
S1 

 

Supporting Information 

 

Raman Spectra and Strain Effects in Bismuth Oxychalcogenides 

Ting Cheng, †,‡ Congwei Tan, †,‡ Shuqing Zhang, £ Teng Tu, † 

 Hailin Peng, †,‡,§,,* and Zhirong Liu†,‡,§,* 

† College of Chemistry and Molecular Engineering, Peking University, Beijing 

100871, China.  
‡ Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, 

Peking University, Beijing 100871, China 
£ The Low-Dimensional Materials and Devices Laboratory, Tsinghua-Berkeley 

Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China 
§ State Key Laboratory for Structural Chemistry of Unstable and Stable Species, 

Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 

100871, China  
* Address correspondence to hlpeng@pku.edu.cn and LiuZhiRong@pku.edu.cn 

 

 

 

1. SEM images of the sample 

 

Figure S1. SEM images of bulk (a) Bi2Se3, (b) Bi2Te3 and CVD-grown (c) Bi2O2Se, (d) 

Bi2O2Te. It can be seen an obvious phase transformation from Bi2Se3 (Bi2Te3) to Bi2O2Se 

(Bi2O2Te). 
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2. The calculated Band structure using the LDA method. 

Limited by our server computing performance and low calculation efficiency of MBJ or 

HSE method in Quantum-Espresso package, we just do the band calculation using the LDA 

method in Quantum-Espresso package and to have a qualitative understanding of band 

dispersion. And also compare the dispersion with the results using the PBE-MBJ method 

implemented in VASP along the same high-symmetry path in the Brillouin zone to verify 

the electron density. 

 

Figure S2. Electronic band structures of (a) Bi2O2Se, (b) Bi2O2S, (c) Bi2O2Te calculated by 

LDA method using the Quantum Espresso package, and (d) Bi2O2Te calculated by LDA 

method using the VASP. SOC effect was considered here. 
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3. The Calculated atomic displacements for all remaining Raman-active modes in 

Bi2O2S (D2h symmetry). 

 

Figure S3. The calculated polarization vectors of all Raman-active modes in Bi2O2S except 

the modes which have been shown in the main paper.  

  

4. Separate the A1g and B1g mode in theory 

Considering the light polarization configuration, ei and es are the polarization vectors 

of the incoming and scattered photons, respectively. Selection rules help us to know that the 

intensity of the A1g mode is independent of the sample orientation, but the B1g mode is 

strongly related (IB1g(θ)~c2sin2(θ+2β), where θ=∠ (ei, es), β=∠ (ei, x)). The diagram 

illustration was shown in Figure S3 (a). Figure S3 (b) gives the intensity of the A1g and B1g 

modes as a function of the crystal orientation with respect to the laboratory axes x0 and y0. 
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It can be seen that, in the parallel polarization configuration (θ=0°), the intensity of B1g 

mode is maximal when the orientation of the sample is parallel to ei (β=0°), then gradually 

decreases to zero for β =45°. But the A1g always keeps constant when the orientation of the 

sample changes. In the crossed polarization configuration (θ=90°), the intensity of B1g mode 

gradually increases from zero (β =0°) to its maximal value for β =45°, whereas A1g mode 

vanishes in this configuration. So we could choose specified sample orientation (β=45°, 

x’=1/√2[110], y’=1/√2[1-10]) and various polarized scattering configuration to assign four 

different modes in the Bi2O2Se (Bi2O2Te) system (see Figure S3 (c)). This hypothesis could 

be verified by future polarized Raman scattering experiments when obtain a good sample. 

 

Figure S4. (a) The Scheme for considering the sample orientation β with respect to the 

laboratory axes x0 and y0. (b) variation of the intensities I [A1g] and I [B1g] versus sample 

orientation β in the parallel and crossed polarization configurations. (c) the predicted 

polarized Raman scattering spectra of Bi2O2Se (Bi2O2Te) in various scattering 

configurations (x = [110], y = [010], x’=1/√2[110], y’=1/√2[1-10], z = [001]). 
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5. Detailed process for deducing the frequency response functions with small strains  

 

For degenerate modes, it will split into two modes under uniaxial strain. Therefore, we 

could suppose the Hamiltonian with the energies of two modes as the eigenvalues has such 

form: 
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where a, b and c are matrix elements. The solutions of Eq. (S1) are: 
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The two frequency modes degeneracy conditions are: a=b and c=0. Under small strains, we 

could suppose that the parameter a, b and c expands like: 
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To substitute Eq. (S3) into Eq. (S2), we could have: 
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Then we could simplify Eq. (S4) by symmetry restrictions of the D4h point group: 

(1) Inversion operation: to change the sign of shear strain ( -  ), the symmetry is not 

broken. That is: 
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Thus we have  
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(2) Isotropic system: to apply the biaxial strain (εxx=εyy=ε, γ=0), the symmetry is conserved 

and no split happens. That is: 
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Thus, we have 
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(3) The system is conserved after a rotation of 90°: At this time, the strain after rotation 

will be: 
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Then,  
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Based on Eq. (8), we have: 

1 2 1 2                                (S10) 

In all, we substitute Eq. (S6), (S8) and (S10) into the initial Eq. (S4), the frequencies of 

degenerate mode under small strain will be: 
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Define 
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        , we could further simplify 

Eq. (S11) as: 
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This gives a universal formula between small strains and frequencies of the split doubly 

degenerate modes for D4h symmetry systems. 
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6. Calculated 2D elastic constant evaluation for monolayer Bi2O2Se and Bi2O2Te. 

 

Figure S5. 2D elastic constant evaluation (Total energy with respect to the uniaxial strain 

and shear strain) for the (a, b) Bi2O2Te and (c, d) Bi2O2Se. The quadratic fit gives the 2D 

elastic constant. 
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7. The remaining evolutions of all Raman modes with small strains (both uniaxial and 

shear strains) for bulk and monolayer Bi2O2Se (Bi2O2Te). 

 

Figure S6. The evolutions of Raman shift with (a-d) uniaxial and (e-h) shear strain along 

the x direction for monolayer Bi2O2Se. The calculated data points (squares and triangles) 

are fitted with a parabolic equation (solid lines) and the fitted linear coefficients (unit: 

cm−1/%) are also shown in the panels. For the degenerate modes, the open and filled symbols 

are used to distinguish the two splitting frequencies under the uniaxial strain. 

 

 

 

 



S10 

 

 

Figure S7. The evolutions of Raman shift with (a-d) uniaxial and (e-h) shear strain along 

the x direction for monolayer Bi2O2Te. The calculated data points (squares and triangles) 

are fitted with a parabolic equation (solid lines) and the fitted linear coefficients (unit: 

cm−1/%) are also shown in the panels. For the degenerate modes, the open and filled symbols 

are used to distinguish the two splitting frequencies under the uniaxial strain. 
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Figure S8. The evolutions of Raman shift with (a-d) uniaxial and (e-h) shear strain along 

the x direction for bulk Bi2O2Te. The calculated data points (squares and triangles) are fitted 

with a parabolic equation (solid lines) and the fitted linear coefficients (unit: cm−1/%) are 

also shown in the panels. For the degenerate modes, the open and filled symbols are used to 

distinguish the two splitting frequencies under the uniaxial strain. 

 

 

 

 

 

 

 



S12 

 

Table S1. Determined slopes for four Raman-active modes in bulk and monolayer 

Bi2O2Se and Bi2O2Te under applied strain εxx and γ. 

Slope k 

Bi2O2Se Bi2O2Te 

Bulk Monolayer Bulk Monolayer 

kxx kγ kxx kγ kxx kγ kxx kγ 

Eg
1 

-2.37; 

-0.66 

-0.81; 

0.81 

-2.59; 

-1.72 

-1.84; 

1.87 

-2.83; 

-0.93 

-1.05; 

1.06 

-2.03; 

-1.20 

 -1.56; 

1.55 

A1g -2.32 0 -2.31 0 -2.32 0 -2.32 0 

B1g -3.00 0 -1.65 0 -3.44 0 -1.67 0 

Eg
2 

-8.47; 

-6.97 

-6.36; 

6.29 

-6.53; 

-5.41 

-6.59; 

6.59 

-8.62; 

-6.75 

 -5.91; 

 5.64 

-6.39; 

-5.76 

 -6.39; 

 6.36 
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8. The corresponding θ-dependent frequency change of the degenerate modes in 

monolayer and bulk Bi2O2Se (Bi2O2Te). 

 

 

Figure S9. The corresponding θ-dependent frequency change of degenerate modes in (a-b) 

monolayer Bi2O2Se,（c-d）bulk Bi2O2Te and (e-f) monolayer Bi2O2Te. 

 

 

 


