Supporting Information

A Catalyst-Free Epoxy Vitrimer System Based on Multifunctional Hyperbranched Polymer

Jiarui Han,‡^{a,b} Tuan Liu,‡^b Cheng Hao,^b Shuai Zhang,^b Baohua Guo,*,^a Jinwen Zhang*,^b

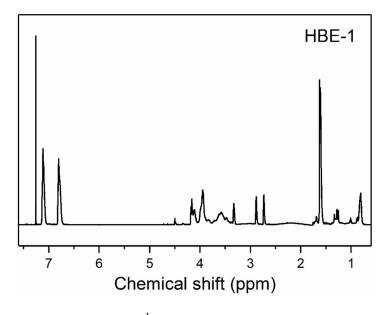
Corresponding authors: jwzhang@wsu.edu (J.Z.) and bhguo@mail.tsinghua.edu.cn (B.G)

Table S1 Formulations for the preparation of vitrimer materials and the amount of heat released during the DSC test.

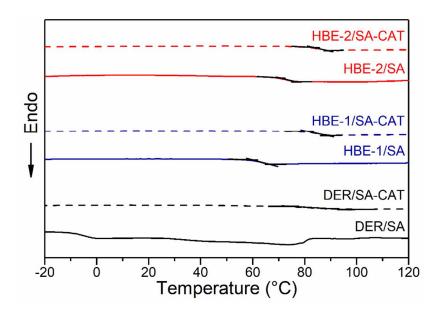
Sample ^a	НВЕ	SA	$Zn(acac)_2^b$	ΔH^{c}
	(g)	(g)	(mg)	(J/g)
HBE-1-SA	1	0.14	-	108.9
HBE-2-SA	1	0.13	-	106.8
HBE-2-SA-CAT	1	0.13	34.0	106.3
DER-SA-CAT	1	0.27	69.9	180.9

^a Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China

^b School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, Washington 99164, United States


[‡] Jiarui Han and Tuan Liu contributed equally to this work.

^aepoxy/anhydride (mol/mol) = 2/1; ^bFor comparison, vitrimers containing Zn(acac)₂ catalysts were also prepared, and the catalyst was added at an amount of 10 mol% on the bases of SA; ^c ΔH values were obtained from DSC test.


Table S2 Properties of HBE and DER 331.

	Reaction Time	Epoxy Value	Hydroxyl Value	M a	PDI	$T_{\mathrm{g}}^{\ \ b}$
	(h)	(mol/100 g)	(mol/100g)	$M_{ m w}^{\;\;a}$		(°C)
DER331	-	0.53	0.065	-	-	-22
HBE-1	16	0.29		2182	1.40	39
HBE-2	48	0.26	0.231	9334	2.78	44

 $[^]aM_{
m w}$ is weight-average molecular weight determined from the GPC test; $^bT_{
m g}$ values were determined from the DSC test.

Figure S1 ¹H NMR spectra of HBE-1.

Figure S2 DSC heating curves of different curing systems at a rate of 5 °C/min under nitrogen atmosphere.

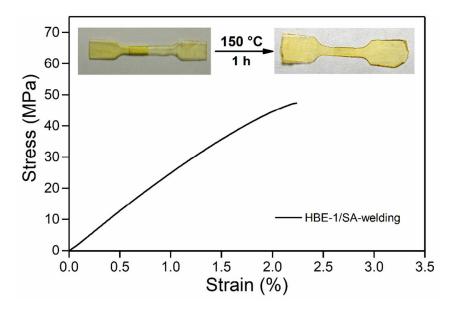
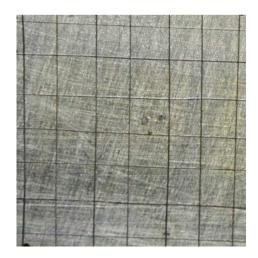


Figure S3 The setup for testing self-healing behavior of the cured HBE/SA and DER/SA-CAT. Samples were sandwiched between the two tin plates. The self-healing test was conducted in a convection oven at 150 °C for different times.

Table S3 Coating Properties of HBE-2/SA


Sample	Thickness	Gouge	Scratch	Adhesion
	(µm)	Hardness ^a	Hardness ^a	Test ^b
HBE-2/SA	80	6Н	4H	5B

^aHardness was tested according to ASTM D3363-05 Standard

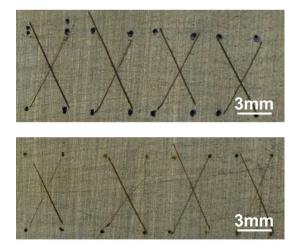


Figure S4 Stress-Strain curves of welded HBE-1/SA sample. The inset photo shows the sample before and after welding

^bAdhesion was tested according to ASTM D3359-17 Standard (test method B)

Figure S5 The digital photo of the sample after taping test according ASTM D3359-17 (test method B).

Figure S6 The digital photo of control (upper) and self-healed (bottom) scratched coatings on tin plates.