoelectric stack. 

The applied piezo voltage translates into a peak-to-peak distance of 2.5 Å and a higher voltage 

corresponds to a larger electrode distance. The conductance responds to the electrode-separation 

modulation either in-phase (blue curve) or in antiphase (orange and green curves). 
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Figure S13. Examples of distance-modulation traces. The total modulation time is 120 s at a frequency of 

0.5 Hz. The blue, green and orange lines (bottom panel) represent three different conductance 

measurements, whereas the purple line (top panel) represents the voltage applied to the piezoelectric stack. 

The applied piezo voltage translates into a peak-to-peak distance of 5.0 Å and a higher voltage 

corresponds to a larger electrode distance. In these cases, the conductance responds in-phase with the gap-

size variation. 
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Figure S14. Examples of distance-modulation traces. The total modulation time is 120 s at a frequency of 

0.5 Hz. The blue, green, cyan and orange lines (bottom panel) represent three different conductance 

measurements, whereas the purple line (top panel) represents the voltage applied to the piezoelectric stack. 

The applied piezo voltage translates into a peak-to-peak distance of 5.0 Å and a higher voltage 

corresponds to a larger electrode distance. In these cases the conductance responds in antiphase with the 

gap-size variation. 
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Figure S15. Examples of distance-modulation traces. The total modulation time is 120 s at a frequency of 

0.5 Hz. The blue, green and orange lines (bottom panel) represent three different conductance 

measurements, whereas the purple line (top panel) represents the voltage applied to the piezoelectric stack. 

The applied piezo voltage translates into a peak-to-peak distance of 5.0 Å and a higher voltage 

corresponds to a larger electrode distance. In these cases the conductance responds with double the 

frequency of the driving modulation. 
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Figure S16. Examples of distance-modulation traces. The total modulation time is 120 s at a frequency of 

0.5 Hz. The blue, green and orange lines (bottom panels) represent three different conductance 

measurements, whereas the purple line (top panel) represents the voltage applied to the piezoelectric stack. 

The applied piezo voltage translates into a peak-to-peak distance of 5.0 Å and a higher voltage 

corresponds to a larger electrode distance. In these cases the conductance responds with double the 

frequency of the driving modulation, with subsequent peaks having different heights. 
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Figure S17. Example of a distance-modulation trace. The total modulation time is 120 s at a frequency of 

0.5 Hz. The blue line represents the conductance measurement, whereas the purple line the voltage applied 

to the piezoelectric stack. The applied piezo voltage translates into a peak-to-peak distance of 5.0 Å, and a 

higher voltage corresponds to a larger electrode distance. The inset shows a portion of the trace in which a 

shift from antiphase to in-phase occurs.  
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Figure S18. Fourier Transform of the conductance traces measured with a displacement modulation at 0.5 

Hz. A pronounced peak is found at the driving frequency of the piezoelectric stack and a smaller one at 

the second harmonic. 

  



19 
 

 

Figure S19. Example of a distance-modulation trace. The full trace is shown here with the initial opening 

of the gap, the gap size modulation at 0.5 Hz for 120 s, and the final breaking to the noise level. The blue 

line represents the conductance measurement, whereas the purple line represents the voltage applied to the 

piezoelectric stack. The applied piezo voltage translates into a peak-to-peak distance of 5.0 Å and a higher 

voltage corresponds to a larger electrode distance.  
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3. Statistical analysis 

 

Figure S20. a) Junction-formation statistics and percentage of molecular junctions showing conductance 

oscillations for fast-breaking measurements (sample A). b) Junction-formation statistics and percentage of 

phase response behaviours of the conductance oscillations in triangular modulation measurements (sample 

B). The percentage of molecular traces is remarkably similar despite the measurements being performed 

on different samples and with different techniques. 

 

4. Estimation of the gauge factor 

The gauge factor of a strain gauge GF is defined as the ratio between the change in relative 

electrical conductance ∆G/G and the mechanical strain ε. From the distance modulation 

experiment it is possible to estimate the gauge factor of the molecule. To do so, we selected 123 

traces from the 806 of sample B that showed particularly clear and stable oscillations. We then 

split each trace into semi-periods of the piezo modulation, i.e., portions in which the electrodes 

move in the same direction. For each of these portions we then identified the maxima and minima 
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in conductance and their respective positions. From the former two, ∆G/G is extracted by 

dividing the change in conductance with the average conductance for the portion of trace 

considered; from the latter, ε is obtained by dividing the electrode displacement (∆L) by the size 

of the relaxed molecule (L = 1.75 nm). The GF is thus given by: 

�� =

∆�
�
�
= 	

∆�
�
∆�
�

 

Since the frequency of the modulation was 0.5 Hz for a maximum time of 120 s, each trace can 

provide up to 120 gauge factor values.  

The GF distribution is shown in Fig. S21. Both in-phase and antiphase traces were among the 

selected traces, which means that both positive and negative values in the gauge factor can be 

obtained: negative gauge factor values are obtained from antiphase traces. The peaks in the 

distribution are found at GF = +5 and GF = -7. The distribution of the absolute values is plotted 

in the main text (Fig. 3b). 

This simple method for estimating the GF yielded the same qualitative result as others with more 

restrictive constraints in the peak selection or with preliminary smoothing of the curves, showing 

that noise spikes do not play an important role in the average result. 
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Figure S21. Distribution of gauge factor values obtained from 123 selected traces of the distance-

modulation measurements performed on sample B. 

Supporting Section III. Transport Calculations 

1. Setup of DFT simulations  

Throughout all DFT calculations we used the def-SVP basis set and the PBE functional.3,4 During 

structural relaxations the total energy was converged to 10-6 a.u. and the maximum norm of the 

Cartesian gradient to 10-3 a.u. Initial configurations of molecular junctions were obtained in the 

following way: The gas-phase molecule was relaxed with one gold atom at each sulfur atom. 

Independently, we relaxed the corresponding gold leads with a benzene ring attached through a 

sulfur atom. We then combined the relaxed structures to the final system, which we call extended 
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central cluster (ECC), as described in Bürkle et al.5 In short, this was done by replacing the 

benzene rings, attached to the leads, with the relaxed molecule. Finally, the obtained system was 

relaxed once again, giving the initial structure for further molecular junction simulations, in 

which the lead separation was varied in steps of 0.1 or 0.2 Å. 

2. Quantum interference effects 

The source of the transmission valley in Fig. 5 lies in the quantum mechanical interference of 

frontier orbital contributions to the transmission. Its presence can be explained solely by the gas-

phase HOMO (GPH) and gas-phase LUMO (GPL). However, the shift in energy of the 

conductance dip as a function of the displacement can only be explained, if one also takes the 

GPH-1 and GPL+1 into account. The underlying theory is described in the literature.6,7 In a toy 

model, the electronic transmission of our ECC can be expressed as 

�	
� =
�
����

�



��	
���	
���	
���	
�    (1) 

where β is the transfer integral of the gold-sulfur bond, �� �⁄ 	
� are matrix elements of the 

energy-dependent advanced and retarded Green’s functions of the molecule that connect terminal 

sulfur atoms, and �� �⁄ 	
� are the local densities of states of the left and right leads. The zeroth-

order Green’s functions, describing a molecular junction, in which the molecule does not interact 

with the leads, are given as 

�	���/�	
� = ∑
��,���,�

∗

 !"�±$%
&       (2) 

with the expansion coefficients (� �⁄ ,& of the k-th molecular orbital at the left/right sulfur atom and 

the orbital energies )&. Using �� �⁄ 	
� ≈ �	��� �⁄ 	
�, the transmission can be written as 

�	
� ∝ ,�	���	
�,


.      (3) 



24 
 

A general rule for the conductance, i.e. the transmission at the Fermi energy 
., can be deduced 

from Eq. 2: Since 
. − )0121 and 
. − )3421 have opposite signs, the corresponding 

summands in the zeroth-order Green’s function �	���	
�, 

��,5676��,5676
∗

 8!"56769$%
+

��,;<76��,;<76
∗

 8!";<769$%
,    (4) 

will have the same (different) signs, if the products (�,0121(�,0121
∗  and (�,3421(�,3421

∗  have 

different (same) signs. The sign of each coefficient (� �⁄ ,& corresponds to the sign of the wave 

function k at the particular site l,r, i.e. on the electrode-connecting sulfur atoms.  

The HOMO and LUMO in the molecular subspace of our ECC at displacements close to the 

observed transmission valley (precisely, for displacements d with -1 Å < d < 2 Å) are related to 

the GPH and GPL, respectively (Fig. 5c). Since these molecular orbitals are centrally symmetric, 

the coefficients (� �⁄ ,& need to be of the same sign for each orbital at the left and right sites. As a 

consequence the products (�,&(�,&
∗  yield identical signs for both orbitals, which finally leads to an 

antiresonance in the transmission �	
� at an energy )0121 < 
 < )3421. 

The shift of this energy upon mechanical deformation can be explained, if we take also the 

HOMO-1 and LUMO+1 (attributed to GPH-1 and GPL+1) into account. To illustrate this, we 

calculate the conductance according to Eq. 3 for a toy model system, which has four molecular 

orbitals with displacement-dependent energies )&	?� ≔ A&arctan	G&+d�+)&
�, where I ∈

{HOMO − 1,HOMO, LUMO, LUMO+ 1}. The coefficients A&, G& and )&
� are chosen to mimic the 

energy dependence of the orbitals according to the DFT results in Fig. 5c. The products 

(�,&(�,&
∗ =: T& were chosen according to the symmetries of the gas-phase molecular orbitals of the 

studied molecule from Fig. 4a: T& = ±1 for centrally symmetric/antisymmetric wave functions. 

Figure S22 shows the resulting transmission map on the left side. The map on the right side 



25 
 

shows the transmission of an extended toy model, where we additionally assume four more 

molecular orbitals (eight in total) at displacement-independent energies of -1.4, -1.2, 5 and 8 eV 

with products T& equal to -1, 1, 1 and -1. 

 

Figure S22. Calculated transmission of a toy model. The molecular orbital energies and their dependence 

on the displacement (causing the horizontal yellow traces) were modelled in such a way as to mimic the 

traces obtained from the DFT calculations in Fig. 5. The simpler model (left map) considers four orbitals, 

while the refined model (right map) additionally considers four more displacement-independent orbitals 

(of which only two are visible in the chosen energy range). 

An antiresonance with a clear displacement dependence occurs between the frontier orbitals 

within this toy model. The antiresonance crosses the orbital energies, where GPH-1, GPH and 

GPL, GPL+1 degenerate. This exactly matches the observations made in the DFT transmission 

map, although the shape of the antiresonance valley is slightly different. The position of the 

antiresonance depends on the relative energy distances ∆0≔ )UV0 − )UV0!W and ∆3≔ )UV39W −

)UV3. At d = −1.5 Å GPH-1 and GPH degenerate and ∆0= 0. Since GPH and GPH-1 energies are 

equal and their coefficients are of opposite sign (TUV0!W = −1 and TUV0 = +1) the 

corresponding summands in Eq. 2 cancel out. Therefore, at d = −1.5 Å the orbitals GPH-1 and 
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GPH do not contribute to the total conductance. For d < −1.5 Å GPH-1 and GPH change their 

order so that ∆0< 0. Now the HOMO-1 is attributed to the GPH and the HOMO to the GPH-1. 

This means that HOMO and LUMO are of different symmetries, which, according to the 

argument above, leads to summands of the same sign and the resulting contributions to the 

conductance add up in a constructive manner. In this case there is no antiresonance between the 

HOMO and the LUMO anymore. An analogous explanation for the vanishing of the destructive 

interference can be given for d > 1.8 Å, where GPL and GPL+1 change their energetic order 

(∆3< 0). 

3. Displacement dependence of molecular orbital energies  

As stated above, the displacement dependence of the orbital energies is crucial for the theoretical 

explanation of the displacement-dependent transmission. The isovalue plots of the four frontier 

orbitals are shown in Fig. 5a. These are sufficient to understand the displacement dependence of 

the orbital energies. First, we consider the GPH and GPL: Starting from d = 0 Å (near the total 

energy minimum at 0.2 Å, where the molecule is closest to its gas-phase configuration) their 

energies increase, if the molecule is stretched (see Fig. 5c). The reason for this is the shifting of 

the stacked benzene rings.  
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Figure S23. Molecular orbitals of the gas phase configuration. The sulfur atoms are terminated with one 

gold atom each. Green circles mark the parts of the wave function which arise from the π-orbitals of the 

stacked benzene rings. These parts show a sign change for GPH and GPL and no sign change for GPH-1 

and GPL+1. 

 

The wave function at the opposing stacked rings shows a sign change for GPH and GPL, marked 

with green circles in Fig. S23, which corresponds to an antibonding configuration. Upon 

stretching these π-orbitals are brought closer together, thereby increasing the energy. 

Additionally, the π-orbitals of each OPE unit are moved away from the orbitals arising from the 
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ethynyl atoms of the other unit, which have the same sign and therefore correspond to a bonding 

configuration, which as well increases the orbital energy. We can use an analogous 

argumentation to justify the decrease of the orbital energy of the two other frontier orbitals, GPH-

1 and GPL+1. Here, the opposing π-orbitals have the same sign and are in a bonding 

configuration. If the molecule is stretched, these π-orbitals are brought closer to each other and 

are removed from the energetically unfavourable ethynyl-chain orbitals, which reduces the orbital 

energy. 

If the benzene rings are shifted too far, the energy change can even be reversed. This is observed, 

e.g., for the trace caused by GPL+1 in Fig. 5c. Starting from d = 0 Å at first, it moves to lower 

energies and from d = 3 Å back to higher ones. This happens because the benzene rings are 

shifted far enough that the π-orbitals start to feel the presence of the next neighbour orbitals of 

the other OPE unit, which are again of opposite sign. This corresponds to a transition from a 

bonding to an antibonding configuration, which results in an increase of orbital energy. 

4. Choice of displacement scale 

The conductance dip in Fig. 5b occurs when the transmission valley intersects the Fermi energy. 

The displacement at which this intersection takes place is affected by the energies of the frontier 

orbitals and their couplings to the leads (i.e. by the lead-molecule bonds). In the system presented 

in Fig. 5 the conductance dip and the minimum of the total energy are separated by 0.2 Å. In 

other simulated configurations (not presented here) with a different pair of leads, the conductance 

dip and total energy minimum were separated by a larger distance of around 1 Å.  
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Since only relative displacements are physically meaningful, we have chosen the zero 

displacement to coincide with the minimum of the conductance in Fig. 5. Instead, the vanishing 

displacement in Fig. 4 is determined by the initial geometry.  

Due to well-known issues of DFT the calculated molecular orbital energies are likely to be offset 

compared to the real quasiparticle energies. Beyond absolute conductance values, this implies 

that there are uncertainties in the DFT with regard to the exact position of the conductance dip as 

a function of the displacement. However, the qualitative results discussed here, including the 

occurrence of an antiresonance feature that is sensitive to the stress in the molecule, are well 

explained. 
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