Supporting Information

A Rechargeable Al-Te Battery

Handong Jiao,^a Donghua Tian,^a Shijie Li,^a Chaopeng Fu,^b Shuqiang Jiao*^a

^a State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing,

Beijing, 100083, P R China. * E-mail: sjiao@ustb.edu.cn

^b School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R.

China

Figure S1: Voltage-time plot of galvanostatic electrolysis at a current density of 0.05 mA/cm².

a Te-LA	98.12 <i>mol</i> % NHK	1.21 <i>mol</i> % ст-ка	0.67 <i>mol</i> %
b solution Te-LA	25.12 mol%	11.56 mol% <mark>CI-KA</mark>	63.32 <i>mal</i> %
C 100 JUN Te-LA	93,08 <i>mol</i> %: <mark>лы</mark> я	2.11 <i>mol%</i> C+KA	4.81 mal%

Figure S2: EDS of tellurium electrodes: (a) pristine, (b) charged to 2.4 V and (c) reverted to 0.5 V by discharge from 2.4 V.

Figure S3: Ex situ X-ray diffraction patterns of tellurium cathode: pristine and fully discharged to 0 V.

Figure S4: (a) The shelf life test of the Al-Te battery. (b) Charge/discharge curves of the tantalum foil. (c) Capacity as a function of cycle number of the tantalum foil at a current density of 0.05 mA/cm^2 . The capacity of tantalum foil is less than 0.5 mAh/g_{Ta} over 600 cycles, which indicates that the side reaction caused by tantalum is negligible.

Figure S5: Galvanostatic charge and discharge curves of the novel Al-S battery at a current density of 0.05 mA/m^2 .

Equation	ΔG (kJ)	<i>E</i> (V <i>vs</i> . Al ³⁺ /Al)
3TeCl ₄ +2Al=2AlCl ₃ +3TeCl ₂	-1021.448	1.76
3TeCl ₂ +2Al=2AlCl ₃ +3Te	-788.619	1.36
3TeCl ₄ +4Al=4AlCl ₃ +3Te	-1810.067	1.56
2Al+3Te=Al ₂ Te ₃	-314.076	0.54

Table S1: Theoretical redox potentials of tellurium and its compounds calculated from thermodynamic

data at 298 K.