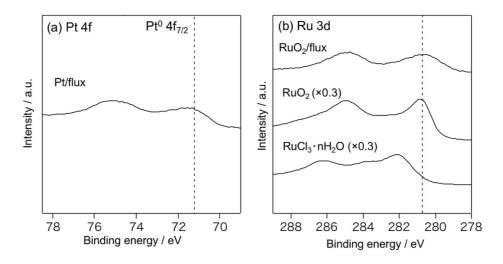
Supporting Information

Flux Synthesis of Layered Oxyhalide Bi₄NbO₈Cl Photocatalyst for Efficient Z-scheme Water Splitting Under Visible Light

Kanta Ogawa,^a Akinobu Nakada,^a Hajime Suzuki,^{a,†} Osamu Tomita,^a Masanobu

Higashi,^a Akinori Saeki,^b Hiroshi Kageyama,^{a,c,*} Ryu Abe^{a,c,*}

a. Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan

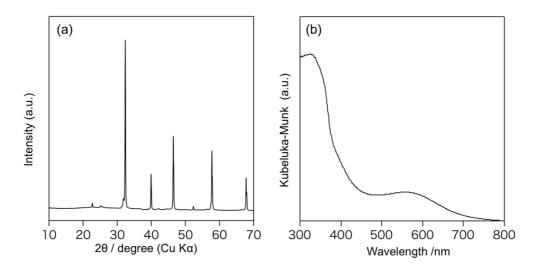
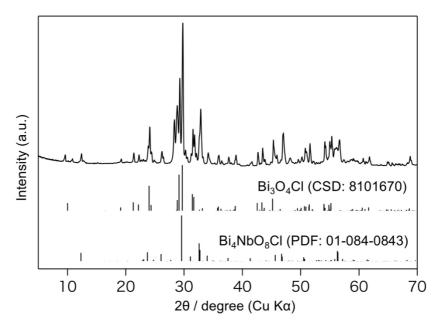
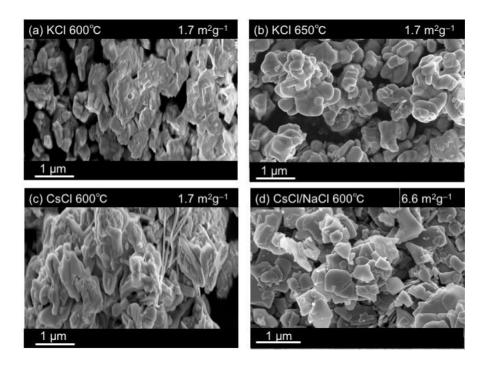

b. Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

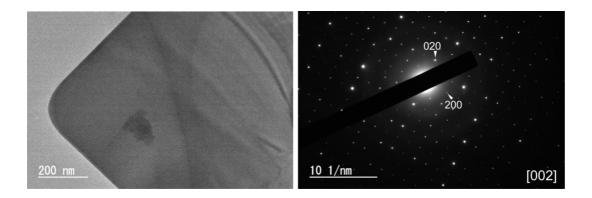
c. JST-CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan

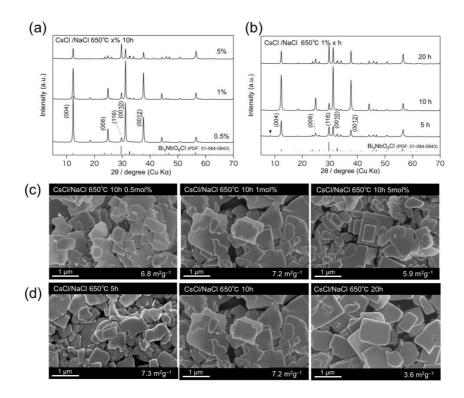
*Email: kage@scl.kyoto-u.ac.jp, ryu-abe@scl.kyoto-u.ac.jp

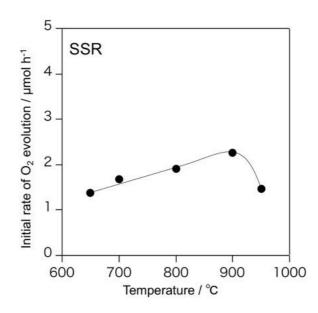
Figure S1. The schematic energy diagram of the Z-scheme water splitting system composed of Bi_4NbO_8Cl , Ru/SrTiO₃:Rh and Fe³⁺/Fe²⁺ redox.

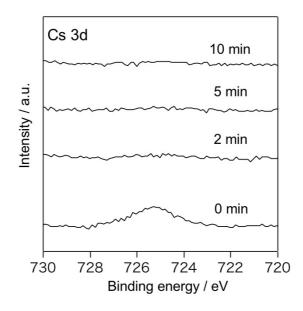
Figure S2. XP spectra of (a) Pt 4f and (b) Ru 3d region of Pt or Ru species loaded Bi_4NbO_8Cl samples prepared via the flux method (CsCl/NaCl flux at 650 °C), along with those of commercial RuO₂ (Wako Pure Chemical Industries, Ltd.) and RuCl₃ · *n*H₂O (Wako Pure Chemical Industries, Ltd) as references for comparison. Each cocatalyst was loaded via impregnation followed by heating under H₂ flow (20 mL min⁻¹) at 150 °C for Pt or Ar flow (20 mL min⁻¹) at 450 °C for RuO₂. The binding energy of Pt⁰ was referred to a reference hand book.¹

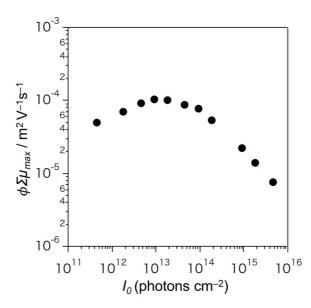




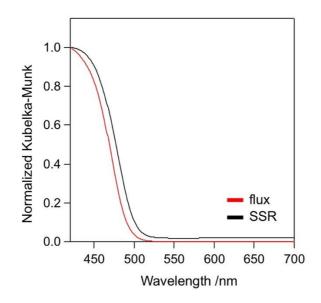

Figure S3. (a) XRD pattern and (b) DRS of as-prepared SrTiO₃:Rh.

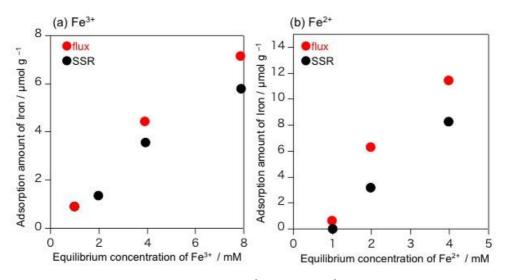

Figure S4. XRD patterns of Bi₄NbO₈Cl prepared by calcination of the mixture of the materials in air at 650 °C without any flux.

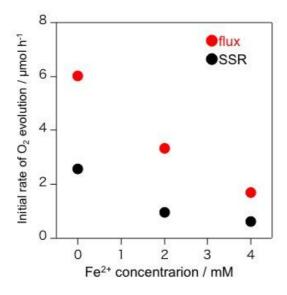

Figure S5. SEM images of Bi₄NbO₈Cl prepared via the flux method (a,b) with KCl at 600 and 650 °C; (c) with CsCl at 600 °C; (d) with CsCl/NaCl at 600 °C.

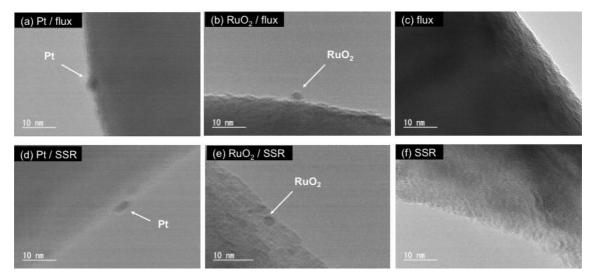

Figure S6. TEM image and electron diffraction patterns of Bi₄NbO₈Cl prepared via the flux method (CsCl/NaCl flux at 650 °C).

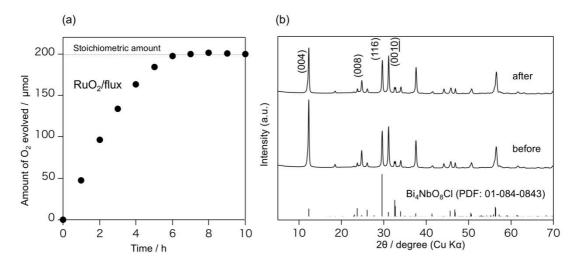

Figure S7. (a,b) XRD patterns and (c,d) SEM images of Bi₄NbO₈Cl prepared with CsCl/NaCl flux at various solute concentrations and calcination times.

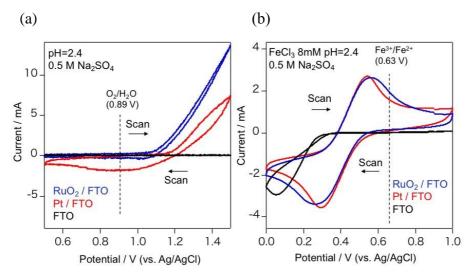

Figure S8. Initial rates of O₂ evolution over Bi₄NbO₈Cl samples prepared at various temperature (650 ~ 950 °C) via the solid-state reaction method in an aqueous FeCl₃ solution (8 mM, 100 mL) under visible light irradiation ($\lambda > 400$ nm).

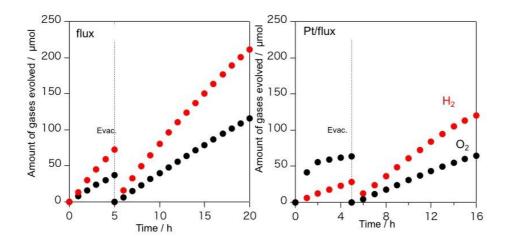

Figure S9. XP spectra of Cs 3d region of the flux sample before and after Ar sputtering (2, 5, 10 min). The binding energies were referenced to the Au $4f_{7/2}$ level of deposited Au metal.


Figure S10. Dependence of $\phi \sum \mu_{\text{max}}$ on the incident laser intensity (I_0) of the flux sample. The initial increase of $\phi \sum \mu_{\text{max}}$ with increasing I_0 is due to a trap filling effect (an increase and saturation of $\sum \mu$), while the gradual decrease at high I_0 is rationalized by a high order deactivation process such as exciton–exciton annihilation, exciton–carrier annihilation, and charge recombination, which occur within the time resolution.^{2,3}


Figure S11. DRS of Bi₄NbO₈Cl samples prepared via the flux method (CsCl/NaCl flux at 650 °C) and the solid-state reaction method.


Figure S12. Adsorption properties of (a) Fe^{3+} and (b) Fe^{2+} ions on the Bi₄NbO₈Cl samples prepared via the flux method (CsCl/NaCl flux at 650 °C) and the solid-state reaction method.


Figure S13. Initial rates of O₂ evolution over Bi₄NbO₈Cl samples prepared via the flux method (CsCl/NaCl flux at 650 °C) and the solid-state reaction method in an solution containing different concentrations of Fe²⁺ (0 ~ 4 mM) and a fixed concentration of Fe³⁺ (8 mM, 100 mL) under visible light irradiation ($\lambda > 400$ nm).


Figure S14. TEM images of (a,d) Pt- or (b,e) RuO₂-loaded Bi₄NbO₈Cl, along with (c,f) unmodified ones. The Bi₄NbO₈Cl samples prepared via (a-c) the flux method (CsCl/NaCl flux at 650 °C) and (d-f) the solid-state reaction method.

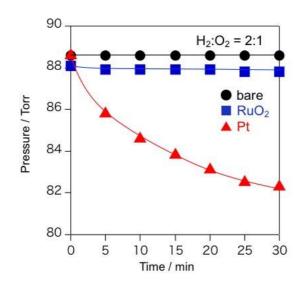

Figure S15. (a) Time course of O₂ evolution over a RuO₂-loaded Bi₄NbO₈Cl sample prepared via the flux method (CsCl/NaCl flux at 650 °C) in an aqueous FeCl₃ solution (8 mM, 100 mL) under visible light irradiation ($\lambda > 400$ nm). (b) XRD patterns of the RuO₂-loaded Bi₄NbO₈Cl before and after the photocatalytic reaction.

Figure S16. CV profiles of FTO substrates loaded with Pt or RuO_2 in 0.5 M aqueous Na_2SO_4 solution (a) in the absence and (b) presence of Fe³⁺ (8 mM, pH 2.4).

Figure S17. Time courses of H₂ and O₂ evolution over a mixture of bare or Pt-loaded Bi₄NbO₈Cl samples prepared via the flux method (CsCl/NaCl flux at 650 °C) (50 mg) and Ru/SrTiO₃:Rh (50 mg) in FeCl₃ aqueous solution (2 mM, 100 mL) at pH 2.4 under visible light irradiation ($\lambda > 400$ nm).

Figure S18. Water formation from H_2 and O_2 in the gas-phase reaction over Pt/flux, RuO₂/flux and flux. A mixture of H_2 and air gases ($H_2 : O_2 = 2 : 1$) was introduced into a gas-circulating system with a Pyrex glass cell containing 20 mg of photocatalyst powder without water.

References

- Jhon, F. M.; William, F. S.; Kenneth, D. B. *Handbook of X-Rays Photoelectron* Spectroscopy; Jill, C., Ed.; Perkin-Elmer Corporation: Minnesota, 1992.
- (2) Kroeze, J. E.; Savenije, T. J.; Warman, J. M. Electrodeless Determination of the Trap Density, Decay Kinetics, and Charge Separation Efficiency of Dye-Sensitized Nanocrystalline TiO₂. J. Am. Chem. Soc. 2004, 126, 7608–7618.
- (3) Saeki, A.; Yasutani, Y.; Oga, H.; Seki, S. Frequency-Modulated Gigahertz Complex Conductivity of TiO₂ Nanoparticles: Interplay of Free and Shallowly Trapped Electrons. J. Phys. Chem. C 2014, 118, 22561–22572.