Supporting Information

Washing-Free Displacement Immunosensor for Cortisol in Human Serum Containing Numerous Interfering Species

Ponnusamy Nandhakumar,[†] Al-Monsur Jiaul Haque,[†] Nam-Sihk Lee,[‡] Young Ho Yoon,[‡] and Haesik Yang^{*,†}

[†]Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea [‡]EONE Laboratories, Incheon 22014, Korea

*E-mail: hyang@pusan.ac.kr. Fax: (+82)-51-516-7421.

Table of Content

- 1. Preparation of DI-Modified ITO Electrodes.
- 2. Procedure of Displacement Assay with Washing.
- 3. Procedure of Competitive Assay with Washing.
- 4. Procedure of Washing-Free Competitive Assay.

Figure S-1. Histogram of the charge values measured at 100 s in the chronocoulograms obtained at different applied potentials (0.05 V, 0.10 V, 0.15 V and 0.2 V) after an incubation period of 10 min at 25 °C in PBS containing 10 μ M Os(bpy)₂Cl₂ and 1.0 mM NADH.

Figure S-2. Chronocoulograms for zero and 1 nM cortisol obtained at an applied potential of 0.05 V after an incubation period of 10 min at 25 °C in PBS containing 10 μ M Os(bpy)₂Cl₂ and 1.0 mM NADH for the detection of zero and 1 nM cortisol using four different methods: (a) washing-free displacement assay, (b) displacement assay with washing, (c) washing-free competitive assay, and (d) competitive assay with washing.

Table S-1. Comparison data for chronocoulograms shown in Figure 5. The charge values measured at 100 s were compared.

Table S-2. Comparison of the developed method with other detection methods.

Preparation of DI-Modified ITO Electrodes. 70 μ L of PBSB containing 100 μ g/mL of DI was dropped on bare ITO electrodes for 2 h at 4 °C and then washed with rinsing buffer.

Procedure of Displacement Assay with Washing. 70 μ L of TBSB containing 10 μ g/mL anti-cortisol IgG-DI conjugate was dropped onto ITO electrodes modified with cortisol BSA and BSA (cortisol-BSA:BSA = 1:10). The electrodes were maintained in the treated state for 30 min at 25 °C, followed by washing with rinsing buffer. For the displacement assay, 70 μ L of PBS containing 1 nM cortisol was dropped onto the electrodes. This state maintained for 30 min at 25 °C, followed by washing with rinsing buffer. Finally, chronocoulograms were obtained at an applied potential of 0.05 V after an incubation period of 10 min at 25 °C in PBS containing 10 μ M Os(bpy)₂Cl₂ and 1.0 mM NADH.

Procedure of Competitive Assay with Washing. 70 μ L of TBSB containing 10 μ g/mL anti-cortisol IgG-DI conjugate and 1 nM cortisol was dropped onto ITO electrodes modified with cortisol BSA and BSA (cortisol-BSA:BSA = 1:10). The electrodes were maintained in the treated state for 30 min at 25 °C, followed by washing with rinsing buffer. Finally, chronocoulograms were obtained at an applied potential of 0.05 V after an incubation period of 10 min at 25 °C in PBS containing 10 μ M Os(bpy)₂Cl₂ and 1.0 mM NADH.

Procedure of Washing-Free Competitive Assay. 1 mL of TBSB containing 1 μ g/mL anti-cortisol IgG-DI conjugate, 1 nM cortisol, 10 μ M Os(bpy)₂Cl₂, and 1.0 mM NADH was dropped onto ITO electrodes modified with cortisol BSA and BSA (cortisol-BSA:BSA = 1:10). The electrodes were maintained in the treated state for 10 min at 25 °C. Finally, chronocoulograms were obtained at an applied potential of 0.05 V.

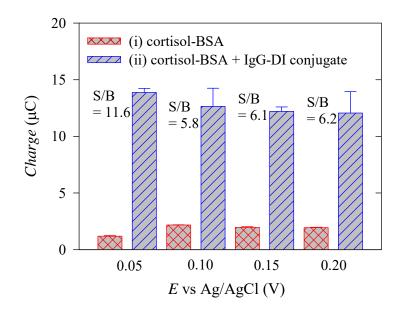
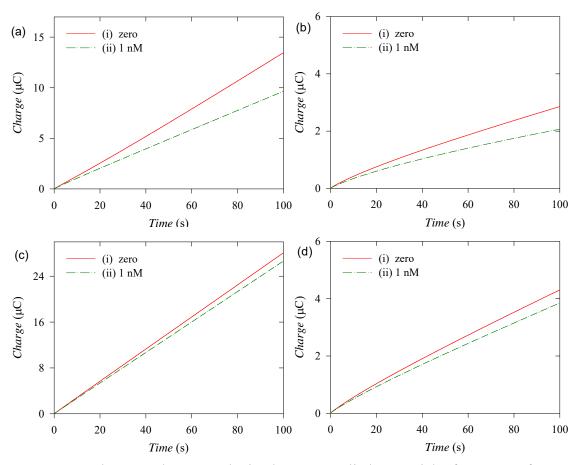



Figure S-1. Histogram of the charge values measured at 100 s in the chronocoulograms obtained at different applied potentials (0.05 V, 0.10 V, 0.15 V and 0.2 V) after an incubation period of 10 min at 25 °C in PBS containing 10 μ M Os(bpy)₂Cl₂ and 1.0 mM NADH.

Figure S-2. Chronocoulograms obtained at an applied potential of 0.05 V after an incubation period of 10 min at 25 °C in PBS containing 10 μ M Os(bpy)₂Cl₂ and 1.0 mM NADH, for the detection of zero and 1 nM cortisol using four different methods: (a) washing-free displacement assay, (b) displacement assay with washing, (c) washing-free competitive assay, and (d) competitive assay with washing.

Table S-1. Comparison data for chronocoulograms shown in Figure 5. The charge values measured at 100 s were compared.

Condition (cortisol-BSA: BSA)	Bare (µC)	Harsh washing (µC)	Zero (μC)	100 μM cortisol (μC)
1:0	1.08	2.14	8.89	7.93
1:3	1.29	3.16	11.2	8.16
1:10	1.23	2.17	13.5	6.59
1:30	1.07	2.41	12.3	7.68

Table S-2. Comparison of the developed method with other detection methods.

		Preparation		
Ref.	Method	period (after	Detection limit	Detection range
		sample		
		injection)		
This	Chronocoulometry	12 min	30 pM	30 pM - 1 µM
work				
1	Square Wave	-	10 µM	$10-80 \ \mu M$
	Voltammetry			
2	Cyclic Voltammetry	35 min	28 pM	28 pM – 1.4 µM
3	Luminescence	30 min	100 pM	$100 \text{ pM} - 10 \mu \text{M}$
4	Fluorescence	3 h	300 pM	300 pM - 30 nM
5	Electrochemical			
	Impedance	30 min	1 pM	1 pM – 10 nM
	Spectroscopy			
6	Fluorescence	3 h	28 nM	$28 \text{ nM} - 3 \mu \text{M}$
7	Enzyme	Overnight	1 pM/well	1 - 280 pM/well
	Immunoassay			

References

(1) Kumar, A.; Aravamudhan, S.; Gordic, M.; Bhansali, S.; Mohapatra, S. S. *Biosens*. *Bioelectron*. 2007, 22, 2138–2144.

(2) Kaushik, A.; Yndart, A.; Jayant, R. D.; Sagar, V.; Atluri, V.; Bhansali, S.; Nair, M. *Int. J. Nanomedicine* **2015**, *10*, 677–685.

(3) Rowe, L.; Deo, S.; Shofner, J.; Ensor, M.; Daunert, S. *Bioconjugate Chem.* **2007**, *18*, 1772–1777.

(4) Petkus, M. M.; McLauchlin, M.; Vuppu, A. K.; Rios, L.; Garcia, A. A.; Hayes, M. A. *Anal. Chem.* **2006**, *78*, 1405–1411.

(5) Arya, S. K.; Chornokur, G.; Venugopal, M.; Bhansali, S. Analyst 2010, 135, 1941–1946.

(6) Zhou, J. C.; Chuang, M. H.; Lan, E. H.; Dunn, B.; Gillman, P. L.; Smith, S. M. J. *Mater. Chem.* **2004**, *14*, 2311–2316.

(7) Sarkar, M.; Das, B. C.; Bora, B. D.; Kumar, V.; Mohan, K.; Meyer, H. H. D.; Prakash, B. S. *Gen. Comp. Endocrinol.* **2007**, *154*, 85–90.