Synthesis of (–)-6,7-Dideoxysqualestatin H5 by Carbonyl Ylide Cycloaddition–Rearrangement and Cross-electrophile Coupling

Younes Fegheh-Hassanpour, Tanzeel Arif, Herman O. Sintim, Hamad H. Al Mamari and David M. Hodgson*

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom david.hodgson@chem.ox.ac.uk

Table of Contents

1. General Techniques	3
2. Experimental	4
3. Tabular Comparison of NMR Data between Natural and Synthetic 6,7- dideoxysqualestatin H5 (2)	22
4. Optimization of Cross-Electrophile Coupling Conditions	23
5. Single Crystal X-ray Diffraction Determination	24
5. References	33
6. Spectra	35

1. General Techniques

All reactions requiring anhydrous conditions were carried out under an atmosphere of argon in flame-dried glassware. Tetrahydrofuran (THF), dichloromethane (DCM), ether (Et₂O) and ethyl acetate (EtOAc) were obtained from Grubbs' drying stills.¹ MeOH was dried over 4Å MS for at least 24 h. Petrol (petroleum ether) 30-40 °C was used in flash column chromatography. Flash column chromatography was carried out using silica gel (VWR chemicals, BDH) in accordance with Still's method,² monitored by thin layer chromatography (TLC) (Merck 60 F₂₅₄) plates. TLC plates were viewed using ultraviolet light ($\lambda_{max} = 254/365$ nm) and immersion in KMnO₄, anisaldehyde or vanillin stains, followed by heating. Reverse phase HPLC was carried out using Phenomenex - Luna 5u C18(2)100A (column 250 x 10 mm). Except where stated otherwise, commercially available reagents were used as received. "Freshly distilled" refers to distillation over CaH₂ using a short-path distillation apparatus under a nitrogen atmosphere. Melting points (m.p.) were obtained using an Electrothermal melting point apparatus to the nearest 0.1 °C and are uncorrected. Optical rotations were recorded on a Perkin-Elmer 241 polarimeter, with a path length of 10 cm in CHCl₃ or MeOH. $[\alpha]_D^{25}$ values are given in 10⁻¹ deg cm² g⁻¹. Concentrations (c) are given in grams/ cm^3 . Infrared spectra were obtained using a PerkinElmer FT-IR spectrometer (Universal ATR Sampling Accessory), with absorption maxima quoted in wavenumbers (cm⁻¹). Peak intensities are described as broad (br), weak (w), medium (m) or strong (s). Nuclear magnetic resonance (¹H NMR and ¹³C NMR) spectra were recorded on Bruker Avance UltraShield AVC 500 and AVX 500 (500 MHz) spectrometers in CDCl₃, referenced to residual CHCl₃ singlet at δ 7.27 and CD₃OD quintet at δ 3.31 for ¹H NMR spectra, and to the central line of CDCl₃ triplet at 77.16 as well as the central line of CD₃OD heptet at 49.0 for ¹³C NMR spectra. Chemical shifts are quoted in parts per million (ppm). Coupling constants (J) are measured in Hertz (Hz). The splittings are quoted as singlet (s), doublet (d), triplet (t), quartet (q), or multiplet (m). The 13 C NMR peaks were assigned by standard methods using HSQC. Stereochemical assignments were based on NOE studies and X-ray crystallography. Low resolution mass spectra were obtained using electrospray ionization (ESI). High resolution mass spectra were obtained by electrospray ionization (ESI) using tetraoctylammonium bromide or sodium dodecyl sulfate as the lock mass.

2. Experimental

(4R,5R)-Dimethyl 2,2-dimethyl-4-propyl-1,3-dioxolane-4,5-dicarboxylate (SI-1)

A stirred solution of dimethyl-2,3-O-isopropylidine-L-tartrate (11) (4.76 g, 21.8 mmol), 1iodopropane (2.00 mL, 20.5 mmol) and freshly distilled HMPA (20 mL) in THF (100 mL) was cooled to -78 °C. To this reaction mixture was added dropwise a pre-cooled (-78 °C) solution of LDA [freshly prepared by adding dropwise *n*-BuLi (17 mL, 1.6 M in hexanes, 27 mmol) to a solution of freshly distilled *i*-Pr₂NH (3.2 g, 30 mmol) in THF (100 mL) at 0 °C] over 1 h. The reaction mixture was further stirred for 48 h at -78 °C, then quenched at that temperature with sat. aq NH₄Cl (50 mL) and extracted with EtOAc (3x100 mL). The combined organic layers were washed with sat. aq CuSO₄ (100 mL), dried (MgSO₄), evaporated under reduced pressure and purified by column chromatography to give alkylated tartrate SI-1 (3.51 g, 66%) as a colourless oil; $R_f 0.4$ (10% Et₂O in petrol); $[\alpha]_D^{25}$ = -54.6 (c 1.0, CHCl₃); IR (film, v_{max} cm⁻¹) 2963 s, 2859 s, 1736 s, 1655 m, 1561 m, 1459 s, 1375 m, 1214 s, 1104 s, 1023 s, 849 m; ¹H NMR (500 MHz; CDCl₃) δ 4.94 (1H, s, CO₂MeCH), 3.82 (3H, s, CO₂Me), 3.81 (3H, s, CO₂Me), 1.77 (1H, dt, J 12, 5, 1H of CH₂CH₂CH₃), 1.61 (3H, s, C(CH₃)), 1.55–1.60 (1H, m, 1H of CH₂CH₂CH₃), 1.49–1.44 (1H, m, 1H of CH₂CH₂CH₃), 1.43 (3H, s, C(CH₃)), 1.26 (1H, m, 1H of CH₂CH₂CH₃), 0.90 (3H, t, J 7.0, CH₂CH₂CH₃); ¹³C NMR (100 MHz; CDCl₃) δ 172.5 (CO₂Me), 168.9 (CO₂Me), 112.4 (CO₂MeCCH₂CH₂CH₃), 85.9 (C(CH₃)₂), 79.9 (CO₂MeCH), 52.6 (CO₂Me), 52.2 (CO₂Me), 36.3 (CH₂CH₂CH₃), 27.6 (CCH₃), 25.9 (CCH₃), 17.2 (CH₂CH₂CH₃), 14.1 (CH₂CH₂CH₃); HRMS *m/z* (M+H⁺), found 261.1335 C₁₂H₂₁O₆ requires 261.1333.

3-Methylenepentane-1,5-diol (13)

To a solution of freshly distilled TMEDA (13.9 g, 120 mmol) in Et₂O (30 mL) was added dropwise n-BuLi (48 mL, 2.5 M in hexanes, 120 mmol) at 0 °C and stirred for 15 min. A solution of 3-methyl-3-butenol (12) (5.17 g, 60.0 mmol) in Et₂O (20 mL) was then added dropwise via cannula over 15 min and the reaction mixture allowed to reach rt over 30 min. The reaction mixture was then vigorously stirred for 15 h at rt to give a pale vellow suspension, diluted with freshly distilled THF (30 mL) and cooled to -78 °C before addition of dry paraformaldehyde (1.89 g, 63.0 mmol) in one portion. The reaction mixture was then allowed to warm to rt (1 h) and stirred vigorously overnight. The reaction mixture was then guenched with sat. ag NH₄Cl (50 mL) and the ag layer was extracted with CHCl₃/*i*-PrOH (8:2, 5x100 mL), the combined organic layers were dried (MgSO₄), evaporated under reduced pressure and the residue purified by column chromatography to give diol 13³ (4.27 g, 61%) as a light yellow oil; R_f 0.33 (EtOAc); IR (film, v_{max} cm⁻¹) 3317 br, 2926 s, 2360 m, 1645 w, 1435 w, 1040 s; ¹H NMR (500 MHz; CDCl₃) δ 4.99 (2H, s, CH₂=C), 3.77 (4H, q, J 6, 2xCH₂OH), 2.34 (4H, t, J 6, 2x CH₂CH₂OH), 1.82 (2H, t, J 5, 2xCH₂OH); ¹³C NMR (125 MHz; CDCl₃) δ 143.1 (CH₂=C), 114.4 (CH₂=C), 60.8 (CH₂OH), 39.0 (CH₂CH₂OH); HRMS m/z (M+Na⁺) found 139.0735, C₆H₁₂NaO₂ requires 139.0730.

5-(Benzyloxy)-3-methylenepentan-1-ol (14)

To a stirred solution of diol **13** (1.74 g, 15.0 mmol) in CH₂Cl₂ (20 mL) was added Ag₂O (5.21 g, 22.5 mmol) and benzyl bromide (2.82 g, 16.5 mmol) at rt. After 12 h, the reaction mixture was filtered, evaporated under reduced pressure and purified by column chromatography to give benzyl ether **14** (2.52 g, 81%) as a light yellow oil; R_f 0.43 (40% EtOAc in petrol); IR (film, v_{max} cm⁻¹) 3339 br, 2935 m, 2861 s, 2360 m, 2341 w, 1645 m, 1099 s; ¹H NMR (500 MHz; CDCl₃) δ 7.37–7.28 (5H, m, 5xArC*H*), 4.94 (2H, d, *J* 9, CH₂=C), 4.53 (2H, s, CH₂Ph), 3.73 (2H, t, *J* 6, CH₂OH), 3.62 (2H, t, *J* 7, CH₂OBn), 2.38 (2H, t, *J* 7, CH₂OBn), 1.82 (1H, br. s, OH); ¹³C NMR

(125 MHz; CDCl₃) δ 143.5 (CH₂=*C*), 138.3 (Ar*C*), 128.5 (Ar*C*H), 127.9 (Ar*C*H), 127.8 (Ar*C*H), 113.6 (*C*H₂=*C*), 73.2 (*C*H₂Ph), 69.1 (*C*H₂OBn), 60.6 (CH₂OH), 39.8 (CH₂), 35.8 (CH₂); HRMS *m/z* (M+Na⁺) found 229.1196, C₁₃H₁₈NaO₂ requires 229.1199.

(((5-Iodo-3-methylenepentyl)oxy)methyl)benzene (15)

To a solution of PPh₃ (2.30 g, 8.77 mmol) and imidazole (1.66 g, 24.4 mmol) in CH₂Cl₂ (37 mL) was added iodine (3.10 g, 12.2 mmol) at 0 °C. After 15 min, benzyl ether **14** (2.30 g, 11.1 mmol) in CH₂Cl₂ (6 mL) was added dropwise. The ice bath was removed and the suspension was stirred for 2 h at rt. H₂O (30 mL) was then added and the aq layer extracted with CH₂Cl₂ (2x30 mL), the combined organic layers were dried (MgSO₄), evaporated under reduced pressure and the residue purified by column chromatography to give iodide **15** (3.50 g, quant.) as a colourless oil, R_f 0.21 (20% CH₂Cl₂ in petrol); IR (film, v_{max} cm⁻¹) 2826 s, 1645 m, 1595 m, 1495 m, 1453 s, 1361 s, 1098 s; ¹H NMR (500 MHz; CDCl₃) δ 7.38–7.25 (5H, m, Ar*H*), 4.91 (2H, d, *J* 12, C=CH₂), 4.53 (2H, s, *CH*₂Ph), 3.59 (2H, t, *J* 7, *CH*₂OBn), 3.26 (2H, t, *J* 8, *CH*₂I), 2.63 (2H, t, *J* 8, ICH₂*CH*₂), 2.36 (2H, t, *J* 7, OBnCH₂*CH*₂); ¹³C NMR (125 MHz; CDCl₃) δ 145.3 (*C*=CH₂), 138.4 (Ar*C*), 128.5 (Ar*C*H), 127.8 (Ar*C*H), 127.75 (Ar*C*H), 113.0 (C=*C*H₂), 73.2 (*C*H₂Ph), 68.9 (*C*H₂OBn), 40.7 (ICH₂CH₂), 35.7 (*C*H₂CH₂OBn), 3.54 (ICH₂); HRMS *m/z* (M+Na⁺) found 339.0215, C₁₃H₁₇INaO requires 339.0216.

(*4R*,5*R*)-Dimethyl 4-{5-(benzyloxy)-3-methylenepentyl}-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (16)

A stirred solution of dimethyl-2,3-*O*-isopropylidine-*L*-tartrate **11** (873 mg, 4.0 mmol), iodide **15** (632 mg, 2 mmol) and freshly distilled HMPA (2.70 mL) in THF (10 mL) was cooled to -78 °C. To this reaction mixture was added dropwise a pre-cooled (-78 °C) solution of LDA [4.0 mmol, freshly prepared by adding dropwise *n*-BuLi (1.6 mL, 2.5 M

in hexanes, 4.0 mmol) to a solution of freshly distilled *i*-Pr₂NH (405 mg, 4.0 mmol) in THF (10 mL) at 0 °C] over 1 h. The reaction mixture was further stirred for 48 h at -78°C, and then guenched at the same temperature with sat. aq NH₄Cl (20 mL), extracted with EtOAc (3x30 mL), washed with sat. aq CuSO₄ (30 mL), The combined organic layers were dried (MgSO₄), evaporated under reduced pressure and purified by column chromatography to give alkylated tartrate 16 (637 mg, 78%) as a colourless oil; $R_f 0.48$ (40% Et₂O in petrol); $[\alpha]_D^{25} = -61.4$ (*c* 0.07, CHCl₃); IR (film, v_{max} cm⁻¹) 3066 w, 2991 m, 2858 w, 1756 s, 1739 s, 1647 w, 1453 m, 1382 m, 1209 s, 1103 s; ¹H NMR (500 MHz; CDCl₃) § 7.39–7.28 (5H, m, 5xArCH), 4.95 (1H, s, CHCO₂Me), 4.78 (2H, d, J 16, CH₂=C), 4.51 (2H, s, CH₂Ph), 3.80 (3H, s, CO₂Me), 3.80 (3H, s, CO₂Me), 3.56 (2H, t, J7, CH2OBn), 2.32 (2H, t, J 7, CH2CH2OBn), 2.21-2.11 (1H, m, 1H of CH2CH2C=C), 2.03-1.91 (2H, m, CH₂CH₂C=C), 1.81–1.74 (1H, m, 1H of CH₂CH₂C=C), 1.61 (3H, s, CH₃C), 1.45 (3H, s, CH₃C); ¹³C NMR (125 MHz; CDCl₃) δ 172.3 (CO₂Me), 168.8 (CO₂Me), 145.5 (CH₂=C), 138.5 (ArC), 128.5 (ArCH), 127.8 (ArCH), 127.7 (ArCH), 112.8 (CH₂=C), 111.0 (CMe₂), 85.6 (CCO₂Me), 80.2 (CHCO₂Me), 72.9 (CH₂Ph), 68.9 (CH₂OBn), 53.0 (CO₂Me), 52.5 (CO₂Me), 36.4 (CH₂), 32.7 (CH₂), 30.4 (CMe), 27.8 (CMe), 26.1 (CH₂CCO₂Me); HRMS m/z (M+Na⁺) found 429.1886, C₂₂H₃₀NaO₇ requires 429.1884.

(*4R*)-Dimethyl 4-{5-(benzyloxy)-3-methylenepentyl}-5-hydroxy-2,2-dimethyl-1,3dioxolane-4,5-dicarboxylate (17)

A pre-cooled (-78 °C) solution of alkylated tartrate **16** (5.45 g, 13.4 mmol) in THF (65 mL) was added dropwise over 1 h to a stirred solution of LDA [20.1 mmol, freshly prepared by adding dropwise *n*-BuLi (8 mL, 2.5 M in hexanes, 20 mmol) to a solution of freshly distilled *i*-Pr₂NH (2.6 mL, 20 mmol) in THF (20 mL) at 0 °C] at -78 °C. After 30 min stirring at -78 °C, MoOPH⁴ (8.7 g, 20 mmol) was added in one portion (by solid addition funnel) and the reaction mixture warmed to -40 °C over 15 min. The reaction was stirred at -40 °C for 24 h, then warmed to -20 °C and stirred for a further 3 h. The reaction

mixture was quenched by adding sat. aq Na_2SO_3 solution and warmed to rt. The reaction mixture was diluted with Et₂O (100 mL) and H₂O (50 mL). The layers were separated and the aq layer extracted with Et₂O (3x100 mL). The combined organic layers were washed with sat. aq $CuSO_4$ (50 mL), dried (MgSO₄), evaporated under reduced pressure and the residue purified by column chromatography (15% EtOAc in petrol) to give a mixture of diastereomer of hydroxyacetonide 17 (4.0 g, 71%) as a colourless oil; R_f 0.32 and 0.25 (30% EtOAc in petrol); $[\alpha]_D^{25} = -5.2$ (*c* 0.11, CHCl₃); IR (film, v_{max} cm⁻¹) 3453 br, 2990 m, 2952 s, 2858 m, 1751 s, 1093 s; ¹H NMR (500 MHz; CDCl₃) & 7.36-7.28 (5H, m, 5xArCH), 4.81 (2H, d, J 6, CH₂=C), 4.59 (1H, s, OH), 4.51 (2H, s, CH₂Ph), 3.81 (3H, s, CO₂Me), 3.69 (3H, s, CO₂Me), 3.56 (2H, t, J7, CH₂OBn), 2.35 (2H, t, J7, CH₂CH₂OBn), 2.24-2.03 (3H, m, CH₂, 1H of CH₂), 1.84 (1H, td, J 14, 7, 1H of CH₂CCO₂Me), 1.60 (3H, s, CH₃C), 1.57 (3H, s, CH₃C); ¹³C NMR (125 MHz; CDCl₃) δ 171.6 (CO₂Me), 170.3 (CO₂Me), 145.7 (CH₂=C), 138.6 (ArC), 128.5 (ArCH), 127.8 (ArCH), 127.7 (ArCH), 113.7 (CH₂=C), 110.9 (CMe₂), 101.9 (HO-C-CO₂Me), 91.0 (CCO₂Me), 73.1 (CH₂Ph), 68.9 (CH₂OBn), 54.1 (CO₂Me), 52.6 (CO₂Me), 36.4 (CH₂), 34.0 (CH₂), 30.9 (CMe), 29.3 (CMe), 27.5 (CH₂CCO₂Me); HRMS m/z (M+Na⁺) found 445.1825, C₂₂H₃₀NaO₈ requires 445.1833.

(*R*)-Dimethyl 2-{5-(benzyloxy)-3-methylenepentyl}-2-{(*tert*-butyldimethylsilyl)oxy}-3oxosuccinate (18)

A mixture of hydroxyacetonide **17** (537 mg, 1.27 mmol) and H_2SO_4 (100 mL, 0.1 M in MeOH) was stirred at rt for 48 h. Pyridine (1.0 mL, 12.7 mmol) was then added dropwise, the mixture was concentrated under reduced pressure and the residue diluted with Et₂O (200 mL) and filtered through a pad of Na₂SO₄. The filtrate was concentrated under reduced pressure to give crude hydroxyketone as a yellow oil, which was used in the next step without further purification. DMAP (15.5 mg, 0.13 mmol) was added to the above crude hydroxyketone, followed by a solution of 2,6-lutidine (0.44 mL, 3.82 mmol) in

CH₂Cl₂ (3 mL). Finally, TBSOTf (0.87 mL, 3.81 mmol) was added. After 24 h at rt, H₂O (10 mL) was added and the aq layer was extracted with CH₂Cl₂ (3x20 mL). The combined organic layers were dried (MgSO₄), evaporated under reduced pressure and the residue purified by column chromatography to give unsaturated ketone **18** (411 mg, 68%) as a colourless oil; R_f 0.43 (10% EtOAc in petrol); $[\alpha]_D^{25} = -2.6$ (*c* 0.30, CHCl₃); IR (film, ν_{max} cm⁻¹) 3465 br, 2954 s, 2929 s, 2857 m, 1744 s, 1452 m, 1256 s; ¹H NMR (500 MHz; CDCl₃) δ 7.36–7.28 (5H, m, 5xArCH), 4.82 (2H, s, CH₂=C), 4.52 (2H, s, CH₂Ph), 3.84 (3H, s, CO₂Me), 3.76 (3H, s, CO₂Me), 3.57 (2H, t, *J* 7, CH₂OBn), 2.35 (2H, t, *J* 7, CH₂CH₂OBn), 2.27–2.20 (1H, m, 1 H of CH₂CH₂C=C), 2.19–1.98 (3H, m, 1 H of CH₂CH₂C=C and CH₂CH₂C=C), 0.88 (9H, s, SiCMe₃), 0.17 (3H, s, SiMe), 0.17 (3H, s, SiMe); ¹³C NMR (125 MHz; CDCl₃) δ 190.1 (C=O), 169.8 (CO₂Me), 162.7 (CO₂Me), 145.5 (CH₂=C), 138.5 (ArC), 128.5 (ArCH), 127.8 (ArCH), 127.7 (ArCH), 111.3 (CH₂=C), 83.8 (CCO₂Me), 73.1 (CH₂Ph), 68.9 (CH₂OBn), 53.6 (CO₂Me), 52.9 (CO₂Me), 36.4 (CH₂), 34.9 (CH₂), 29.8 (CH₂), 25.9 (CMe₃), 18.9 (CMe₃), -3.0 (SiMe); -3.3 (SiMe); HRMS *m*/*z* (M+Na⁺) found 501.2228, C₂5H₃₈SiNaO₇ requires 501.2279.

(*R*)-Dimethyl 2-{5-(benzyloxy)-3-methylenepentyl}-2-{(*tert*-butyldimethylsilyl)oxy}-3-(2-tosylhydrazono)succinate (19)

A mixture of unsaturated ketone **18** (3.2 g, 6.69 mmol) and TsNHNH₂ (1.87 g, 10.0 mmol) in THF (70 mL) was heated at 75 °C under reflux. After 24 h the mixture was concentrated under reduced pressure and purified by column chromatography to give hydrazone **19**⁵ (3.48 g, 81%, 85% brsm) as a colourless glass; R_f 0.45 (20% EtOAc in petrol); $[\alpha]_D^{25} = -6.8$ (*c* 0.51, CHCl₃); IR (film, ν_{max} cm⁻¹) 3215 br, 2952 m, 2929 m, 2856 s, 2360 m, 1757 s, 1702 s, 1170 s, 1086 s; ¹H NMR (500 MHz; CDCl₃) δ 11.63 (1H, s, NH), 7.84 (2H, d, *J* 8, 2xArC*H*), 7.34 (4H, m, 4xArC*H*), 7.32–7.28 (3H, m, 3xArC*H*), 4.84 (1H, s, 1H of CH₂=C), 4.80 (1H, s, 1H of CH₂=C), 4.54 (2H, s, CH₂Ph), 3.75 (3H, s,

CO₂Me), 3.64 (3H, s, CO₂Me), 3.59 (2H, t, *J* 7, CH₂OBn), 2.40 (3H, s, *Me*-Ar), 2.34 (2H, t, *J* 7, CH₂CH₂OBn), 2.05–1.97 (3H, m, CH₂CH₂C=C and 1H CH₂CH₂C=C), 1.93–1.86 (1H, m, 1 H of CH₂CH₂C=C), 0.79 (9H, s, SiCMe₃), -0.10 (3H, s, SiMe), -0.24 (3H, s, SiMe); ¹³C NMR (125 MHz; CDCl₃) δ 172.3 (CO₂Me), 161.8 (CO₂Me), 146.0 (CH₂=C), 144.8 (ArC), 138.6 (ArC), 136.9 (ArCMe), 135.3 (N=CCO₂Me), 129.8 (ArCH), 128.5 (ArCH), 128.2 (ArCH), 127.8 (ArCH), 127.7 (ArCH), 110.5 (CH₂=C), 80.2 (CCO₂Me), 73.1 (CH₂Ph), 69.0 (CH₂OBn), 52.5 (CO₂Me), 52.3 (CO₂Me), 36.7 (CH₂), 35.6 (CH₂), 30.2 (CH₂), 25.7 (CMe₃), 21.7 (ArMe), 18.5 (CMe₃), -3.1 (SiMe), -3.2 (SiMe); HRMS *m/z* (M+Na⁺) found 669.2642, C₃₂H₄₆N₂NaO₈SSi requires 669.2642.

(*R*)-Dimethyl 2-{5-(benzyloxy)-3-oxopentyl}-2-{(*tert*-butyldimethylsilyl)oxy}-3diazosuccinate (20)

A solution of hydrazone **19** (110 mg, 0.17 mmol) and sudan red 7B (~1 mg) in CH₂Cl₂ (20 mL) was cooled to -78 °C. A stream of O₃ in oxygen was bubbled through the solution. Ozone treatment was terminated when the colour of reaction mixture was changed from red to light pink. The excess O₃ was removed by bubbling N₂ through the reaction mixture. After 5 min, Et₃N (0.1 mL, 0.68 mmol) was added and reaction mixture was allowed to warm to rt. After 3 h, the reaction mixture was passed through a pad of silica, evaporated under reduced pressure and purified by column chromatography to give diazoketone **20** (67 mg, 80%) as a bright yellow oil; R_f 0.54 (50% Et₂O in petrol); $[\alpha]_D^{25}$ = +1.4 (*c* 0.50, CHCl₃); IR (film, υ_{max} cm⁻¹) 2954 m, 2857 m, 2360 s, 2341 m, 2098 s, 1748 m, 1710 s, 1135 s; ¹H NMR (500 MHz; CDCl₃) δ 7.36–7.30 (5H, m, 5xArC*H*), 4.50 (2H, s, C*H*₂Ph), 3.74–3.72 (8H, m, 2xCO₂Me, C*H*₂OBn), 2.70 (2H, t, *J* 6, O=C–CH₂), 2.76–2.61 (1H, m, 1H of CH₂), 2.52–2.46 (1H, m, 1H of CH₂), 2.27–2.23 (2H, m, O=C–CH₂), 0.87 (9H, s, SiCMe₃), 0.10 (3H, s, SiMe), 0.06 (3H, s, SiMe); ¹³C NMR (125 MHz; CDCl₃) δ 207.7 (C=O), 171.3 (CO₂Me), 165.2 (N₂CCO₂Me), 138.2 (ArC), 128.5 (ArCH), 127.83 (ArCH), 127.82 (ArCH), 75.4 (TBSO-C-CO₂Me), 73.4 (CH₂Ph), 65.4 (CH₂OBn),

52.9 (CO₂*Me*), 52.1 (CO₂*Me*), 43.2 (O=C-*C*H₂), 37.8 (O=C-*C*H₂), 32.1 (CH₂), 25.8 (C*Me*₃), 18.6 (*C*Me₃), -3.5 (SiMe), -3.9 (SiMe); HRMS m/z (M+Na⁺) found 515.2185, C₂₄H₃₆N₂NaO₇Si requires 515.2184.

Trimethyl-(*1S*,*2R*,*5R*,*7S*)- 5-(2-(benzyloxy)ethyl)-2-{(*tert*-butyldimethylsilyl)oxy}-6,8dioxabicyclo[3.2.1]octane-1,2,7-tricarboxylate (21)

Rh₂(OAc)₄ (~2 mg, cat.) was added to a stirred solution of diazoketone 20 (68 mg, 0.14 mmol) and freshly distilled methyl glyoxylate⁶ (52 mg, 0.59 mmol) in toluene (0.5 mL) and heated to 110 °C. After 1 h, the reaction mixture was allowed to cool to rt, diluted with Et₂O (10 mL), filtered through Celite and evaporated under reduced pressure.⁷ Purification of the residue by column chromatography (20% Et₂O in petrol) gave the major cycloadduct **21** (58 mg, 75%) as a colourless oil; $R_f 0.47$ (50% Et₂O in petrol); $[\alpha]_{\rm D}^{25}$ $= +36.5 (c \ 0.21, \text{CHCl}_3); \text{ IR (film, } v_{\text{max}} \text{ cm}^{-1}) 2952 \text{ s}, 2855 \text{ s}, 1753 \text{ s}, 1436 \text{ s}, 1258 \text{ m}, 1093$ s, 831 s; ¹H NMR (500 MHz; CDCl₃) & 7.35–7.26 (5H, m, 5xArCH), 5.59 (1H, s, CHCO₂Me), 4.51 (2H, d, J 6, CH₂Ph), 3.82 (3H, s, CO₂Me), 3.77 (2H, ddd, J 10, 10, 5, CH₂OBn), 3.70 (3H, s, CO₂Me), 3.66 (3H, s, CO₂Me), 2.39 (1H, ddd, J 14, J 13, J 6, 1Hendo of C⁽³⁾H₂), 2.30 (2H, t, J 7, CH₂CH₂OBn), 2.01 (1H, td, J 13, J 6, 1H of C⁽⁴⁾H₂), 1.81-1.75 (2H, m, 1Hexo of C⁽³⁾H₂, 1H of C⁽⁴⁾H₂), 0.89 (9H, s, SiCMe₃), 0.13 (3H, s, SiMe), 0.11 (3H, s, SiMe); NOE experiment: irradiation at δ 5.59 (CHCO₂Me) saw enhancement at δ 2.39 (1H_{endo} of C⁽³⁾H₂); ¹³C NMR (125 MHz; CDCl₃) δ 173.3 (CO₂Me), 169.6 (CO₂Me), 166.8 (CO₂Me), 138.5 (ArC), 128.5 (ArCH), 127.8 (ArCH), 127.7 (ArCH), 111.2 (O–C⁽⁵⁾–O), 90.4 ($C^{(1)}$ CO₂Me), 77.4 (CHCO₂Me) 77.2 ($C^{(2)}$ CO₂Me), 73.2 (CH₂Ph), 65.9 (CH₂OBn), 52.7 (CO₂Me), 52.54 (CO₂Me), 52.52 (CO₂Me), 37.5 (CH₂), 30.0 (C⁽⁴⁾H₂), 29.8 (C⁽³⁾H₂), 26.0 (CMe₃), 19.1 (CMe₃), -2.7 (SiMe), -2.9 (SiMe); HRMS m/z (M+Na⁺) found 575.2286, C₂₇H₄₀NaO₁₀Si requires 575.2283.

Trimethyl (1S,2R,5R,7S)-2-{(tert-butyldimethylsilyl)oxy}-5-(2-hydroxyethyl)-6,8-

dioxabicyclo [3.2.1]octane-1,2,7-tricarboxylate (22)

To a solution of cycloadduct 21 (87 mg, 0.16 mmol) in MeOH (14 mL) was added a spatula tip of 10% Pd/C. The reaction mixture was stirred overnight under H₂ (balloon) at rt. The reaction mixture was then filtered through a pad of Celite (under N₂), evaporated under reduced pressure and the residue purified by column chromatography to give alcohol 22 (71 mg, 98%) as a white solid; Rf 0.20 (80% Et₂O in petrol); Mp 111–113 °C; $[\alpha]_{D}^{25} = +26.9$ (c 0.0013, CHCl₃); IR (film, v_{max} cm⁻¹) 3528 br, 2954 w, 2928 w, 2854 w, 1753 s, 1726 s, 1438 w, 1262 s, 1096 s; ¹H NMR (500 MHz; CDCl₃) δ 5.69 (1H, s, CHCO₂Me), 4.01–3.97 (1H, m, 1H of CH₂OH), 3.88–3.85 (1H, m, 1H of CH₂OH), 3.84 (3H, s, CO₂Me), 3.73 (3H, s, CO₂Me), 3.72 (3H, s, CO₂Me), 3.57 (1H, t, J 7, CH₂OH), 2.35 (1H, ddd, J 14, J 13, J 6, 1Hendo of C⁽³⁾H₂), 2.16–2.13 (2H, m, CH₂CH₂OH), 1.94 (1H, td, J1 13, J2 6, 1H of C⁽⁴⁾H2), 1.83-1.72 (2H, m, 1Hexo of C⁽³⁾H2, 1H of C⁽⁴⁾H2), 0.87 (9H, s, SiCMe₃), 0.14 (3H, s, SiMe), 0.13 (3H, s, SiMe); ¹³C NMR (125 MHz; CDCl₃) δ 173.3 (CO₂Me), 170.3 (CO₂Me), 166.6 (CO₂Me), 112.1 (O-C⁽⁵⁾-O), 90.0 (C⁽¹⁾CO₂Me), 77.6 (CHCO₂Me), 57.3 (CH₂OH), 52.9 (CO₂Me), 52.8 (CO₂Me), 52.6 (CO₂Me), 38.8 (CH₂), 30.8 (C⁽⁴⁾H₂), 29.7 (C⁽³⁾H₂), 25.9 (CMe₃), 19.1 (CMe₃), -2.6 (SiMe), -2.9 (SiMe); HRMS m/z (M+Na⁺) found 485.1813, C₂₀H₃₄NaO₁₀Si requires 485.1813.

Trimethyl (1*S*,2*R*,5*R*,7*S*)-2-hydroxy-5-(2-hydroxyethyl)-6,8dioxabicyclo[3.2.1]octane-1,2,7-tricarboxylate (23) and Trimethyl (1*R*,3*S*,4*S*,5*R*)-4hydroxy-1-(2-hydroxyethyl)-2,8-dioxabicyclo[3.2.1]octane-3,4,5-tricarboxylate (24)

To a solution of alcohol **22** (20 mg, 0.043 mmol) in CH₂Cl₂ (0.32 mL) was added TFA (160 μ L) and H₂O (16 μ L). The mixture was heated to 40 °C for 68 h, then concentrated under reduced pressure. To the residue was added toluene (3x1 mL) to azeotrope traces of TFA and H₂O. To the residue was then added Na₂CO₃ (6.9 mg, 0.065 mmol) in MeOH (1.0 mL) and stirred at rt. After 1 h toluene (0.4 mL), and TMSCHN₂ (28 μ L, 2 M in Et₂O, 0.056 mmol) was added dropwise.⁸ After 30 min, AcOH (50 μ L) was added dropwise, and the mixture then evaporated under reduced pressure. Purification of the residue by column chromatography (1% MeOH in CH₂Cl₂) gave unrearranged diol **23** (10 mg, 67%) and rearranged diol **24** (4.1 mg, 27%), both as colourless oils.

Data for unrearranged diol **23**: R_f 0.36 (5% MeOH in CH₂Cl₂): $[\alpha]_D^{25} = +60.7$ (*c* 0.59, CHCl₃); IR (film, v_{max} cm⁻¹) 3490 br, 2959 w, 1750 s, 1748 s, 1439 w, 1361 w, 1220 s, 1165 s, 1089 s; ¹H NMR (500 MHz; CDCl₃) δ 5.56 (1H, s, CHCO₂Me), 4.06–4.01 (1H, m, 1H of CH₂OH), 3.93 (3H, s, CO₂Me), 3.82–3.78 (1H, m, 1H of CH₂OH), 3.75 (3H, s, CO₂Me), 3.74 (3H, s, CO₂Me), 2.29 (1H, ddd, *J* 13, *J* 8, *J* 7, 1H of CH₂CH₂OH), 2.19–2.16 (2H, m, 1H of CH₂CH₂OH, 1H *endo* C³H₂), 1.98 (1H, ddd, *J* 7, *J* 7, *J* 13, 1H of C⁴H₂), 1.84–1.78 (2H, m, 1H *exo* of C³H₂, 1H of C⁴H₂); ¹³C NMR (125 MHz; CDCl₃) δ 173.8 (CO₂Me), 170.0 (CO₂Me), 166.7 (CO₂Me), 112.9 (O-C⁵-O), 89.2 (C¹CO₂Me), 77.8 (CHCO₂Me), 73.8 (HOC²CO₂Me), 56.9 (CH₂OH), 53.9 (CO₂Me), 53.3 (CO₂Me), 53.0 (CO₂Me), 38.6 (CH₂CH₂OH), 31.1 (C⁴H₂), 29.3 (C³H₂); HRMS *m/z* (M+Na⁺); found 371.0945, C₁₄H₂₀NaO₁₀ requires 371.0949.

Data for rearranged diol **24**: $R_f 0.34$ (5% MeOH in CH₂Cl₂); $[\alpha]_D^{25} = -13.8$ (*c* 0.41, CHCl₃); IR (film, v_{max} cm⁻¹) 3517 br, 2957 w, 1737 s, 1439 w, 1271 s, 1130 s, 1096 s, 1060 s; ¹H NMR (500 MHz; CDCl₃) δ 4.94 (1H, s, CHCO₂Me), 4.05 (1H, ddd, *J* 12, *J* 8, *J* 3, 1H of CH₂OH), 3.91 (3H, s, CO₂Me), 3.84 (1H, ddd, *J* 12, *J* 6, *J* 3, 1H of CH₂OH), 3.79 (3H, s, CO₂Me), 3.77 (3H, s, CO₂Me), 3.14 (1H, ddd, *J* 13, *J* 9, *J* 3, 1H *endo* of C⁶H₂), 2.30–2.07 (5H, m, 1H *exo* of C⁶H₂, 2H C⁷H₂, CH₂CH₂OH), 1.92 (2H, br s, CH₂OH, COHCO₂Me); ¹³C NMR (125 MHz; CDCl₃) δ 170.0 (CO₂Me), 168.7 (CO₂Me), 167.4 (CO₂Me), 109.5 (O-C¹-O), 88.2 (C⁵CO₂Me), 74.94 (C⁴CO₂MeOH), 74.88 (CHCO₂Me), 58.9 (CH₂OH), 53.7 (CO₂Me), 53.1 (CO₂Me), 53.0 (CO₂Me), 38.9 (CH₂CH₂OH), 32.5 (C⁷H₂), 29.1 (C⁶H₂); HRMS *m/z* (M+Na⁺): found 371.0948, C₁₄H₂₀NaO₁₀ requires 371.0949.

(R)-(4,4-Dibromo-2-methylbut-3-en-1-yl)benzene (SI-2)

A stirred solution of CBr₄ (44.8 g, 135 mmol) in CH₂Cl₂ (100 mL) was cooled to 0 °C and a solution of PPh₃ (72.7 g, 277 mmol) in CH₂Cl₂ (100 mL) was then added dropwise over 30 min. The reaction mixture was stirred at 0 °C for 10 min, and then a solution of *R*-2methyl-3-phenylpropanal⁹ (10.0 g, 67.5 mmol) in CH₂Cl₂ (150 mL) was added over 10 min *via* cannula. The solution was stirred at 0 °C for 1 h, and then H₂O (500 mL) added. The aq layer was extracted with CH₂Cl₂ (2x200 mL), the combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. Purification of the residue by column chromatography (petrol) gave dibromoalkene **SI-2** (18.3 g, 89%) as a colourless oil. R_f 0.54 (petrol); $[\alpha]_D^{25} = -41.9$ (*c* 2.0, CHCl₃); IR (film, ν_{max} cm⁻¹) 3085 w, 3062 m, 3026 s, 2963 s, 2926 s, 2869 m, 1944 w, 1614 m, 1495 s, 1374 m, 1089 m; ¹H NMR (500 MHz; CDCl₃) δ 7.31–7.13 (5H, m, ArC*H*), 6.25 (1H, d, *J* 9, CH=C), 2.78–2.69 (2H, m, 1 H of CH₂ and C*H*Me), 2.56 (1H, dd, *J* 7, 13, 1H of CH₂Ph), 1.00 (3H, d, *J* 7, CH₃); ¹³C NMR (125 MHz; CDCl₃) δ 143.4 (CH=C), 139.3 (ArC), 129.3 (ArCH), 128.4 (ArCH), 126.4 (ArCH), 88.2 (CH=CBr₂), 42.0 (CH₂Ar), 40.1 (CHCH₃), 18.6 (CH₃); HRMS *m/z* (M⁺): found 301.9309, C₁₁H₁₂⁷⁹Br₂ requires 301.9306. (*R*)-(2-Methylpent-3-yn-1-yl)benzene (6)

To a stirred solution of dibromoalkene **SI-2** (3.44 g, 11.3 mmol) in dry THF (30 mL) was added *n*-BuLi (10.4 mL, 2.5 M in hexanes, 26 mmol) at -78 °C. The resulting mixture was warmed to rt. After 30 min at rt, freshly distilled MeI (2.1 mL, 34 mmol) was added. After 1 h at rt the reaction mixture was quenched with sat. aq NH₄Cl (30 mL), the layers separated and the aq layer extracted with Et₂O (3x30 mL). The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. Purification of the residue by column chromatography (petrol) gave alkyne **6**¹⁰ (1.72 g, 96%) as a colourless oil. R_f 0.22 (petrol); $[\alpha]_D^{25} = -61.0$ (*c* 1.0, CHCl₃) [lit.¹⁰ $[\alpha]_D^{25} = -56$ (*c* 4.8x10⁻⁴, CH₂Cl₂)]; IR (film, v_{max} cm⁻¹) 3028 m, 2968 s, 2919 s, 2360 m, 1726 m, 1603 m, 1495 s, 1086 s; ¹H NMR (500 MHz; CDCl₃) δ 7.37–7.26 (5H, m, ArC*H*), 2.91–2.85 (1H, m, C*H*₂Ph), 2.74–2.68 (2H, m, C*H*CH₃, 1H of CH₂Ph), 1.84 (3H, d, *J* 3, CCH₃), 1.20 (3H, d, *J* 7, CHC*H*₃); ¹³C NMR (125 MHz; CDCl₃) δ 140.0 (Ar*C*), 129.3 (Ar*C*H), 128.2 (Ar*C*H), 126.2 (Ar*C*H), 83.5 (*C*≡CCH₃), 76.5 (C≡CCH₃), 43.6 (*C*H₂Ph), 28.0 (*C*HCH₃), 20.9 (CH*C*H₃), 3.6 (C≡CCH₃); HRMS *m/z* (M+Na⁺) found 181.0982, C₁₂H₁₄Na requires 181.0988.

(R,E)-(4-Iodo-2-methylpent-3-en-1-yl)benzene (4)

A suspension of Cp₂ZrCl₂ (585 mg, 2.0 mmol, 2.0 equiv) in THF (4.00 mL) was cooled to 0 °C. To this solution was added LiEt₃BH (2.0 mL, 1.0 M in THF, 2.0 mmol) dropwise.¹¹ The reaction mixture was stirred at rt shielded from light. After 1 h, alkyne **6** (158 mg, 1.00 mmol) in THF (1 mL) was added dropwise. The reaction mixture was stirred at 50 °C for 1 h and then allowed to reach rt.¹² The reaction mixture was then cooled to -20 °C and solution of I₂ (254 mg, 1.0 mmol) in THF (1 mL) was added dropwise. The reaction was allowed to reach rt, stirred for 30 min and poured into sat. aq NaHCO₃ (10 mL). The layers were separated and the aq layer extracted with Et₂O (3x30 mL), the combined organic layers were dried (MgSO₄) and evaporated under reduced pressure. The residue was

purified by column chromatography to give *E*–alkenyl iodide **4** (212 mg, 74%) as a colourless oil; $R_f 0.50$ (petrol); $[\alpha]_D^{25} = -127.3$ (*c* 1.0, CHCl₃); IR (film, v_{max} cm⁻¹) 3026 w, 2959 s, 2924 s, 2360 s, 2341 m, 1452 s, 1039 m; ¹H NMR (500 MHz; CDCl₃) δ 7.30–7.12 (5H, m, ArC*H*), 6.01 (1H, dq, *J* 10, 2, CH=CI), 2.69–2.59 (1H, m, C*H*CH₃), 2.58–2.55 (2H, m, C*H*₂Ph), 2.10 (3H, d, *J* 2, CH=CICH₃), 1.01 (3H, d, *J* 6, CHCH₃); ¹³C NMR (125 MHz; CDCl₃) δ 146.1 (*C*H=CI), 140.1 (ArC), 129.3 (ArCH), 128.3 (ArCH), 126.1 (ArCH), 93.6 (CH=CI), 43.3 (CH₂Ph), 38.2 (CHCH₃), 27.6 (CH=CICH₃), 20.2 (CHCH₃); HRMS *m/z* (M+Na⁺) found 309.0109, C₁₂H₁₅INa requires 309.0111.

Trimethyl (1*R*,3*S*,4*S*,5*R*)-4-hydroxy-1-(2-iodoethyl)-2,8-dioxabicyclo[3.2.1]octane-3,4,5-tricarboxylate (25)

A vial was charged with PPh₃ (4.0 mg, 0.014 mmol) and imidazole (2.0 mg, 0.028 mmol) in CH₂Cl₂ (0.1 mL) at 0 °C. To the solution was added I₂ (4.0 mg, 0.014 mmol) and the vial was sealed. A solution of diol 24 (4.5 mg, 0.013 mmol) in CH₂Cl₂ (0.1 mL) was added to the mixture. After 12 h, $H_2O(0.5 \text{ mL})$ was added to the reaction mixture and the aq layer extracted with CH₂Cl₂ (3x2 mL). The combined organic layers were dried (MgSO₄), concentrated by blowing nitrogen and purified by column chromatography (30-70%) EtOAc in petrol) to give iodide 25 (5.3 mg, 90%) as a colourless glass; R_f 0.47 (70%) EtOAc in petrol); $[\alpha]_{D}^{25} = -11.6$ (c 0.50, CHCl₃); IR (film, v_{max} cm⁻¹) 3469 br, 2955 w, 1765 s, 1738 s, 1439 s; ¹H NMR (500 MHz; CDCl₃) δ 4.90 (1H, s, CHCO₂Me), 3.90 (3H, s, CO₂Me), 3.79 (3H, s, CO₂Me), 3.76 (3H, s, CO₂Me), 3.67 (1H, s, OH), 3.38 (2H, ddd, J 10, J 5, J 5, CH₂I), 3.14 (1H, ddd, J 15, J 10, J 5, 1H endo of C⁶H₂), 2.59 (2H, ddd, J 10, J 10, J 5, CH₂CH₂I), 2.23 (1H, ddd, J 10, J 10, J 5, 1H exo of C⁶H₂), 2.11 (2H, ddd, J 15, J 10, J 5, C⁷H₂); ¹³C NMR (125 MHz; CDCl₃) δ 170.0 (CO₂Me), 168.6 (CO₂Me), 167.3 (CO₂Me), 108.6 (O-C¹-O), 88.2 (C⁵CO₂Me), 75.0 (C⁴CO₂MeOH), 74.9 (CHCO₂Me), 53.6 (CO_2Me) , 53.1 (CO_2Me) , 52.9 (CO_2Me) , 41.9 (CH_2CH_2OH) , 31.8 (C^6H_2) , 29.0 (C^7H_2) , -3.42 (CH₂I); HRMS *m/z* (M+Na⁺): found 480.9965, C₁₄H₁₉O₉INa requires 480.9966.

Trimethyl (1*R*,3*S*,4*S*,5*R*)-1-(2-iodoethyl)-4-((trimethylsilyl)oxy)-2,8dioxabicyclo[3.2.1]octane-3,4,5-tricarboxylate (SI-3)

A vial was charged with iodoalcohol **25** (5.0 mg, 0.011 mmol), imidazole (1.3 mg, 0.019 mmol) and DMAP (0.1 mg, 0.0011 mmol) in CH₂ Cl₂ (0.1 mL) and sealed. To the solution was added TMSCI (2.2 μ L, 0.018 mmol) dropwise and allowed to stir at rt overnight. The mixture was then loaded directly onto a column and purified by column chromatography (10–80% Et₂O in petrol) to give alkyl iodide **SI-3** (5.5 mg, 95%) as colourless glass; *R*/0. 71 (80% Et₂O in petrol); $[\alpha]_D^{25} = -14.60$ (*c* 0.273, CHCl₃); IR (film, υ_{max} cm⁻¹) 2955 w, 2917 s, 2850 s, 1767 s, 1739 s, 1438 s; ¹H NMR (500 MHz; CDCl₃) δ 4.85 (1H, s, CHCO₂Me), 3.84 (3H, s, CO₂Me), 3.76 (3H, s, CO₂Me), 3.73 (3H, s, CO₂Me), 3.42 (2H, ddd, *J* 15, *J* 10, *J* 5, CH₂I), 3.18 (1H, ddd, *J* 15, *J* 10, *J* 5, 1H *endo* of C⁶H₂), 2.00 (2H, ddd, *J* 15, *J* 10, *J* 5, C⁷H₂), 0.08 (9H, s, OTMS); ¹³C NMR (125 MHz; CDCl₃) δ 170.8 (CO₂Me), 169.4 (CO₂Me), 167.7 (CO₂Me), 108.2 (O-C¹-O), 88.4 (C⁵CO₂Me), 78.4 (C⁴CO₂MeOH), 75.8 (CHCO₂Me), 52.78 (CO₂*Me*), 52.75 (CO₂*Me*), 52.6 (CO₂*Me*), 42.3 (CH₂CH₂OH), 32.3 (C⁶H₂), 30.0 (C⁷H₂), -2.25 (OTMS), -2.36 (CH₂I); HRMS *m/z* (M+Na⁺): found 553.03588, C₁₇H₂₇INaO₉Si requires 553.03612.

(E)-2-(3,5-Dimethyl-6-phenylhex-3-en-1-yl)-2,5,5-trimethyl-1,3-dioxane (SI-5)

To a Schlenk tube was added Mn dust (1.5 mg, 0.027 mmol), NiI₂(bpy)¹³ (0.13 mg, 0.00028 mmol), alkyl iodide **SI-4**¹⁴ (4 mg, 0.014 mmol) and alkenyl iodide (\pm)–4 (4 mg, 0.014 mmol) and the flask evacuated and refilled with argon (x3). DMPU (0.1 mL) was added to the reaction mixture, followed by freshly distilled TMSCl (0.4 µL, 0.0028 mmol). The reaction mixture was then allowed to stir vigorously at rt overnight. H₂O (2 mL) was then added and the aq layer extracted with EtOAc (3 x 5 mL). The combined organic

layers were washed with brine (5 mL), dried (MgSO₄), filtered, evaporated under reduced pressure and the residue purified by column chromatography (1% EtOAc in petrol) to give alkene (*E*)–**SI-5** (3.8 mg, 85%, 3:1 *E/Z*) as a colourless oil; R_f 0.59 (1% EtOAc in petrol); IR (film, v_{max} cm⁻¹) 3027 s, 2954 s, 2925 s, 2864 s, 1495 m, 1252 m, 1121 s, 1089 s; ¹H NMR (500 MHz; CDCl₃) δ 7.27–7.22 (2H, m, ArCH), 7.19–7.14 (3H, m, ArCH), 5.20 (1H, dq, *J* 9, *J* 2, HC=C), 3.50 (2H, d, *J* 11, CH₂O), 3.45–3.37 (2H, m, CH₂O), 2.75–2.69 (1H, m, CHCH₃), 2.59–2.55 (2H, m, CH₂Ph), 2.46–2.42 (2H, m, *H*₂C=C), 2.05–2.01 (2H, m, CH₂), 1.53 (3H, d, *J* 2, C=CCH₃), 1.45 (3H, s, OCCH₃), 1.05 (3H, d, *J* 7, CHC*H*₃), 1.04 (3H, s, CH₃CCH₃), 0.73 (3H, s, CH₃CCH₃); ¹³C NMR (125 MHz; CDCl₃) δ 141.3 (*C*=CH), 134.2 (C=CH), 130.2 (ArC), 129.4 (2xArCH), 128.1 (2xArCH), 125.7 (ArCH), 99.1 (O-CMe-O), 70.6 (OCH₂), 70.50 (OCH₂), 44.2 (CH₂Ph), 36.5 (CHCH₃), 34.7 (CH₂), 33.4 (CH₂), 30.1 (OCCH₃), 26.0 (CH₃CCH₃), 22.9 (CH₃CCH₃), 21.1 (CHCH₃), 20.9 (C=CCH₃), 16.4 (CH₃CCH₃); HRMS *m/z* (M+H⁺) found 317.2475, C₂₁H₃₃O₂ requires 317.2475.

Discernible data for (*Z*)–**SI-5**: ¹H NMR (500 MHz; CDCl₃) δ 5.14 (1H, d, *J* 9, HC=C), 1.97 (3H, d, *J* 2, C=CCH₃), 1.42 (3H, s, OCCH₃), 1.07 (3H, d, *J* 7, CHC*H₃*), 1.06 (3H, s, CH₃CC*H₃*), 0.71 (3H, s, C*H*₃CCH₃); ¹³C NMR (125 MHz; CDCl₃) δ 134.1 (C=CH), 131.3 (ArC), 125.8 (ArCH), 98.9 (O-CMe-O), 70.5 (OCH₂), 70.47 (OCH₂), 44.4 (*C*H₂Ph), 35.8 (*C*HCH₃), 23.6 (*C*H₃CCH₃), 22.7 (CH₃CCH₃), 21.0 (CHCH₃), 20.8 (C=CCH₃).

Trimethyl (1*S*,3*S*,4*S*,5*R*)-1-((*R*,*E*)-3,5-dimethyl-6-phenylhex-3-en-1-yl)-4-((trimethylsilyl)oxy)-2,8-dioxabicyclo[3.2.1]octane-3,4,5-tricarboxylate (26)

To a Schlenk tube was added Mn dust (8.4 mg, 0.152 mmol), NiI₂(bpy)¹³ (0.9 mg, 0.0019 mmol, 2.5 mol%), hydroxy iodide **25** (35 mg, 0.076 mmol) and alkenyl iodide **4** (21.8 mg, 0.076 mmol) and the flask evacuated and refilled with argon (x3). DMF (0.2 mL) was added to the reaction mixture, followed by freshly distilled TMSCl (1.9 μ L, 0.015 mmol).

The reaction mixture was then allowed to stir vigorously at rt overnight. H₂O (3 mL) was then added and the aq layer extracted with EtOAc (3x5 mL). The combined organic layers were washed with brine (5 mL), dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography (30% EtOAc in petrol) to give Ealkene 26 (28.1 mg, 66%) as a colourless oil; $R_f 0.51$ (30% EtOAc in petrol); $[\alpha]_D^{25} = -$ 42.10 (c 0.073, CHCl₃); IR (film, v_{max} cm⁻¹) 3025 s, 2956 s, 2920 s, 2850 s, 2358 w, 2342 w, 2331 w, 1770 s, 1739 s, 1453 s, 1274 s, 1204 s, 846 s; ¹H NMR (500 MHz; CDCl₃) δ 7.26-7.22 (2H, m, ArCH), 7.18-7.11 (3H, m, ArCH), 5.02 (1H, dq, J 9, J 1, HC=C), 4.84 (1H, s, CHCO₂Me), 3.85 (3H, s, CO₂Me), 3.76 (3H, s, CO₂Me), 3.74 (3H, s, CO₂Me), 3.20-3.14 (1H, m, Hendo of C⁶H₂), 2.67-2.60 (1H, m, CHCH₃), 2.52 (2H, dd, J 7, J 4 CH₂Ph), 2.24–2.07 (3H, m, 1Hexo of C⁶H₂ and 2H, C⁷H₂), 2.02–1.93 (4H, m, CH₂CH₂), 1.47 (3H, d, J 1, CCH₃), 0.93 (3H, d, J 7, CHCH₃), 0.10 (9H, s, OTMS); ¹³C NMR (125 MHz; CDCl₃) δ 171.3 (CO₂Me), 169.8 (CO₂Me), 168.0 (CO₂Me), 141.3 (C=CH), 133.4 (C=CH), 130.3 (ArC), 129.4 (2xArCH), 128.1 (2xArCH), 125.7 (ArCH), 108.8 (O-C¹-O), 88.4 (C⁵CO₂Me), 78.5 (C⁴CO₂MeOTMS), 75.8 (CHCO₂Me), 52.8 (CO₂Me), 52.7 (CO₂Me), 52.6 (CO₂Me), 44.1 (CH₂Ph), 35.3 (CHCH₃), 34.6 (C⁶H₂), 33.3 (C⁷H₂), 31.5 (CCH₂CH₂CMe), 30.3 (CH₂), 20.9 (CHCH₃), 16.5 (C=CCH₃), 2.34 (OTMS); HRMS m/z $(M+Na^{+})$ found 585.2489, C₂₉H₄₂O₉NaSi requires 585.2490.

(1*S*,3*S*,4*S*,5*R*)-1-((*R*,*E*)-3,5-Dimethyl-6-phenylhex-3-en-1-yl)-4-hydroxy-4,5bis(methoxycarbonyl)-2,8-dioxabicyclo[3.2.1]octane-3-carboxylic acid (27)

To a solution of siloxytriester **26** (18 mg, 0.032 mmol) in THF (0.1 mL) was added a solution of TBAF (60 μ L, 1.0 M in THF, 0.064 mmol) at rt. After 4 h, H₂O (2 mL) was added and the aq layer was extracted with EtOAc (3x5 mL). The combined organic layers were dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography (5% MeOH in CH₂Cl₂) to give hydroxyacid **27**¹⁵ (10.3 mg, 67%) as a colourless glass; R_f 0.37 (10% EtOAc in CH₂Cl₂); $[\alpha]_D^{25} = -96.4$ (*c* 0.1, MeOH); IR

(film, v_{max} cm⁻¹) 3437 br, 3026 s, 2954 s, 2919 s, 2850 s, 1739 s, 1690 s, 1625 s, 1438 s, 1204 w, 1124 w, 700 s; ¹H NMR (500 MHz; CD₃OD) δ 7.26–7.19 (2H, m, ArCH), 7.16–7.10 (3H, m, ArCH), 5.03 (1H, d, *J* 9, HC=C), 4.85 (1H, s, CHCO₂Me), 3.80 (3H, s, CO₂Me), 3.72 (3H, s, CO₂Me), 3.08–3.01 (1H, m, H_{endo} of C⁶H₂), 2.69–2.57 (1H, m, CHCH₃ and 1H of CH₂Ph), 2.47 (1H, dd, *J* 7, 13, CH₂Ph), 2.20–2.09 (2H, m, C⁷H₂), 2.08–1.93 (4H, m, CCH₂CH₂), 1.90–1.83 (1H, m, 1H_{exo} of C⁶H₂), 1.43 (3H, d, *J* 1, CCH₃), 0.96 (3H, d, *J* 7, CHCH₃); ¹³C NMR (125 MHz; CD₃OD) δ 171.8 (CO₂Me), 170.7 (CO₂Me), 169.5 (CO₂Me), 142.4 (C=CH), 134.9 (ArC), 131.8 (C=CH), 130.3 (2xArCH), 129.0 (2xArCH), 126.7 (ArCH), 110.0 (O–C¹–O), 89.4 (C⁵CO₂Me), 76.6 (C⁴CO₂Me), 75.7 (CHCO₂Me), 53.3 (CO₂Me), 52.9 (CO₂Me), 45.1 (CH₂Ph), 36.3 (CHCH₃), 35.9 (C⁶H₂), 34.6 (C⁷H₂), 31.9 (CCH₂CH₂CMe), 30.3 (CH₂), 21.4 (CHCH₃), 16.1 (C=CCH₃); HRMS *m/z* (M–H)⁺ found 475.1973, C₂₅H₃₁O₉ requires 475.1974.

(1*S*,3*S*,4*S*,5*R*)-1-((*R*,*E*)-3,5-Dimethyl-6-phenylhex-3-en-1-yl)-4-hydroxy-2,8dioxabicyclo[3.2.1]octane-3,4,5-tricarboxylic acid (2)

To a solution of 6,7-dideoxysqualestatin H5 dimethyl ester **27** (6.0 mg, 0.013 mmol) in dioxane (0.6 mL) was added H₂O (0.91 mg, 0.050 mmol), and KOt-Bu (14.1 mg, 0.13 mmol). The reaction mixture was heated at 110 °C for 24 h. The solvent was evaporated, and H₂O (5 mL) was added. The aq mixture was washed with Et₂O (1x5 mL), acidified with 0.1 M HCl (2 mL), and extracted with EtOAc (2x10 mL). The combined organic layers were dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by reverse phase (C18) HPLC eluting with MeOH/H₂O/AcOH (850:150:2, $t_R = 10:00$ min) to give 6,7-dideoxysqualestatin H5 (**2**)¹⁵ (2.7 mg 48%) as a colourless glass; $[\alpha]_D^{25} = -50.6$ (*c* 0.13, MeOH)¹⁶; IR (film, v_{max} cm⁻¹) 3381 br, 2957 w, 2490 br, 1732 s, 1452 w, 1119 s, 972 s; ¹H NMR (500 MHz; CD₃OD) δ 7.24–7.11 (5H, m, ArCH), 5.04 (1H, d, *J* 9, HC=C), 4.87 (1H, s, CHCO₂Me), 3.22–3.15 (1H, m, H_{endo} of C⁶H₂), 2.68–2.62 (1H, m, CHCH₃), 2.59 (1H, dd, *J* 6, *J* 13, CH₂Ph), 2.48 (1H, d, *J* 8, 13, CH₂Ph), 2.23–2.11

(2H, m, C⁷*H*₂), 2.09–1.93 (4H, m, C*H*₂C*H*₂C=C), 1.90–1.83 (1H, m, 1H_{exo} of C⁶H₂), 1.43 (3H, d, *J* 1, CC*H*₃), 0.96 (3H, d, *J* 6, CHC*H*₃); ¹³C NMR (125 MHz; CD₃OD) δ 173.5 (CO₂H), 172.4 (CO₂H), 171.1 (CO₂H), 142.4 (*C*=CH), 135.0 (ArC), 131.7 (C=*C*H), 130.3 (2x ArCH), 129.0 (2xArCH), 126.7 (ArCH), 109.8 (O–C¹–O), 89.5 (*C*⁵CO₂Me), 76.2 (*C*⁴CO₂Me), 75.9 (*C*HCO₂Me), 45.1 (*C*H₂Ph), 36.5 (*C*HCH₃), 35.9 (C⁶H₂), 34.7 (C⁷H₂), 32.2 (CCH₂CH₂CMe), 30.3 (CH₂), 21.4 (CHCH₃), 16.1 (C=CCH₃); HRMS *m/z* (M–H)⁺ found 447.1660, C₂₃H₂₇O₉ requires 447.1661.

3. Tabular Comparison of NMR Data between Natural and Synthetic 6,7dideoxysqualestatin H5 (2)

¹ H NMR – (500 MHz, CD ₃ OD)			
Natural Isolate ¹⁷	Synthetic		
7.23 (2H, t, <i>J</i> 7)	7.24–7.20 (2H, m)		
7.17–7.10 (3H, m)	7.15–7.12 (3H, m)		
5.04 (1H, m)	5.04 (1H, d, <i>J</i> 9)		
3.18 (1H, m)	3.22–3.15 (1H, m, H _{endo} of C ⁶ H ₂)		
2.66 (1H, m)	2.68–2.62 (1H, m)		
2.59 (1H, dd, <i>J</i> 13, 6)	2.59 (1H, dd, <i>J</i> 13, 6)		
2.47 (1H, dd, <i>J</i> 13, 8)	2.48 (1H, d, <i>J</i> 13, 8)		
2.23–2.09 (2H, m)	2.23–2.11 (2H, m)		
2.0–1.90 (4H, m)	2.09–1.93 (4H, m)		
1.87 (1H, m)	1.90–1.83 (1H, m, 1H <i>exo</i> of C ⁶ H ₂)		
1.44 (3H, d, <i>J</i> 1)	1.43 (3H, d, <i>J</i> 1)		
0.96 (3H, d, <i>J</i> 7)	0.96 (3H, d, <i>J</i> 6)		

¹³ C NMR – (100 MHz, CD ₃ OD)		
Natural Isolate ¹⁷	Synthetic	
173.1	173.5	
172.1	172.4	
170.8	171.1	
142.3	142.4	
134.9	135.0	
131.7	131.7	
130.2	130.3	
128.9	129.0	
126.6	126.7	
109.8	109.8	
89.3	89.5	
76.0	76.2	
75.7	75.9	
45.0	45.1	
36.3	36.5	
35.8	35.9	
34.6	34.7	
32.0	32.2	
30.3	30.3	
21.3	21.4	
16.0	16.1	

4. Optimization of Cross-Electrophile Coupling Conditions

Initial cross-electrophile coupling, between equimolar quantities of TMSprotected alkyl iodide SI-3 and *E*-alkenyl iodide 4 under the conditions reported by Weix and co-workers for alkyl and alkenyl halides,¹³ gave an inseparable 3:1 mixture of *E*-26 and *Z*-26¹⁸ in 40% yield (Scheme S1).

Scheme S1. Initial cross-electrophile coupling of alkyl iodide SI-3 and E-alkenyl iodide 4

Optimization of the reaction conditions used alkyl iodide SI-4¹⁴ and *E*-alkenyl iodide 4 (Table S1). Under Weix's conditions,¹³ equimolar quantities of iodides SI-4 and 4 gave alkene SI-5 as a 3:1 *E*-:*Z*-mixture in 70–85% yields (3 runs, Table 1, entry 1), whereas with 2 equiv of alkyl iodide SI-4, alkene SI-5 formed with improved *E*-:*Z*-selectivity (6:1) in 77% yield (entry 2). Alkyl iodide SI-4 was still consumed if the reaction temperature was lowered from rt to -20 °C, or the solvent changed to *N*,*N*-dimethylacetamide,¹³ but only traces of or no alkene SI-5, respectively, were observed. However, on changing the solvent to DMF,¹⁹ alkene SI-5 was obtained with high *E*-:*Z*-selectivity (17:1 20:1) in 86–88% yields (entries 3 and 4).

 Table S1. Effect of reactants ratio and solvent on stereoselectivity (and yield) of alkene SI-5.

entry ^a	alkyl iodide SI-4 (equiv)	alkenyl iodide (±)-4 (equiv)	solvent	alkene SI-5 E-:Z- (yield)
1	1	1	DMPU	3:1 ^b (70–85%)
2	2	1	DMPU	6:1 (77%)
3	1	1	DMF	17:1 (86%)
4	2	1	DMF	20:1 (88%)

^{*a*} 0.15 M in (±)-4; ^{*b*} E-:Z- 1.5:1 at 0.05 M.

5. Single Crystal X-ray Diffraction Determination

Fig.1 Crystal structure of 22 with ellipsoids at 50% probability.

Compound 22 was crystallized *via* vapour diffusion by dissolving 5 mg of 22 in ethyl acetate (*c.a.* 50 μ L) and using pentane as the volatile component. Low temperature²⁰ single crystal X-ray diffraction studies were carried out at 150 K on 22 using CuK_{α} radiation on an Oxford Diffraction SuperNova diffractometer equipped with an area detector and graphite monochromator, within the University of Oxford Chemistry

Department. Raw frame data were reduced using CrysAlisPro(Agilent) and the structures were solved using superflip.²¹ Full-matrix least-squares refinement of the structures were carried out using CRYSTALS.^{22,23} The Flack x parameter^{24,26} refined to -0.01(2) and Bayesian analysis of the Bijvoet pairs²⁶ gave the Hooft y parameter as 0.01(1) and the probability that the structure was the correct hand of >99.99% given that the crystal was enantiopure, thus determining the absolute configuration. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC 1544840) and copies of these data can be obtained free of charge *via* www.ccdc.cam.ac.uk/data_request/cif.

Crystal Data

$a = 9.57910(10) \text{ Å} \alpha$	= 90°		
$b = 8.51190(10) \text{ Å }\beta$	= 100.9121(15)°		
$c = 15.0831(2) \text{ Å} \gamma$	= 90°		
Volume	1207.584(16) Å ³	Crystal Class	monoclinic
Space group	P 2 ₁	Z =	2
Formula	C ₂₀ H ₃₄ O ₁₀ Si ₁	Mr	462.57
Cell determined from	16487 reflections	Cell θ range =	5 - 76°
Temperature	150K		
Shape	block		
Colour	clear_pale_colourless	Size	$\begin{array}{c} 0.24 \times 0.32 \times 0.50 \\ mm \end{array}$
D _x	1.27 Mg m ⁻³	F000	496.000
μ	1.297 mm ⁻¹		
Absorption correction	multi-scan		
T _{min}	0.55	T _{max}	0.73

Data Collection

Diffractometer	Oxford Diffraction SuperNova;	CuKα radiation (1.5418 Å)
----------------	-------------------------------	---------------------------

Scan type	ω scans
Reflections measured	24093
Independent reflections	4839
Rint	0.0186
θ _{max}	76.2262
h =	$-11 \rightarrow 12$
k =	$-10 \rightarrow 9$
l =	$-18 \rightarrow 18$

Refinement

$\Delta \rho_{\min} =$	-0.19 e Å ⁻³
$\Delta \rho_{max} =$	0.17 e Å ⁻³
Reflections used	4839
Cutoff: I >	-10.00σ(I)
Parameters refined	1 284
S =	1.00
R-factor	0.025
weighted R-factor	0.066
Δ/σ_{max}	0.0005
Flack parameter	0.015(17)
Refinement on	F ²
w =	$\frac{1}{[\sigma^2(F_{obs}^2) + (\ 0.040 \times P)^2 + 0.250 \times P + 0.000 + 0.000 \times \sin\theta]}{P = 0.333 \times \max(F_{obs}^2, 0) + 0.667 \times F_{calc}^2}$

Parameters

Label	x	У	z	Uiso/equiv	Occupancy
Si1	0.31645(3)	0.25016(7)	0.12547(2)	0.0262	1.0000
02	0.21516(10)	0.31311(12)	0.19454(6)	0.0267	1.0000
C3	0.16491(12)	0.27634(15)	0.27319(8)	0.0220	1.0000
C4	0.25026(13)	0.14205(16)	0.32465(8)	0.0239	1.0000
05	0.21668(10)	0.12108(12)	0.40560(6)	0.0301	1.0000
C6	0.27204(18)	0.01845(19)	0.45432(11)	0.0379	1.0000
07	0.32862(10)	0.05899(14)	0.29232(7)	0.0330	1.0000
C8	0.00844(13)	0.22252(16)	0.24885(9)	0.0273	1.0000
С9	0.08850(13)	0.35790(18)	0.20930(9)	0.0296	1.0000
C10	0.05184(12)	0.50573(17)	0.26521(9)	0.0262	1.0000

011	0.05524(9)	0.47250(12)	0.35865(6)	0.0263	1.0000
C12	0.08534(12)	0.43509(16)	0.40342(8)	0.0219	1.0000
C13	0.17131(12)	0.43592(15)	0.32527(8)	0.0199	1.0000
O14	0.09198(8)	0.54790(12)	0.26603(6)	0.0233	1.0000
C15	0.32664(12)	0.48742(16)	0.34999(8)	0.0214	1.0000
O16	0.34199(9)	0.63984(12)	0.33727(7)	0.0285	1.0000
C17	0.48673(15)	0.69851(19)	0.35638(13)	0.0413	1.0000
O18	0.42109(9)	0.39644(12)	0.37619(7)	0.0289	1.0000
C19	0.13327(13)	0.55508(17)	0.47770(8)	0.0251	1.0000
O20	0.26685(10)	0.53177(13)	0.51690(6)	0.0299	1.0000
C21	0.31850(15)	0.62204(19)	0.59760(9)	0.0334	1.0000
O22	0.05748(11)	0.65470(15)	0.49905(8)	0.0424	1.0000
C23	0.14701(15)	0.6436(2)	0.23155(10)	0.0354	1.0000
C24	0.11425(18)	0.7942(2)	0.28395(14)	0.0468	1.0000
025	0.16425(16)	0.79455(18)	0.36703(10)	0.0633	1.0000
C26	0.25433(19)	0.0594(2)	0.07308(13)	0.0498	1.0000
C27	0.50842(14)	0.2420(3)	0.17797(10)	0.0473	1.0000
C28	0.2898(2)	0.4126(3)	0.03833(11)	0.0485	1.0000
C29	0.1324(2)	0.4264(4)	0.00416(15)	0.0907	1.0000
C30	0.3428(4)	0.5687(3)	0.08403(19)	0.0929	1.0000
C31	0.3728(2)	0.3784(3)	0.03687(12)	0.0588	1.0000
H61	0.23286(18)	0.02452(19)	0.50847(11)	0.0566	1.0000
H62	0.37450(18)	0.01436(19)	0.46811(11)	0.0559	1.0000
H63	0.24161(18)	0.10753(19)	0.41490(11)	0.0568	1.0000
H81	0.01828(13)	0.18311(16)	0.30189(9)	0.0318	1.0000
H82	0.00225(13)	0.14003(16)	0.20475(9)	0.0330	1.0000
H91	0.18703(13)	0.32821(18)	0.20957(9)	0.0359	1.0000
H92	0.07923(13)	0.37715(18)	0.14775(9)	0.0350	1.0000
H121	0.09031(12)	0.33092(16)	0.43191(8)	0.0240	1.0000
H171	0.48442(15)	0.80165(19)	0.33095(13)	0.0605	1.0000
H172	0.51969(15)	0.70120(19)	0.42079(13)	0.0596	1.0000
H173	0.54855(15)	0.63196(19)	0.32952(13)	0.0629	1.0000
H211	0.41823(15)	0.60473(19)	0.61602(9)	0.0517	1.0000
H212	0.27284(15)	0.58454(19)	0.64479(9)	0.0509	1.0000
H213	0.30172(15)	0.72868(19)	0.58928(9)	0.0533	1.0000
H231	0.24672(15)	0.6160(2)	0.23198(10)	0.0412	1.0000
H232	0.13613(15)	0.6629(2)	0.16984(10)	0.0438	1.0000

0.17150(18)	0.8766(2)	0.24669(14)	0.0562	1.0000
0.01275(18)	0.8216(2)	0.28997(14)	0.0564	1.0000
0.30437(19)	0.0357(2)	0.02527(13)	0.0735	1.0000
0.26223(19)	-0.0265(2)	0.11399(13)	0.0750	1.0000
0.15657(19)	0.0649(2)	0.04905(13)	0.0765	1.0000
0.56825(14)	0.2547(3)	0.13302(10)	0.0701	1.0000
0.52942(14)	0.3233(3)	0.22121(10)	0.0726	1.0000
0.53523(14)	0.1422(3)	0.20973(10)	0.0726	1.0000
0.0957(2)	0.3250(4)	0.02913(15)	0.1343	1.0000
0.1178(2)	0.5033(4)	0.05095(15)	0.1348	1.0000
0.0820(2)	0.4549(4)	0.04238(15)	0.1352	1.0000
0.4444(4)	0.5604(3)	0.11085(19)	0.1403	1.0000
0.3235(4)	0.6519(3)	0.03962(19)	0.1381	1.0000
0.2882(4)	0.5909(3)	0.13026(19)	0.1395	1.0000
0.4725(2)	0.3748(3)	0.01007(12)	0.0856	1.0000
0.3591(2)	0.4607(3)	0.08191(12)	0.0876	1.0000
0.3471(2)	0.2763(3)	0.06370(12)	0.0867	1.0000
-0.113(3)	0.720(3)	0.3955(18)	0.0943	1.0000
	0.17150(18) 0.01275(18) 0.30437(19) 0.26223(19) 0.15657(19) 0.56825(14) 0.52942(14) 0.53523(14) 0.0957(2) 0.1178(2) 0.0820(2) 0.4444(4) 0.3235(4) 0.2882(4) 0.4725(2) 0.3591(2) 0.3471(2) -0.113(3)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.17150(18) $0.8766(2)$ $0.24669(14)$ $0.01275(18)$ $0.8216(2)$ $0.28997(14)$ $0.30437(19)$ $0.0357(2)$ $0.02527(13)$ $0.26223(19)$ $-0.0265(2)$ $0.11399(13)$ $0.15657(19)$ $0.0649(2)$ $0.04905(13)$ $0.56825(14)$ $0.2547(3)$ $0.13302(10)$ $0.52942(14)$ $0.3233(3)$ $0.22121(10)$ $0.53523(14)$ $0.1422(3)$ $0.20973(10)$ $0.0957(2)$ $0.3250(4)$ $0.02913(15)$ $0.1178(2)$ $0.5033(4)$ $0.05095(15)$ $0.0820(2)$ $0.4549(4)$ $0.04238(15)$ $0.4444(4)$ $0.5604(3)$ $0.11085(19)$ $0.3235(4)$ $0.6519(3)$ $0.03962(19)$ $0.2882(4)$ $0.5909(3)$ $0.13026(19)$ $0.4725(2)$ $0.3748(3)$ $0.01007(12)$ $0.3591(2)$ $0.2763(3)$ $0.06370(12)$ $-0.113(3)$ $0.720(3)$ $0.3955(18)$	0.17150(18) $0.8766(2)$ $0.24669(14)$ 0.0562 $0.01275(18)$ $0.8216(2)$ $0.28997(14)$ 0.0564 $0.30437(19)$ $0.0357(2)$ $0.02527(13)$ 0.0735 $0.26223(19)$ $-0.0265(2)$ $0.11399(13)$ 0.0750 $0.15657(19)$ $0.0649(2)$ $0.04905(13)$ 0.0765 $0.56825(14)$ $0.2547(3)$ $0.13302(10)$ 0.0701 $0.52942(14)$ $0.3233(3)$ $0.22121(10)$ 0.0726 $0.0957(2)$ $0.3250(4)$ $0.2973(10)$ 0.0726 $0.0957(2)$ $0.3250(4)$ $0.02913(15)$ 0.1343 $0.1178(2)$ $0.5033(4)$ $0.05095(15)$ 0.1348 $0.0820(2)$ $0.4549(4)$ $0.04238(15)$ 0.1352 $0.4444(4)$ $0.5604(3)$ $0.11085(19)$ 0.1381 $0.2882(4)$ $0.5909(3)$ $0.13026(19)$ 0.1395 $0.4725(2)$ $0.3748(3)$ $0.01007(12)$ 0.0856 $0.3591(2)$ $0.4607(3)$ $0.08191(12)$ 0.0867 $-0.113(3)$ $0.720(3)$ $0.3955(18)$ 0.0943

Thermal Parameters

Label	U ₁₁	U22	U33	U ₂₃	U ₁₃	U ₁₂
Si1	0.01902(14)	0.0348(2)	0.02496(15)	0.00725(14)	0.00464(11)	0.00320(13)
02	0.0293(4)	0.0279(5)	0.0246(4)	0.0015(4)	0.0094(3)	0.0029(4)
C3	0.0210(5)	0.0229(7)	0.0231(5)	-0.0011(4)	0.0063(4)	-0.0009(4)
C4	0.0237(6)	0.0198(6)	0.0279(6)	-0.0022(5)	0.0044(4)	-0.0027(5)
05	0.0381(5)	0.0232(5)	0.0309(5)	0.0056(4)	0.0110(4)	0.0049(4)
C6	0.0487(9)	0.0267(7)	0.0388(8)	0.0093(6)	0.0095(6)	0.0060(6)
07	0.0337(5)	0.0285(5)	0.0377(5)	0.0007(4)	0.0094(4)	0.0085(4)
C8	0.0229(6)	0.0256(7)	0.0330(6)	-0.0044(5)	0.0043(5)	-0.0047(5)
С9	0.0194(6)	0.0344(8)	0.0335(6)	-0.0029(5)	0.0007(5)	-0.0018(5)
C10	0.0170(5)	0.0306(7)	0.0306(6)	0.0013(5)	0.0036(4)	0.0006(5)
011	0.0175(4)	0.0320(5)	0.0301(4)	-0.0005(4)	0.0066(3)	0.0007(3)
C12	0.0186(5)	0.0212(6)	0.0265(6)	0.0002(4)	0.0061(4)	-0.0001(4)
C13	0.0186(5)	0.0177(6)	0.0234(5)	0.0011(4)	0.0038(4)	0.0001(4)

014	0.0175(4)	0.0239(4)	0.0287(4)	0.0051(4)	0.0050(3)	0.0014(3)
C15	0.0199(5)	0.0205(6)	0.0245(5)	-0.0020(4)	0.0057(4)	-0.0008(4)
016	0.0211(4)	0.0204(5)	0.0438(5)	0.0014(4)	0.0058(4)	-0.0033(3)
C17	0.0253(6)	0.0278(8)	0.0701(11)	0.0013(7)	0.0073(7)	-0.0083(6)
O18	0.0210(4)	0.0241(5)	0.0400(5)	-0.0033(4)	0.0014(4)	0.0017(3)
C19	0.0254(6)	0.0244(6)	0.0271(6)	-0.0011(5)	0.0093(4)	-0.0020(5)
O20	0.0273(4)	0.0332(5)	0.0281(4)	-0.0069(4)	0.0023(3)	0.0008(4)
C21	0.0356(7)	0.0321(8)	0.0299(6)	-0.0060(6)	-0.0002(5)	-0.0046(6)
O22	0.0356(5)	0.0417(7)	0.0489(6)	-0.0187(5)	0.0050(4)	0.0103(5)
C23	0.0247(6)	0.0366(8)	0.0430(7)	0.0052(6)	0.0017(5)	0.0088(6)
C24	0.0380(8)	0.0301(9)	0.0690(11)	0.0020(7)	0.0017(7)	0.0113(6)
025	0.0652(9)	0.0555(9)	0.0659(9)	-0.0145(7)	0.0039(7)	0.0311(7)
C26	0.0446(8)	0.0495(10)	0.0572(10)	-0.0278(9)	0.0146(7)	-0.0085(8)
C27	0.0227(6)	0.0830(13)	0.0358(7)	-0.0090(9)	0.0046(5)	-0.0033(8)
C28	0.0530(10)	0.0637(12)	0.0325(7)	0.0099(8)	0.0181(7)	0.0044(9)
C29	0.0607(13)	0.165(3)	0.0515(11)	0.0514(16)	0.0236(10)	0.0477(16)
C30	0.173(3)	0.0458(13)	0.0739(15)	0.0100(12)	0.0600(18)	-0.0127(17)
C31	0.0484(10)	0.0965(17)	0.0358(8)	0.0050(10)	0.0190(7)	-0.0117(10)

Distances

Si1	02	1.6422(9)Å	Si1	C26	1.8543(18)Å
Si1	C27	1.8606(14)Å	Si1	C28	1.8916(19)Å
02	C3	1.3974(14)Å	C3	C4	1.5288(17)Å
C3	C8	1.5436(16)Å	C3	C13	1.5645(17)Å
C4	05	1.3323(15)Å	C4	07	1.1998(17)Å
05	C6	1.4437(17)Å	C6	H61	0.963Å
C6	H62	0.965Å	C6	H63	0.974Å
C8	C9	1.5285(19)Å	C8	H81	0.946Å
C8	H82	0.961Å	C9	C10	1.5184(19)Å
C9	H91	0.978Å	C9	H92	0.963Å
C10	011	1.4439(15)Å	C10	014	1.4214(14)Å
C10	C23	1.5138(19)Å	011	C12	1.4235(14)Å
C12	C13	1.5605(15)Å	C12	C19	1.5213(17)Å
C12	H121	0.983Å	C13	014	1.4239(14)Å

C13 C15 1.5281(16)Å	C15 O16 1.3238(16)Å
C15 O18 1.1996(15)Å	O16 C17 1.4503(16)Å
C17 H171 0.957Å	C17 H172 0.963Å
C17 H173 0.963Å	C19 O20 1.3191(15)Å
C19 O22 1.1993(17)Å	O20 C21 1.4453(16)Å
C21 H211 0.954Å	C21 H212 0.958Å
C21 H213 0.926Å	C23 C24 1.507(2)Å
C23 H231 0.985Å	C23 H232 0.970Å
C24 O25 1.424(3)Å	C24 H241 0.996Å
C24 H242 0.987Å	O25 H251 0.860(17)Å
C26 H262 0.960Å	C26 H263 0.950Å
C26 H261 0.939Å	C27 H273 0.973Å
C27 H271 0.946Å	C27 H272 0.986Å
C28 C29 1.527(3)Å	C28 C30 1.538(4)Å
C28 C31 1.531(2)Å	C29 H291 0.980Å
C29 H293 0.954Å	C29 H292 0.956Å
C30 H302 0.983Å	C30 H301 0.968Å
C30 H303 0.966Å	C31 H312 0.965Å
C31 H313 0.968Å	C31 H311 0.970Å

Angles

02	Si1	C26	112.07(7)°	02	Si1	C27	113.40(6)°
C26	Si1	C27	111.12(10)°	02	Si1	C28	100.60(7)°
C26	Si1	C28	110.73(10)°	C27	Si1	C28	108.40(9)°
Si1	02	C3	143.63(8)°	02	C3	C4	111.19(10)°
02	C3	C8	109.85(10)°	C4	C3	C8	107.50(10)°
O2	C3	C13	104.17(9)°	C4	C3	C13	115.33(10)°
C8	C3	C13	108.73(9)°	C3	C4	05	111.52(10)°
C3	C4	07	123.36(11)°	05	C4	07	124.86(12)°
C4	05	C6	116.59(11)°	05	C6	H61	108.141°
05	C6	H62	109.925°	H61	C6	H62	111.298°
05	C6	H63	106.926°	H61	C6	H63	110.894°
H62	C6	H63	109.548°	C3	C8	C9	111.10(11)°
C3	C8	H81	108.057°	С9	C8	H81	110.827°
C3	C8	H82	108.140°	C9	C8	H82	109.112°

H81	C8	H82	109.556°	C8	C9	C10	110.39(10)°
C8	C9	H91	108.612°	C10	C9	H91	109.506°
C8	C9	H92	110.137°	C10	C9	H92	109.904°
H91	C9	H92	108.244°	C9	C10	011	109.52(11)°
C9	C10	014	109.63(10)°	011	C10	014	104.00(9)°
C9	C10	C23	113.27(11)°	011	C10	C23	110.84(11)°
014	C10	C23	109.16(11)°	C10	011	C12	108.22(9)°
011	C12	C13	103.17(9)°	011	C12	C19	109.01(10)°
C13	C12	C19	115.11(10)°	011	C12	H121	111.865°
C13	C12	H121	110.219°	C19	C12	H121	107.516°
C3	C13	C12	113.53(10)°	C3	C13	014	107.49(9)°
C12	C13	014	100.48(9)°	C3	C13	C15	108.38(9)°
C12	C13	C15	116.47(10)°	014	C13	C15	109.90(9)°
C10	014	C13	103.75(9)°	C13	C15	016	112.06(10)°
C13	C15	O18	122.28(11)°	016	C15	O18	125.65(11)°
C15	016	C17	115.91(11)°	016	C17	H171	106.721°
016	C17	H172	109.090°	H171	C17	H172	111.153°
016	C17	H173	110.786°	H171	C17	H173	109.918°
H172	C17	H173	109.156°	C12	C19	O20	111.16(10)°
C12	C19	O22	123.97(12)°	O20	C19	O22	124.84(12)°
C19	O20	C21	116.48(10)°	O20	C21	H211	109.099°
O20	C21	H212	108.480°	H211	C21	H212	107.752°
O20	C21	H213	112.574°	H211	C21	H213	109.220°
H212	C21	H213	109.597°	C10	C23	C24	115.54(12)°
C10	C23	H231	109.610°	C24	C23	H231	107.800°
C10	C23	H232	106.589°	C24	C23	H232	108.058°
H231	C23	H232	109.104°	C23	C24	025	113.07(15)°
C23	C24	H241	105.379°	025	C24	H241	104.729°
C23	C24	H242	110.651°	025	C24	H242	114.088°
H241	C24	H242	108.255°	C24	025	H251	101(2)°
Si1	C26	H262	109.755°	Si1	C26	H263	114.651°
H262	C26	H263	109.710°	Si1	C26	H261	109.670°
H262	C26	H261	108.904°	H263	C26	H261	103.898°
Si1	C27	H273	111.373°	Si1	C27	H271	109.292°
H273	C27	H271	108.872°	Si1	C27	H272	112.612°
H273	C27	H272	107.475°	H271	C27	H272	107.061°
Si1	C28	C29	109.92(15)°	Si1	C28	C30	109.29(13)°
C29	C28	C30	109.8(2)°	Si1	C28	C31	110.76(15)°

C29	C28	C31	108.27(15)°	C30	C28	C31	108.82(19)°
C28	C29	H291	110.342°	C28	C29	H293	111.008°
H291	C29	H293	109.199°	C28	C29	H292	107.877°
H291	C29	H292	108.174°	H293	C29	H292	110.192°
C28	C30	H302	109.852°	C28	C30	H301	108.534°
H302	C30	H301	112.446°	C28	C30	H303	108.327°
H302	C30	H303	110.232°	H301	C30	H303	107.329°
C28	C31	H312	107.906°	C28	C31	H313	111.199°
H312	C31	H313	107.973°	C28	C31	H311	110.685°
H312	C31	H311	107.456°	H313	C31	H311	111.443°

5. References

- 1. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- 2. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
- Alonso, F.; Rodríguez-Fernández, M.; Sánchez, D.; Yus. M. Eur. J. Org. Chem. 2011, 6459.
- 4. Vedejs, E.; Larsen, S. Org. Synth., Coll. Vol. VII 1990, 277.
- ¹H NMR (δ 11.63) for NH is indicative of Z-hydrazone configuration, see: Vinczer, P.; Novak, L.; Szántay, C. Synth. Commun. 1984, 14, 281.
- 6. Hook, J. M. Synth. Commun. 1984, 14, 83.
- 7. ¹H NMR analysis of the residue tentatively indicated 3 cycloadduct isomers (20:3:1), as suggested by analogy to our earlier model study (Hodgson, D. M.; Villalonga-Barber, C.; Goodman, J. M.; Pellegrinet, S. C. *Org. Biomol. Chem.* **2010**, *8*, 3975), by singlets assigned to the bridge methines at δ 5.59, 4.84 and 4.58, respectively.
- Without addition of TMSCHN₂ (Hashimoto, N.; Aoyama, T.; Shioiri, T. *Chem. Pharm. Bull.* 1981, 29, 1475) the yield of rearranged diol 24 was 17%.
- 9. Myers, A. G.; Yang, B. H.; Chen, H. Org. Synth., Coll. Vol. X 2004, 509.
- Wells, M. B.; McConathy, J. E.; White, P. S.; Templeton. J. L Organometallics 2002, 21, 5007.
- 11. Lipshutz, B. H.; Kell, R.; Ellsworth, E. L. Tetrahedron Lett. 1990, 31, 7257.
- 12. Hu, T.; Panek, J. S. J. Am. Chem. Soc, 2002, 124, 11368.
- 13. Johnson, K. A.; Biswas, S.; Weix, D. J. Chem. Eur. J. 2016, 22, 7399.
- 14. Kametani, T.; Suzuki, Y.; Furuyama, H.; Honda, T. J. Org. Chem. 1983, 48, 31.
- 15. (a) Martin, S. F.; Naito, S. J. Org. Chem. 1998, 63, 7592. (b) Naito, S.; Escobar, M.; Kym, P. R.; Liras, S.; Martin, S. F. J. Org. Chem. 2002, 67, 4200.
- 16. No lit. value reported.
- 17. (a) Blows, W. M.; Foster, G.; Lane, S. J.; Noble, D.; Piercey, J. E.; Sidebottom, P. J.; Webb, G. J. Antibiot. 1994, 47, 740. (b) Dawson. M. J.; Baxter, A.; Tait, R. M.; Watson, N. S.; Noble, D.; Shuttleworth, A.; Wildman, H. G.; Hayes, M. V. PCT Int. Appl. WO 92/1215.

- 18. Discernible data for Z-26: ¹H NMR (500 MHz; CDCl₃) δ 4.98 (1H, d, J 9, HC=C),
 4.85 (1H, s, CHCO₂Me), 0.08 (9H, s, OTMS); ¹³C NMR (125 MHz; CDCl₃) δ
 171.34 (CO₂Me), 133.7 (C=CH), 131.6 (ArC), 129.5 (2xArCH), 125.7 (ArCH),
 108.6 (O-C¹-O), 78.5 (C⁴CO₂MeOTMS), 75.9 (CHCO₂Me), 52.4 (CO₂Me), 44.3 (CH₂Ph), 35.6 (CHCH₃), 34.4 (C⁶H₂), 32.1 (C⁷H₂), 31.7 (CCH₂CH₂CMe), 30.4 (CH₂), 21.0 (CHCH₃), 14.3 (C=CCH₃), 1.18 (OTMS).
- 19. Biswas. S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.
- 20. Cosier, J.; Glazer, A. M. J. Appl. Cryst. 1986, 19, 105.
- 21. Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786.
- 22. Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. J. Appl. Cryst. 2003, 36, 1487.
- 23. Cooper, R. I.; Thompson, A. L.; Watkin, D. J. J. Appl. Cryst. 2010, 43, 1100.
- 24. Flack, H. D. Acta Cryst. A 1983, 39, 876.
- 25. Flack, H. D.; Bernardinelli, G. J. Appl. Cryst. 2000, 33, 1143.
- 26. Hooft, R. W. W.; Straver, L. H.; Spek, A. L. J. Appl. Cryst. 2008, 41, 96.

S37

S63

S65

