Supplementary Information of

Retention of U(VI) by the Formation of Fe Precipitates from Oxidation of Fe(II)

Huiyang Mei,^{†,‡} Xiaoli Tan,^{†,‡,}* Liqiang Tan,[†] Yuedong Meng,[‡] Changlun Chen,[‡]

Ming Fang,^{†,*} Xiangke Wang^{†,§}

[†] School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, P. R. China

[‡] CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, P. R. China

[§] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, P. R. China

* Corresponding author Email: <u>tanxl@ipp.ac.cn</u> or <u>xltan@ncepu.edu.cn</u> (X. Tan);

mfang@ncepu.edu.cn (M. Fang)

1. Measurement of fluorescence spectra.

The excitation-emission matrix data were recorded under room temperature after the precipitates were put into a 1 cm quartz sample holder. The scan speed was set at 1200 nm/min and both of the emission and excitation wavelength range were set from 200 to 600 nm by 5 nm steps. Both of the excitation and emission slit band widths were set as 10 nm.

Table S1. A systematic comparison on the experimental conditions and results of this work with those of the previous studies.

Fe(II) (mM)	рН	Temperature	Aging time	NaHCO ₃ (mM)	Phase(s)		Ref.
			(h)		Dominant	Minor	Kel.
50	6.5	25°C	48	100	goethite	lepidocrocite	1
50	5.5	Room temperature	48	1000	goethite	lepidocrocite	2
1.0	7.0	Room temperature	5	8	lepidocrocite	goethite	3
0.54	7.0	Room temperature	4-5	8	lepidocrocite	goethite	4
1.0	7.0	Room temperature	24	8	lepidocrocite	goethite	This study

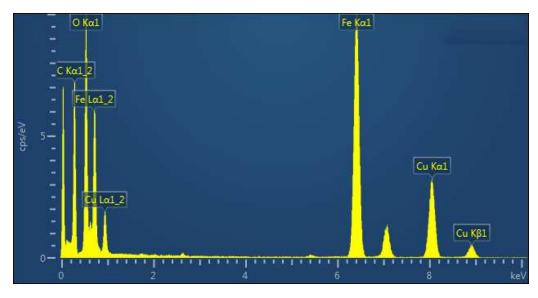


Figure S1. EDS spectrum of Fe-U0.10_{ads} after successive washing process.

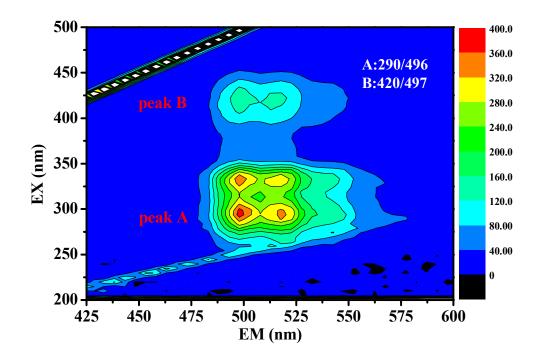


Figure S2. Fluorescence excitation-emission matrix spectrum of uranyl solution.

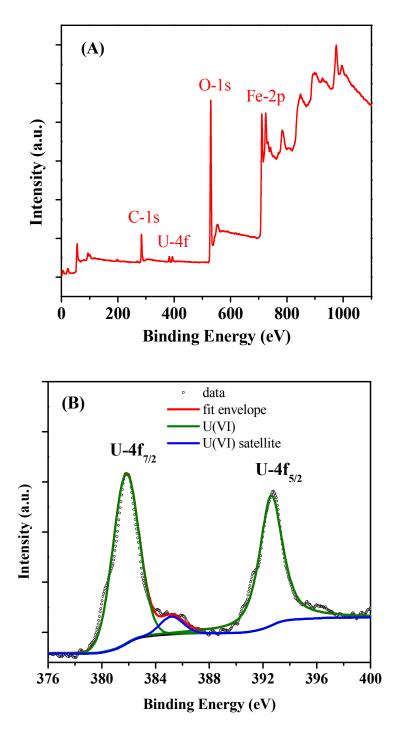


Figure S3. XPS survey spectrum of the adsorption sample Fe-U0.10_{ads} (A) and corresponding U 4f spectrum (B).

REFERENCES

(1) Doornbusch, B.; Bunney, K.; Gan, B.; Jones, F.; Gräfe, M., Iron oxide formation from FeCl₂ solutions in the presence of uranyl $(UO_2^{2^+})$ cations and carbonate rich media. *Geochim. Cosmochim. Acta* **2015**, *158*, 22-47.

(2) Cumplido, J.; Barrón, V.; Torrent, J., Effect of phosphate on the formation of nanophase lepidocrocite from Fe(II) sulfate. *Clay. Clay Miner.* **2000**, *48*, (5), 503-510.

(3) Voegelin, A.; Senn, A.; Kaegi, R.; Hug, S.; Mangold, S., Dynamic Fe-precipitate formation induced by Fe(II) oxidation in aerated phosphate-containing water. *Geochim. Cosmochim. Acta* **2013**, *117*, 216-231.

(4) Voegelin, A.; Kaegi, R.; Frommer, J.; Vantelon, D.; Hug, S., Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy. *Geochim. Cosmochim. Acta* **2010**, *74*, (1), 164-186.