Supporting Information

Asymmetric Allylic C-H Alkylation via Palladium(II)/Chiral Sulfoxide-Oxazoline Catalysis

Wei Liu, Siraj Ali, Stephen Ammann, M. Christina White
Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801

Table of Contents
General Information S2
Table S1. Reaction Development of 2-Nitrotetralone S3
Table S2. The Effect of Acetate Salt Additive on the Asymmetric Alkylation of 2-Nitrotetralone S5
Table S3. Substrate Scope for 2-Nitrotetralone Nucleophiles S6
Scheme S1: Comparison of Synthetic Routes for Compound 5 S11
Scheme S2: Synthetic Diversification of Aminoketone 4 to generate 1,2-Amino Alcohols S13
Scheme S3: Determination of Relative Stereochemistry of the Amino Alcohols S14
Table S4. Optimization for the Asymmetric C-H Alkylation with β-ketoester Nucleophiles S16
Table S5. Substrate Scope with β-ketoester Nucleophiles S18
Scheme S4: Diastereoselective Allylic C-H Alkylation. S24
Scheme S5. Crystal Structure of $\operatorname{Pd}(\mathrm{OAc})_{2}$ / ArSOX L9 complex S29
Scheme S6. Crystal Structure of the Alkylation Product with Nitroketone (3p) S31
Scheme S7. Crystal Structure of the Alkylation Product with β-ketoester (9e) S33
Scheme S8. Crystal Structure of the Alkylation Product with β-ketoester (13b) S35
Scheme S9. Ligand Synthesis
i. Amino Alcohol Synthesis S37
ii. Oxazoline Synthesis S37
iii. Sulfinate Synthesis S38
iv. Ligand Synthesis S39
Scheme S10. Substrate Synthesis: Allylarenes S42
Scheme S11. Substrate Synthesis: Nucleophiles S44
Reference S47
Spectral Data S48

General Information

All commercially obtained reagents were used as received; $\mathrm{Pd}(\mathrm{OAc})_{2}$ (Johnson-Matthey Chemicals) was stored in a glove box, and weighed out in the air at room temperature prior to use. Benzene and dioxane was purified prior to use by passage through a bed of activated alumina (Glass Contour, Laguna Beach, California). 2,6-Dimethylbenzoquinone and zinc acetate dihydrdate (reagent grade) were purchased from Sigma-Aldrich and used as received. All allylic C-H alkylation reactions were set up and run under ambient air with no precautions taken to exclude moisture. Reactions at $5^{\circ} \mathrm{C}$ were carried out in a cold room, where the temperature is monitored and maintain between $4^{\circ} \mathrm{C}-6^{\circ} \mathrm{C}$. Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized with UV, Cerium-ammoniummolybdate and potassium permanganate stain. Flash chromatography was performed using ZEOprep 60 ECO 43-60 micron silica gel (American International Chemical, Inc.).
${ }^{1}$ H NMR spectra were recorded on a Varian Unity-u400nb (500 MHz), Varian Inova-500 (500 MHz), or Varian Unity-500 $(500 \mathrm{MHz})$ spectrometer and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 7.26 ppm$)$. Data reported as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin. $=$ quintet, sext. $=$ sextet, sept. $=$ septet, $\mathrm{o}=$ octet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad, ap = apparent; coupling constant(s) in Hz ; integration. Proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a CarverBruker $500(125 \mathrm{MHz})$ or Varian Unity- $500(125 \mathrm{MHz})$ spectrometer and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Varian Unity-500 $(470 \mathrm{MHz})$ spectrometer and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right)$. Chiral high pressure liquid chromatography (HPLC) analysis was performed on an Agilent 1100 Series instrument equipped with a UV detector, using a CHIRALPAK AD-RH, OJ-H, IA-3, IB-3, IC-3 column. Optical rotations were measured with a sodium lamp using a 1 mL cell with a 50 mm path length on a Jasco P-1020 polarimeter. Optical rotations were obtained with a sodium lamp and are reported as follows: $[\alpha]_{\lambda} \mathrm{T}^{\circ} \mathrm{C}(c=\mathrm{g} / 100 \mathrm{~mL}$ solvent $)$. High-resolution mass spectra were obtained at the University of Illinois Mass Spectrometry Laboratory. Electrospray ionization (ESI) spectra were performed on a Waters Q-Tof μ Ltima spectrometer, and electron ionization (EI) and field desorption (FD) spectra were performed on a Micromass 70-VSE spectrometer.

Minor impurities (i.e. solvent/quinone/grease) are labeled in the 1 H NMR spectra. The 13 C NMR spectra will contain the same impurities as the 1 H NMR spectra as they were generally obtained from the same sample. Impurities were calculated out when reporting isolated yields.

Table S1. Reaction Development of 2-Nitrotetralone.

Entry	Ligand	$\mathrm{Zn}(\mathrm{OAc})_{2} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{x} \mathrm{mol} \%)$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	ee (\%)
1	L 1	0%	45	65	-20
2	L 2	0%	45	78	64
3	L 3	0%	45	80	66
4	L 3	100%	45	82	79
5	L 3	100%	5	70	88
6	L 4	100%	5	78	87
7	L 5	100%	5	77	90
8	L6	100%	5	74	89
9	L7	100%	5	81	92
10	L7	50%	5	83	92
11	L7	25%	5	79	92
12	L7	25%	5	60	91

Entry 1 :
To a $1 / 2$ dram borosilicate vial with stir bar was added ligand $\mathbf{L} 1(4.1 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv $)$ and $\operatorname{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01$ mmol, 0.1 equiv). Toluene (0.2 mL) was added, and the vial was capped and stirred at $45^{\circ} \mathrm{C}$ for 10 mins . Separately, to a $1 / 2$ dram borosilicate vial with stir bar was added $1(38.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv), 2,6-dimethylbenzoquinone ($20 \mathrm{mg}, 0.15$ mmol, 1.5 equiv). The catalyst solution was subsequently added to the reaction flask, and toluene (0.4 mL) was used to rinse the catalyst vial, also transferred and added to the reaction flask. Allylbenzene $2(13.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1$ equiv) was added. The $1 / 2$ dram vial was sealed with a Teflon cap, and allowed to stir for 24 hours at $45^{\circ} \mathrm{C}$. Afterward, the vial was allowed to cool to RT, followed by the addition of saturated NaHSO_{3} (aq.) solution $(0.2 \mathrm{~mL})$. The mixture was stirred at RT for 15 mins , followed by the addition of anhydrous MgSO_{4} and filtration with dichloromethane. The majority of the solvent was removed under reduced pressure, and the remaining mixture was directly subjected to flash column chromatography $(2 \% \rightarrow 5 \%$ $\mathrm{EtOAc} /$ hexanes) to provide 3 as a light yellow film. Run 1 ($20.7 \mathrm{mg}, 67 \%$ yield, -20% ee); Run 2 ($19.4 \mathrm{mg}, 63 \%$ yield, -20% ee) Average: 65\% Yield, -20\% ee.

Entry 2 :

Reaction proceeded according to procedure in Entry 1 using ligand $\mathbf{L} 2$ ($4.1 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Run 1 ($22.7 \mathrm{mg}, 74 \%$ yield, 64% ee); Run 2 ($25.1 \mathrm{mg}, 82 \%$ yield, 64% ee); Average: 78% Yield, $\mathbf{6 4 \%}$ ee.

Entry 3:
Reaction proceeded according to procedure in Entry 1 using ligand $\mathbf{L 3}$ ($3.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Run 1 ($24.8 \mathrm{mg}, 81 \%$ yield, 66% ee); Run 2 ($24.1 \mathrm{mg}, 78 \%$ yield, 66% ee); Average: $\mathbf{8 0 \%}$ Yield, $\mathbf{6 6 \%}$ ee.

Entry 4:
To a $1 / 2$ dram borosilicate vial with stir bar was added ligand $\mathbf{L} 3(3.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv $)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01$ mmol, 0.1 equiv). Benzene (0.2 mL) was added, and the vial was capped and stirred at $45^{\circ} \mathrm{C}$ for 10 mins . Separately, to a $1 / 2$ dram borosilicate vial with stir bar was added $1(38.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv), 2,6-dimethylbenzoquinone ($20 \mathrm{mg}, 0.15$ mmol, 1.5 equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($22 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv). The catalyst solution was subsequently added to the reaction flask, and benzene $(0.1 \mathrm{~mL})$ and dioxane $(0.3 \mathrm{~mL})$ was used to rinse the catalyst vial, also transferred and added to the reaction flask. Allylbenzene $2(13.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1$ equiv) was added. The $1 / 2$ dram vial was sealed with a Teflon cap, and allowed to stir for $\mathbf{2 4}$ hours at $\mathbf{4 5}^{\circ} \mathbf{C}$. Afterward, the reaction was quenched by the addition of saturated NaHSO_{3} (aq.) solution $(0.2 \mathrm{~mL})$. The mixture was stirred at RT for 15 mins , followed by the addition of anhydrous MgSO_{4} and filtration
with dichloromethane. The majority of the solvent was removed under reduced pressure, and the remaining mixture was directly subjected to flash column chromatography ($2 \% \rightarrow 5 \% \mathrm{EtOAc} /$ hexanes) to provide 3 as a light yellow film. Run 1 ($25.5 \mathrm{mg}, 83 \%$ yield, 79% ee); Run $2(24.5 \mathrm{mg}, 80 \%$ yield, 79% ee); Average: $\mathbf{8 2 \%}$ Yield, 79% ee.

Entry 5:

General procedure: To a $1 / 2$ dram borosilicate vial with stir bar was added ligand $\mathbf{L 3}(3.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}\left(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1\right.$ equiv). Benzene $(0.2 \mathrm{~mL})$ was added, and the vial was capped and stirred at $45^{\circ} \mathrm{C}$ for 10 mins. Separately, to a $1 / 2$ dram borosilicate vial with stir bar was added $1(38.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv), 2,6dimethylbenzoquinone ($20 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($22 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv). The catalyst solution was subsequently added to the reaction flask, and benzene $(0.1 \mathrm{~mL})$ and dioxane $(0.3 \mathrm{~mL})$ was used to rinse the catalyst vial, also transferred and added to the reaction flask. Allylbenzene $2(13.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1$ equiv) was added. The $1 / 2$ dram vial was sealed with a Teflon cap, and allowed to stir for 72 hours at $5^{\circ} \mathbf{C}$. Afterward, the reaction was quenched by the addition of saturated NaHSO_{3} (aq.) solution (0.2 mL). The mixture was stirred at RT for 15 mins , followed by the addition of anhydrous MgSO_{4} and filtration with dichloromethane. The majority of the solvent was removed under reduced pressure, and the remaining mixture was directly subjected to flash column chromatography ($2 \% \rightarrow 5 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to provide $\mathbf{3}$ as a light yellow film. Run 1 ($21.8 \mathrm{mg}, 71 \%$ yield, 88% ee); Run 2 ($20.8 \mathrm{mg}, 68 \%$ yield, 88% ee); Average: 70\% Yield, $\mathbf{8 8 \%}$ ee.

Entry 6:

Reaction proceeded according to the General procedure in Entry 5 using ligand $\mathbf{L 4}(4.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Run 1 ($23.3 \mathrm{mg}, 76 \%$ yield, 87% ee); Run $2(24.5 \mathrm{mg}, 80 \%$ yield, 87% ee); Average: 78% Yield, $\mathbf{8 7 \%}$ ee.

Entry 7:
Reaction proceeded according to the General procedure in Entry 5 using ligand $\mathbf{L 5}(4.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Run 1 $(22.7 \mathrm{mg}, 74 \%$ yield, 90% ee); Run $2(24.3 \mathrm{mg}, 79 \%$ yield, 90% ee); Average: 77% Yield, $\mathbf{9 0 \%}$ ee.

Entry 8:
Reaction proceeded according to the General procedure in Entry 5 using ligand $\mathbf{L 6}$ ($3.9 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Run 1 (23.8 mg , 77% yield, 89% ee); Run $2(21.5 \mathrm{mg}, 70 \%$ yield, 89% ee); Average: 74% Yield, $\mathbf{8 9 \%}$ ee.

Entry 9:
Reaction proceeded according to the General procedure in Entry 5 using ligand $\mathbf{L} 7$ ($4.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Run 1 ($24.0 \mathrm{mg}, 78 \%$ yield, 92% ee); Run $2(25.5 \mathrm{mg}, 83 \%$ yield, 92% ee); Average: $\mathbf{8 1 \%}$ Yield, $\mathbf{9 2 \%}$ ee.

Entry 10:
Reaction proceeded according to the General procedure in Entry 5 using ligand $\mathbf{L} 7(4.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($\mathbf{1 1} \mathbf{~ m g}, \mathbf{0 . 0 5} \mathbf{~ m m o l}, \mathbf{0 . 5}$ equiv). Run $1(26.2 \mathrm{mg}, 85 \%$ yield, 92% ee); Run $2(25.0 \mathrm{mg}, 81 \%$ yield, 92% ee); Average: $\mathbf{8 3 \%}$ Yield, $\mathbf{9 2 \%}$ ee. (HPLC trace and optical rotation was included for this entry)

Entry 11:
Reaction proceeded according to the General procedure in Entry 5 using ligand $\mathbf{L} 7(4.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($\mathbf{5 . 5} \mathbf{~ m g}, \mathbf{0 . 0 2 5} \mathbf{~ m m o l}, \mathbf{0 . 2 5}$ equiv). Run $1(25.2 \mathrm{mg}, 82 \%$ yield, 92% ee); Run 2 ($22.9 \mathrm{mg}, 75 \%$ yield, 92% ee); Average: 79\% Yield, $\mathbf{9 2 \%}$ ee.

Entry 12:
Reaction proceeded according to the General procedure in Entry 5 using ligand $\mathbf{L} 7$ ($4.4 \mathrm{mg}, 0.01 \mathrm{mmol}$, 0.1 equiv), nucleophile 1 ($19.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($\mathbf{5 . 5} \mathbf{~ m g , ~} \mathbf{0 . 0 2 5} \mathbf{~ m m o l}, \mathbf{0 . 2 5}$ equiv). Run 1 (17.1 mg , 56% yield, 91% ee); Run $2(19.5 \mathrm{mg}, 64 \%$ yield, 91% ee); Average: $\mathbf{6 0 \%}$ Yield, 91% ee.

The absolute stereochemistry of alkylated product with nitroketones was assigned based on crystal structure of $\mathbf{3 p}$ (vide infra).

(\boldsymbol{R})-2-cinnamyl-2-nitro-3,4-dihydronaphthalen-1(2H)-one (3): Spectral data matches with previously reported. ${ }^{1}$ The enantiomeric excess was determined to be 92% by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 55 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}, \lambda=254 \mathrm{~nm}$): $t_{\mathrm{R}}($ major $)=28.309 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=31.991 \mathrm{~min} .[\alpha]^{23}{ }_{\mathrm{D}}=+16.2\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.

Table S2. The Effect of Acetate Salt Additive on the Asymmetric Alkylation of 2-Nitrotetralone.

Entry	Acetate Salt	Yield (\%)	ee (\%)
1	none	71	77
2	$\mathrm{Zn}(\mathrm{OAc})_{2}$	83	92
3	$\mathrm{NH}_{4} \mathrm{OAc}$	32	75
4	$\mathrm{NaOAc}^{\mathrm{LiOAc}}$	63	78
5	CsOAc	80	90
6	$\mathrm{Mn}(\mathrm{OAc})_{2}$	34	75
7	$\mathrm{Fe}(\mathrm{OAc})_{2}$	58	90
8		52	81

Reaction proceeded according to the General procedure in Entry 5 for Table S1. The same isolation and analytical method was used.

Table S3. Substrate Scope for 2-Nitrotetralone Nucleophiles

$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$
ArSOX L7 (10 mol\%)
$\mathrm{Zn}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)$
DMBQ (150 mol\%)
Dioxane/Benzene, $5^{\circ} \mathrm{C}, 72 \mathrm{~h}$

$R_{1}=\mathrm{Me}(3 \mathrm{a}) ; 60 \%$ yield, 92% ee
OMe (3b); 51\% yield, 90\% ee
Br (3c); 66% yield, 92% ee
$\mathrm{CO}_{2} \mathrm{Me}$ (3d); 68% yield, 90% ee
$\mathrm{CH}_{2} \mathrm{OH}(3 \mathrm{e}) ; 65 \%$ yield, 91% ee

General procedure for Table S3: To a $1 / 2$ dram borosilicate vial with stir bar was added ligand $\mathbf{L 5}(8.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1$ equiv) or $\mathbf{L} 7\left(8.7 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1\right.$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1$ equiv). Benzene (0.4 mL) was added, and the vial was capped and stirred at $45^{\circ} \mathrm{C}$ for 10 mins . Separately, to a 1 dram borosilicate vial with stir bar was added 1 ($76.5 \mathrm{mg}, 0.40 \mathrm{mmol}$, 2 equiv), 2,6-dimethylbenzoquinone ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($22 \mathrm{mg}, 0.1$ $\mathrm{mmol}, 0.5$ equiv). The catalyst solution was subsequently added to the reaction flask, and benzene (0.2 mL) and dioxane (0.6 mL) was used to rinse the catalyst vial, also transferred and added to the reaction flask. Allylarene 2 ($0.20 \mathrm{mmol}, 1$ equiv) was added. The 1 dram vial was sealed with a Teflon cap, and allowed to stir for 72 hours at $5^{\circ} \mathrm{C}$. Afterward, the reaction was diluted with 20 mL EtOAc, which was washed by saturated NaHSO_{3} (aq.) solution (10 mL) or $5 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ (aq.) solution $(10 \mathrm{~mL})\left(\right.$ NOTE: The purpose of aqueous wash is for the ease of purification. NaHSO_{3} was used to remove remaining DMBQ oxidant, whereas $\mathrm{K}_{2} \mathrm{CO}_{3}$ was used to remove remaining nitroketone nucleophile). The organic layer was separated, dried over anhydrous MgSO_{4} and filtered. The solvent was removed under reduced pressure, and the remaining mixture was purified by flash column chromatography to provide product.

3a
($\boldsymbol{R}, \boldsymbol{E}$)-2-nitro-2-(3-(p-tolyl)allyl)-3,4-dihydronaphthalen-1(2H)-one (3a): 4-allyltoluene ($26.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv) was reacted according to the general procedure using $\mathbf{L} 7$ with $\mathbf{N a H S O}_{3}$ work up. Purification by flash column chromatography ($2 \% \rightarrow 5 \% \mathrm{EtOAc} /$ hexanes) provided the product as a yellow oil. Run $1(38.6 \mathrm{mg}, 60 \%$ yield, 92% ee); Run $2(36.0 \mathrm{mg}$, 56% yield, 92% ee); Run 3 ($41.4 \mathrm{mg}, 64 \%$ yield, 92% ee). Average: 60% ($\pm 4.2 \%$) yield, $\mathbf{9 2 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 55 \% \mathrm{MeCN}$ in $\left.\mathrm{H}_{2} \mathrm{O}, \lambda=254 \mathrm{~nm}\right): t_{\mathrm{R}}($ major $)=43.343 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=46.711 \mathrm{~min}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H})$, $7.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dt}, J=15.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{ddd}, J=14.5,7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ $-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{ddd}, J=14.1,8.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 187.97, 142.35, 137.84, 135.89, 134.54, 133.64, 130.72, 129.29, 128.91, 128.83, 127.45, 126.30, 120.50, 93.93, 38.06, 31.66, 25.25, 21.20. HRMS (ESI) m / z calc'd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]+: 344.1263$; found 344.1269. $[\alpha]^{23}{ }_{\mathrm{D}}=+6.4^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.

3b
(R,E)-2-(3-(4-methoxyphenyl)allyl)-2-nitro-3,4-dihydronaphthalen-1(2H)-one (3b): 4allylanisole ($30.0 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1 equiv) was reacted according to the general procedure using $\mathbf{L 5}$ with $\mathbf{K}_{\mathbf{2}} \mathbf{C O}_{\mathbf{3}}$ work up. Purification by flash column chromatography $(20 \% \rightarrow 30 \% \rightarrow 50 \% \mathrm{DCM} /$ hexanes) provided the product as a colorless oil. Run 1 (35.4 mg , 53% yield, 90% ee); Run 2 (36.4 mg , 54% yield, 90% ee); Run 3 ($31.7 \mathrm{mg}, 47 \%$ yield, 90% ee). Average: $\mathbf{5 1 \%}(\pm \mathbf{3 . 7 \%})$ yield, $\mathbf{9 0 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 55 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}, \lambda=254 \mathrm{~nm}$): $t_{\mathrm{R}}($ major $)=36.912 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=40.779$ min. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz} 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-$ $7.23(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dt}, J=15.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{ddd}, J=$ $14.4,7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{ddd}, J=14.1,8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 188.00,159.45,142.35,135.42,134.53,130.73,129.24,128.91,128.82,127.60,127.45,119.24,114.00,93.98$, $55.30,38.09,31.64,25.26$. HRMS (ESI) m / z calc' d for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]+: 360.1212$; found 360.1218. $[\alpha]^{22}{ }_{\mathrm{D}}=+7.1^{\circ}(\mathrm{c}=$ $\left.1, \mathrm{CHCl}_{3}\right)$.

3c
(R,E)-2-(3-(4-bromophenyl)allyl)-2-nitro-3,4-dihydronaphthalen-1(2H)-one (3c): 4bromoallylbenzene ($39.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv) was reacted according to the general procedure using $\mathbf{L 7}$ with $\mathbf{N a H S O}_{3}$ work up. Purification by flash column chromatography $(5 \% \rightarrow 8 \% \mathrm{EtOAc} /$ hexanes $)$ provided the product as a white solid. Run $1(49.5 \mathrm{mg}, 64 \%$ yield, 92% ee); Run 2 ($51.3 \mathrm{mg}, 66 \%$ yield, 92% ee); Run 3 ($52.5 \mathrm{mg}, 68 \%$ yield, 92% ee). Average: $\mathbf{6 6 \%}(\pm \mathbf{2 . 0 \%})$ yield, $\mathbf{9 2 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 60 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}, \lambda=280 \mathrm{~nm}$): t_{R} (major) $=37.178 \mathrm{~min}$, $t_{\mathrm{R}}($ minor $)=43.913 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform $-d) \delta 8.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dt}, J$ $=15.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, J=14.4,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{ddd}, J=14.2,9.1$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.82,142.25,135.34,134.79,134.61,131.70,130.71,128.93,128.83,127.93$, 127.51, 122.56, 121.74, 93.72, 38.12, 31.91, 25.24; HRMS (ESI) m/z calc'd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{Na}]+: 408.0211$; found 408.0222. $[\alpha]^{23}{ }_{\mathrm{D}}=+20.8^{\circ}\left(\mathrm{c}=1.43, \mathrm{CHCl}_{3}\right)$.

3d

Methyl (\boldsymbol{R}, E)-4-(3-(2-nitro-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)prop-1-en-1yl)benzoate (3d): Methyl 4-allylbenzoate ($35.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv) was reacted according to the general procedure using $\mathbf{L 5}$ with $\mathbf{K}_{2} \mathbf{C O}_{3}$ work up. Purification by flash column chromatography $(8 \% \rightarrow 10 \% \rightarrow 15 \%$ EtOAc/hexanes) provided the product as a colorless oil. Run 1 ($49.2 \mathrm{mg}, 67 \%$ yield, 90% ee); Run 2 ($47.5 \mathrm{mg}, 65 \%$ yield, 90% ee); Run 3 ($52.5 \mathrm{mg}, 72 \%$ yield, 90% ee). Average: $\mathbf{6 8 \%}$ ($\pm \mathbf{3 . 5 \%}$) yield, $\mathbf{9 0 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALCEL OJ-H column, $1 \mathrm{~mL} / \mathrm{min}, 40 \%$ isopropanol in hexane, $\lambda=280 \mathrm{~nm}): t_{\mathrm{R}}($ major $)=22.985 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=34.484 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- $d) \delta 8.11(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.30(\mathrm{dt}, J=15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J=14.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.07(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.93(\mathrm{~m}, 2 \mathrm{H})$, 2.48 (ddd, $J=14.3,9.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.76,166.75,142.24,140.77,135.07,134.64,130.68$, $129.94,129.34,128.94,128.83,127.52,126.30,124.56,93.70,52.11,38.18,31.97,25.24$. HRMS (ESI) m/z calc'd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]+: 366.1341$; found 366.1331. $[\alpha]^{23}{ }_{\mathrm{D}}=+24.8^{\circ}\left(\mathrm{c}=0.72, \mathrm{CHCl}_{3}\right)$.

3 e
(R,E)-2-(3-(4-(hydroxymethyl)phenyl)allyl)-2-nitro-3,4-dihydronaphthalen-1(2H)one (3e): (4-allylphenyl)methanol ($30.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv) was reacted according to the general procedure using $\mathbf{L} 7$ with $\mathbf{K}_{\mathbf{2}} \mathbf{C O}_{3}$ work up. Purification by flash column chromatography $(15 \% \rightarrow 20 \% \rightarrow 30 \%$ Acetone/hexanes) provided the product as a colorless oil. Run 1 ($41.9 \mathrm{mg}, 62 \%$ yield, 91% ee); Run 2 ($44.3 \mathrm{mg}, 66 \%$ yield, $91 \% \mathrm{ee}$); Run 3 ($45.0 \mathrm{mg}, 67 \%$ yield, 91% ee). Average: 65\% ($\pm \mathbf{2 . 4 \%}$) yield, $\mathbf{9 1 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALCEL OJ-H column, $1 \mathrm{~mL} / \mathrm{min}, 40 \%$ isopropanol in hexane, $\lambda=260 \mathrm{~nm}): t_{\mathrm{R}}($ major $)=11.964 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=18.490 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- $d) \delta 8.11(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dt}, J=15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{ddd}, J=14.5,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-$ $3.07(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{ddd}, J=14.1,8.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $187.94,142.32,140.62,135.85,135.61,134.59,130.70,128.93,128.83,127.48,127.22,126.59,121.70,93.88,65.02,38.09$, 31.77, 25.25. HRMS (ESI) m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]+: 360.1212$; found 360.1213. $[\alpha]^{23}{ }_{\mathrm{D}}=+14.7^{\circ}\left(\mathrm{c}=1.6, \mathrm{CHCl}_{3}\right)$.

$3 f$
($\mathrm{R}, \boldsymbol{E}$)-6-(3-(2-nitro-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)prop-1-en-1-yl)-2H-chromen-2-one (3f): 6-allyl-2H-chromen-2-one ($37.2 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1 equiv) was reacted according to the general procedure using $\mathbf{L} 7$ with $\mathbf{K}_{2} \mathbf{C O}_{3}$ work up. Purification by
flash column chromatography $(15 \% \rightarrow 35 \%$ EtOAc/hexanes) provided the product as a white solid. Run 1 ($47.8 \mathrm{mg}, 64 \%$ yield, 90% ee); Run 2 ($50.5 \mathrm{mg}, 67 \%$ yield, 90% ee); Run 3 ($47.2 \mathrm{mg}, 63 \%$ yield, 90% ee). Average: $\mathbf{6 5 \%}$ ($\pm \mathbf{2 . 3 \%}$) yield, $\mathbf{9 0 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK OJ-H column, $1 \mathrm{~mL} / \mathrm{min}, 50 \%$ isopropanol in hexanes, $\lambda=254 \mathrm{~nm}): t_{\mathrm{R}}($ major $)=21.454 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=32.135 \mathrm{~min}$. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) δ $8.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.61-6.53(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dt}, J=$ $15.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{ddd}, J=14.3,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.48$ (ddd, $J=14.3,9.3$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.80,160.52,153.55,143.21,142.20,134.66,134.01,133.07,130.73,129.76$, $128.94,128.82,127.54,125.40,122.95,118.87,117.14,117.11,93.73,38.20,32.12,25.25$; HRMS (ESI) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 376.1185$, found 376.1176. $[\alpha]^{22}{ }_{\mathrm{D}}=+30.6^{\circ}\left(\mathrm{c}=0.81, \mathrm{CHCl}_{3}\right)$.

$3 g$
($\boldsymbol{R}, \boldsymbol{E}$)-2-(3-(2,2-dimethyl-2H-chromen-6-yl)allyl)-2-nitro-3,4-dihydronaphthalen$\mathbf{1 (2 H})$-one ($\mathbf{3 g}$): 6-allyl-2,2-dimethyl-2H-chromene ($40.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv) was reacted according to the general procedure using $\mathbf{L} 7$ with $\mathbf{K}_{2} \mathbf{C O}_{3}$ work up. Purification by flash column chromatography $(2 \% \rightarrow 5 \% \mathrm{EtOAc} /$ hexanes $)$ provided the product as a yellow oil. Run 1 ($49.8 \mathrm{mg}, 64 \%$ yield, 93% ee); Run 2 ($52.7 \mathrm{mg}, 68 \%$ yield, 93% ee); Run 3 ($49.1 \mathrm{mg}, 63 \%$ yield, 93% ee). Average: $\mathbf{6 5 \%}$ ($\pm \mathbf{2 . 5 \%}$) yield, 93\% ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 65 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}, \lambda=254$ $\mathrm{nm}): t_{\mathrm{R}}($ major $)=23.538 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=29.110 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, Chloroform- $d) \delta 8.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dt}, J=15.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.19(\mathrm{ddd}, J=14.3,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-2.92(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{ddd}, J=14.1,8.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.00,152.94,142.35,135.47,134.52,131.19,130.73,129.26,128.90,128.82,127.44,127.35$, 124.07, 122.05, 121.23, 119.06, 116.40, 93.98, 76.50, 38.08, 31.65, 28.01, 25.26 ; HRMS (EI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{4}$ $[\mathrm{M}]^{+}: 389.16271$, found 389.16269. $[\alpha]^{22}{ }_{\mathrm{D}}=+2.8^{\circ}\left(\mathrm{c}=1.26, \mathrm{CHCl}_{3}\right)$.

3h
($\boldsymbol{R}, \boldsymbol{E}$)-2-(3-(benzofuran-5-yl)allyl)-2-nitro-3,4-dihydronaphthalen-1(2H)-one (3h): 5allylbenzofuran ($32.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv) was reacted according to the general procedure using $\mathbf{L 7}$ with $\mathbf{K}_{\mathbf{2}} \mathbf{C O}_{\mathbf{3}}$ work up. Purification by flash column chromatography ($2 \% \rightarrow 8 \%$ EtOAc/hexanes) provided the product as a yellow oil. Run 1 ($38.2 \mathrm{mg}, 55 \%$ yield, 92% ee); Run 2 ($48.8 \mathrm{mg}, 70 \%$ yield, 92% ee); Run 3 ($46.1 \mathrm{mg}, 66 \%$ yield, 92% ee). Average: $\mathbf{6 4 \%}(\pm \mathbf{7 . 9 \%}$) yield, $\mathbf{9 2 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK OJ-H column, $1 \mathrm{~mL} / \mathrm{min}, 40 \%$ isopropanol in hexanes, $\lambda=254 \mathrm{~nm}$): $t_{\mathrm{R}}($ major $)=17.595 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=28.628 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.13(\mathrm{dt}, J=15.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{ddd}, J=14.3,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.07(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.55-$ $2.47(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 188.00,154.75,145.61,142.35,136.13,134.56,131.58,130.73,128.93$, $128.82,127.78,127.46,122.89,120.43,119.16,111.44,106.64,93.98,38.11,31.73,25.27$; HRMS (ESI) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 370.1055$, found $370.1065 .[\alpha]^{22}{ }_{\mathrm{D}}=+26.8^{\circ}\left(\mathrm{c}=1.33, \mathrm{CHCl}_{3}\right)$.

$3 i$
(R, E)-2-(3-(benzo[b]thiophen-5-yl)allyl)-2-nitro-3,4-dihydronaphthalen-1(2H)-one (3i): 5-allylbenzothiophene ($35.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv) was reacted according to the general procedure using $\mathbf{L 7}$ with $\mathbf{K}_{\mathbf{2}} \mathbf{C O}_{\mathbf{3}}$ work up. Purification by flash column chromatography $(2 \% \rightarrow 8 \% \mathrm{EtOAc} /$ hexanes $)$ provided the product as a white solid. Run $1(41.3 \mathrm{mg}, 57 \%$ yield, 92% ee); Run 2 ($42.8 \mathrm{mg}, 59 \%$ yield, 92% ee); Run 3 ($41.2 \mathrm{mg}, 57 \%$ yield, 92% ee). Average: $\mathbf{5 7 \%}$ yield, $\mathbf{9 2 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 65 \% \mathrm{MeCN}$ in $\left.\mathrm{H}_{2} \mathrm{O}, \lambda=254 \mathrm{~nm}\right): t_{\mathrm{R}}($ major $)=31.236 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=$ $38.111 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dt}, J=15.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{ddd}, J=14.2,7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{ddd}, J=14.3,7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ $-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.47(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.95,142.32,139.96,139.23$, $136.07,134.56,132.85,130.74,128.92,128.85,127.48,127.09,123.87,122.54,122.43,121.73,121.24,93.91,38.18,31.79$, 25.27; HRMS (ESI) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 364.0983$, found 364.0997. $[\alpha]^{22}{ }_{\mathrm{D}}:+9.4^{\circ}\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right)$.

3j

Tert-butyl (R, E)-5-(3-(2-nitro-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)prop-1-en-1-yl)$\mathbf{1 H}$-indole-1-carboxylate (3j): Tert-butyl 5-allyl-1H-indole-1-carboxylate 5-allylbenzofuran ($51.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv) was reacted according to the general procedure using $\mathbf{L} 7$ with $\mathbf{K}_{2} \mathrm{CO}_{3}$ work up. Purification by flash column chromatography ($2 \% \rightarrow 5 \% \mathrm{EtOAc} /$ hexanes)
provided the product as a yellow oil. Run 1 ($56.2 \mathrm{mg}, 63 \%$ yield, 92% ee); Run 2 ($56.2 \mathrm{mg}, 63 \%$ yield, 92% ee); Run 3 (56.3 $\mathrm{mg}, 63 \%$ yield, 92% ee). Average: $\mathbf{6 3 \%}$ ($\mathbf{\pm 0 . 1 \%}$) yield, $\mathbf{9 2 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK OJ-H column, $1 \mathrm{~mL} / \mathrm{min}, 20 \%$ isopropanol in hexanes, $\lambda=254 \mathrm{~nm}$): $t_{\mathrm{R}}($ major $)=16.544 \mathrm{~min}$, $t_{\mathrm{R}}($ minor $)=25.050 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- $d) \delta 8.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.52$ $(\mathrm{m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J$ $=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dt}, J=15.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{ddd}, J=14.4,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.08(\mathrm{~m}$, $2 \mathrm{H}), 3.07-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{ddd}, J=14.1,8.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.00,149.59$, $142.36,136.33,134.88,134.53,131.20,130.84,130.74,128.91,128.84,127.45,126.53,122.69,120.20,118.96,115.19$, 107.31, 93.99, 83.82, 38.14, 31.69, 28.20, 25.28; HRMS (ESI): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 447.1920$, found 447.1923. $[\alpha]^{22}{ }_{\mathrm{D}}=+2.5^{\circ}\left(\mathrm{c}=1.57, \mathrm{CHCl}_{3}\right)$.

3k

Tert-butyl (R, E)-3-(3-(2-nitro-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)prop-1-en-1-yl)$\mathbf{1 H}$-indole-1-carboxylate (3k): Tert-butyl 3-allyl-1H-indole-1-carboxylate ($51.4 \mathrm{mg}, 0.2$ $\mathrm{mmol}, 1$ equiv) was reacted according to the general procedure using $\mathbf{L} 7$ with $\mathbf{K}_{\mathbf{2}} \mathbf{C O}_{\mathbf{3}}$ work up. Purification by flash column chromatography ($2 \% \rightarrow 5 \% \mathrm{EtOAc} /$ hexanes) provided the product as a clear oil. Run 1 ($49.2 \mathrm{mg}, 55 \%$ yield, 91% ee); Run 2 ($48.7 \mathrm{mg}, 55 \%$ yield, 91% ee); Run 3 ($47.7 \mathrm{mg}, 53 \%$ yield, 91% ee). Average: $\mathbf{5 4 \%}$ ($\mathbf{~} \mathbf{0 . 9 \%}$) yield, $\mathbf{9 1 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 65 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}, \lambda=254 \mathrm{~nm}$): t_{R} (major) $=23.775$ $\min , t_{\mathrm{R}}($ minor $)=29.914 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- $d) \delta 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dt}, J=15.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{ddd}, J=14.3,7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.08(\mathrm{~m}, 2 \mathrm{H})$, $3.08-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.00,149.48,142.32,135.87$, $134.57,130.75,128.93,128.84,128.42,127.47,127.28,124.77,124.07,123.02,121.85,119.82,117.99,115.39,93.98$, 83.99, 38.72, 31.78, 28.20, 25.28; HRMS (ESI) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 447.1920$, found 447.1916. $[\alpha]^{22}{ }_{\mathrm{D}}=$ $+13.2^{\circ}\left(\mathrm{c}=1.59, \mathrm{CHCl}_{3}\right)$.

(R)-2-cinnamyl-5-methoxy-2-nitro-3,4-dihydronaphthalen-1(2H)-one (3I): 5-methoxy-2-nitro-3,4-dihydronaphthalen- $1(2 H)$-one $(88.5 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) was reacted with allylbenzene ($26.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1$ equiv) according to the general procedure using $\mathbf{L} 7$ with NaHSO_{3} work up. Purification by flash column chromatography $(2 \% \rightarrow 5 \% \rightarrow 10 \%$ $\mathrm{EtOAc} /$ hexanes $)$ provided the product as a clear oil. Run $1(43.7 \mathrm{mg}, 65 \%$ yield, 89% ee); Run 2 ($44.8 \mathrm{mg}, 66 \%$ yield, 90% ee); Run 3 ($46.9 \mathrm{mg}, 70 \%$ yield, 90% ee). Average: $\mathbf{6 7 \%}$ $\mathbf{(} \mathbf{~} \mathbf{2 . 4 \%}$) yield, $\mathbf{9 0 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 55 \% \mathrm{MeCN}$ in $\left.\mathrm{H}_{2} \mathrm{O}, \lambda=254 \mathrm{~nm}\right): t_{\mathrm{R}}($ major $)=37.080 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=57.154 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, Chloroform- d) $\delta 7.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.57(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dt}, J=15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{ddd}, J=14.6,7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{ddd}, J$ $=14.6,7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.90(\mathrm{~m}, 3 \mathrm{H}), 2.49-2.39(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 188.32,156.68,136.46$, $135.92,131.54,131.35,128.59,127.89,127.83,126.41,121.69,120.12,115.14,93.86,55.75,37.77,30.79,19.42$. HRMS (ESI) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 360.1212$, found 360.1216. $[\alpha]^{22}{ }_{\mathrm{D}}=+19.3^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$.

$3 m$
(R)-6-bromo-2-cinnamyl-2-nitro-3,4-dihydronaphthalen-1(2H)-one (3m): 6-bromo-2-nitro-3,4-dihydronaphthalen- $1(2 H)$-one ($108 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) was reacted with allylbenzene ($26.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1$ equiv) according to the general procedure in benzene (0.8 mL)/dioxane (0.8 mL)* using L 7 with NaHSO_{3} work up. Purification by flash column chromatography $(0 \% \rightarrow 20 \% \rightarrow 30 \% \mathrm{DCM} /$ hexanes $)$ provided the product as a clear oil. Run 1 ($49.2 \mathrm{mg}, 64 \%$ yield, $90 \% \mathrm{ee}$); Run $2(47.8 \mathrm{mg}, 62 \%$ yield, 90% ee); Run $3(51.3 \mathrm{mg}, 66 \%$ yield, 90% ee). Average: $\mathbf{6 4 \%}$ $\mathbf{(} \mathbf{~} \mathbf{2 . 3 \%}$) yield, $\mathbf{9 0 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 70 \% \mathrm{MeCN}$ in $\left.\mathrm{H}_{2} \mathrm{O}, \lambda=280 \mathrm{~nm}\right): t_{\mathrm{R}}$ (major) $=18.295 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=21.638 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 7.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.57(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dt}, J=15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, J=14.3,7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{ddd}, J=14.3,7.6,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{ddd}, J=14.3,9.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.08$, $143.87,136.31,136.23,131.86,131.05,130.37,130.08,129.61,128.62,128.01,126.41,121.30,93.50,38.14,31.61,24.99$. HRMS (ESI) m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 386.0392$, found 386.0381. $[\alpha]^{22}{ }_{\mathrm{D}}=+43.6^{\circ}\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right)$; *NOTE: while running at standard molarity $(0.17 \mathrm{M})$ gave inconsistent enantioselectivities ($88 \%-90 \%$), running at slightly diluted molarity (0.12 M) resolved the issue, possibly due to improved homogeneity.

$3 n$
(R)-6-cinnamyl-6-nitro-5-oxo-5,6,7,8-tetrahydronaphthalen-2-yl pivalate (3n): 6-nitro-5-oxo-5,6,7,8-tetrahydronaphthalen-2-yl pivalate ($116.5 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) was reacted with allylbenzene ($26.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1$ equiv) according to the general
procedure using $\mathbf{L} 7$ with $\mathbf{N a H S O}_{3}$ work up. Purification by flash column chromatography $(2 \% \rightarrow 5 \% \rightarrow 10 \% \mathrm{EtOAc} /$ hexanes $)$ provided the product as a clear oil. Run $1(47.2 \mathrm{mg}, 58 \%$ yield, 93% ee); Run 2 ($45.2 \mathrm{mg}, 55 \%$ yield, 93% ee); Run 3 (49.7 $\mathrm{mg}, 61 \%$ yield, 92% ee). Average: $\mathbf{5 8 \%}$ ($\pm \mathbf{2 . 8 \%}$) yield, $\mathbf{9 3 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 60 \% \mathrm{MeCN}$ in $\left.\mathrm{H}_{2} \mathrm{O}, \lambda=260 \mathrm{~nm}\right): t_{\mathrm{R}}($ major $)=33.431 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=$ $44.185 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dt}, J=15.5$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=14.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.86,176.37,155.89$, 144.21, 136.36, 136.11, 130.81, 128.61, 128.20, 127.95, 126.42, 121.56, $121.48,121.14,93.72,39.29,38.04,31.64,27.05,25.33$. HRMS (ESI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 408.1811$, found 408.1805. $[\alpha]_{D}^{23}=+16.1^{\circ}\left(\mathrm{c}=0.64, \mathrm{CHCl}_{3}\right)$.

(R)-6-(benzyloxy)-2-cinnamyl-2-nitro-3,4-dihydronaphthalen-1(2H)-one (3o): 6-(benzyloxy)-2-nitro-3,4-dihydronaphthalen-1($2 H$)-one ($60 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ equiv) was reacted with allylbenzene ($13.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1$ equiv) according to the general procedure using L7 without work up (directly dry-loaded onto column). Purification by flash column chromatography $(5 \% \rightarrow 10 \% \mathrm{EtOAc} /$ hexanes $)$ provided the product as a clear oil. Run 1 ($19.5 \mathrm{mg}, 47 \%$ yield, 88% ee); Run 2 ($20.2 \mathrm{mg}, 49 \%$ yield, 88% ee); Run 3 ($20.0 \mathrm{mg}, 48 \%$ yield, 88% ee). Average: $\mathbf{4 8 \%}$ ($\pm \mathbf{0 . 9 \%}$) yield, $\mathbf{8 8 \%}$ ee. Reaction at $\mathbf{2 5}^{\circ} \mathrm{C}$: Run $\mathbf{4}$ ($\mathbf{3 2 . 4} \mathbf{~ m g , ~} \mathbf{7 8 \%}$ yield, $\mathbf{8 4 \%}$ ee). The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 70 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}, \lambda=254 \mathrm{~nm}$): $t_{\mathrm{R}}($ major $)=28.220 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=33.725 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, Chloroform- $d) \delta 8.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.28$ (m, 9H), $7.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dt}$, $J=15.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{dd}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=14.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dt}, J=11.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.48,163.69,144.98,136.46,135.87$, $135.81,131.47,128.76,128.59,128.38,127.88,127.45,126.39,124.26,121.89,114.90,113.61,93.78,70.28,38.17,31.72$, 25.60. HRMS (ESI) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 414.1705$, found 414.1720. $[\alpha]^{22}{ }_{\mathrm{D}}=+65.7^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$.

$3 p$
(R)-2-cinnamyl-7-methoxy-2-nitro-3,4-dihydronaphthalen-1(2H)-one (3p): 7-methoxy-2-nitro-3,4-dihydronaphthalen-1 $(2 H)$-one ($88.5 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) was reacted with allylbenzene ($26.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1$ equiv) according to the general procedure using $\mathbf{L} 7$ without work up (directly dry-loaded onto column). Purification by flash column chromatography $(2 \% \rightarrow 8 \% \mathrm{EtOAc} /$ hexanes $)$ provided the product as a white powder. Run 1 ($38.0 \mathrm{mg}, 56 \%$ yield, 92% ee); Run $2(38.7 \mathrm{mg}, 57 \%$ yield, 92% ee); Run 3 ($41.1 \mathrm{mg}, 61 \%$ yield, 92% ee). Average: $\mathbf{5 8 \%}$ $\mathbf{(} \mathbf{\pm 2 . 4 \%})$ yield, $\mathbf{9 2 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK OJ-H column, 1 $\mathrm{mL} / \mathrm{min}, 30 \%$ isopropanol in hexanes, $\lambda=254 \mathrm{~nm}): t_{\mathrm{R}}($ major $)=12.481 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.875 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 7.56(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dt}, J=15.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{ddd}, J=$ $14.4,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{ddd}, J=14.3,7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 187.94,158.84,136.42,136.00,134.95,131.48,130.15,128.60,127.92,126.40,123.30,121.67,110.28,93.81$, 55.59, 38.11, 32.05, 24.52; HRMS (ESI) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 338.1392$, found 338.1381. $[\alpha]^{23}{ }_{\mathrm{D}}:+2.9^{\circ}(\mathrm{c}=$ $0.59, \mathrm{CHCl}_{3}$). Single crystals were grown by recrystallization from warm diethyl ether. The absolute stereochemistry is determined by X-ray crystallography shown on page $S 31$.

Scheme S1: Comparison of Synthetic Routes for Compound 5

i. complete previous route (Imaeda T. et al., Bioorganic Med. Chem. 2017, 25, 3719.)

6\% overall yield
ii. complete current C-H alkylation route

4
(R)-2-amino-2-cinnamyl-3,4-dihydronaphthalen-1 (2H)-one (4)

To a 20 mL vial fitted with a magnetic stir bar was added 2-nitrotetralone $\mathbf{3 a}$ ($277 \mathrm{mg}, 0.9 \mathrm{mmol}, 1$ equiv, 92% ee), THF (4 mL), and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, followed by the addition of SnCl_{2} dihydrate (2 g , 9 $\mathrm{mmol}, 10$ equiv). The reaction was capped and stirred at $45^{\circ} \mathrm{C}$ for 24 h . After cooled down to room temperature, the reaction was quenched with 50 mL saturated NaHCO_{3} (aq.) (CAUTION: gas evolved). The aqueous layer was extracted with $\operatorname{EtOAc}(4 \times 40 \mathrm{~mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solid was filtered off and the solvent was removed under reduced pressure. The crude was purified by silica column chromatography $(0 \% \rightarrow 1 \% \rightarrow 2 \% \rightarrow 5 \% \mathrm{MeOH} / \mathrm{DCM})$ to afford pure product $\mathbf{4}$ as a yellowish thick oil (202 $\mathbf{m g}, \mathbf{0 . 7 3} \mathbf{~ m m o l}, \mathbf{8 1 \%}$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38-$ $7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{ddd}, J=$ $15.7,8.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ (ddd, $J=16.8,11.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dt}, J=17.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{ddd}, J=14.1,8.4,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48(\mathrm{ddd}, J=14.1,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=13.6,5.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (ddd, $J=13.6,11.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ (br, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.29,143.19,137.09,134.23,133.55,130.87,128.86,128.52,128.18,127.38$, $126.88,126.25,124.15,59.22,40.05,34.43,25.81$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]+$: 278.1545; found 278.1545. $[\alpha]^{22}{ }_{\mathrm{D}}=-6.7^{\circ}\left(\mathrm{c}=1.06, \mathrm{CHCl}_{3}\right)$.

18

(R)-2-(allylamino)-2-cinnamyl-3,4-dihydronaphthalen-1(2H)-one (18)

To an oven-dried 1 dram vial was added 2-aminotetralone $\mathbf{4}(111 \mathrm{mg}, 0.4 \mathrm{mmol}, 1$ equiv), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}\left(61 \mathrm{mg}, 0.44 \mathrm{mmol}, 1.1\right.$ equiv) and acetonitrile ($1 \mathrm{~mL}, 0.4 \mathrm{M}$) under N_{2}. Allyl bromide (0.04 $\mathrm{mL}, 0.44 \mathrm{mmol}, 1.1$ equiv) was then added. The reaction was stirred under N_{2} at $50^{\circ} \mathrm{C}$ for 24 h . After cooled down to room temperature, the volatiles were removed under reduced pressure. The crude was purified by silica column chromatography $(5 \% \rightarrow 8 \% \rightarrow 10 \% \rightarrow 15 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to afford pure product $\mathbf{1 8}$ as a colorless oil ($\mathbf{9 2} \mathbf{~ m g}, \mathbf{0 . 2 9} \mathbf{~ m m o l}, \mathbf{7 2 \%}$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dt}, J=$ $15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddt}, J=16.4,11.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.15(\mathrm{~m}$, $2 \mathrm{H}), 3.15-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{ddd}, J=14.6,9.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dt}, J=13.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ (br, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.39,143.13,137.26,137.08,133.78,133.43,131.62,128.77,128.49,128.08$, 127.27, 126.81, 126.24, 124.61, 115.81, 62.83, 45.82, 38.37, 31.49, 25.57. HRMS (ESI) m/z calc'd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}[\mathrm{M}+\mathrm{H}]+$: 318.1858; found $318.1867 .[\alpha]^{22}=+35.0^{\circ}\left(\mathrm{c}=1.34, \mathrm{CHCl}_{3}\right) .{ }^{*}$ The major side product was found to be the double allylation product of the amino group, accounting for $\sim 20 \%$ yield.

19
(R)-3,3',4,6'-tetrahydro-1H,1'H-spiro[naphthalene-2,2'-pyridin]-1-one (19)
(NOTE: commercial p-Toluenesulfonic acid monohydrate was azeotroped with benzene 5 times to afford anhydrous TsOH) To a 100 mL flamed-dried RBF fitted with a magnetic stir bar was added $\mathbf{1 8}$ (85 mg , 0.27 mmol , 1 equiv), anhydrous $\mathrm{TsOH}(46 \mathrm{mg}, 0.27 \mathrm{mmol}, 1$ equiv) and dry $\mathrm{DCM}(27 \mathrm{~mL}, 0.01 \mathrm{M})$ under N_{2}. The solution was stirred at room temperature for 30 mins. Grubbs catalyst ($2^{\text {nd }}$ generation) (23 mg , $0.027 \mathrm{mmol}, 0.1$ equiv) was then added. The reaction was fitted with an oven-dried condenser and refluxed at $55^{\circ} \mathrm{C}$ under N_{2} for 24 h . After cooled down to room temperature, the reaction was quenched with 40 mL saturated NaHCO_{3} (aq.). The layers were separated and the aqueous layer was extracted with DCM ($4 \times 30 \mathrm{~mL}$). The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solid was filtered off and the solvent was removed under reduced pressure. The crude was purified by silica column chromatography $(0 \% \rightarrow 1 \% \rightarrow 2 \% \rightarrow 5 \% \mathrm{MeOH} / \mathrm{DCM})$ to afford pure product 19 as a yellowish oil ($\mathbf{5 4 . 3} \mathbf{~ m g}, \mathbf{0 . 2 5} \mathbf{~ m m o l}, \mathbf{9 4 \%}$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.79-5.73(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.42(\mathrm{~m}, 1 \mathrm{H})$, $3.42-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{ddd}, J=17.5,6.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{ddd}, J=17.5,8.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (ap. dp, $J=17.6,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.26(\mathrm{ddd}, J=13.7,6.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{ddd}, J=17.7,4.8,3.2,1 \mathrm{H}), 2.02-1.99(\mathrm{br}, 1 \mathrm{H})$. ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.24,142.99,133.33,131.18,128.68,128.20,126.73,126.08,123.18,56.94,41.53,31.08$, 29.63, 25.28. HRMS (ESI) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]+: 214.1232$; found 214.1238. $[\alpha]^{22}{ }_{\mathrm{D}}=+23.9^{\circ}\left(\mathrm{c}=0.71, \mathrm{CHCl}_{3}\right)$.

5
(S)-3,4-dihydro-1H-spiro[naphthalene-2,2'-piperidin]-1-one (5)

To a 10 mL RBF was added 19 ($42.5 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and methanol ($2 \mathrm{~mL}, 0.1 \mathrm{M}$). The flask was flushed with nitrogen. Palladium on carbon ($5 \mathrm{wt} . \%$ loading) $(11 \mathrm{mg})$ was added and the flask was then flushed with hydrogen for 5 mins. The reaction was stirred under H_{2} at room temperature for 2 hours. (IMPORTANT: prolonged reaction time could lead to over-reduction of the ketone). The reaction was filtered through a Celite plug to remove Pd / C. The solvent was removed under reduced pressure to afford the product 5 as a colorless oil ($\mathbf{4 3 . 2} \mathbf{~ m g}$, quantitative, $\mathbf{9 1 \%}$ ee). Proton NMR matches with the previously reported data. ${ }^{2}{ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 8.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{ddd}, J=13.1,9.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dt}, J=13.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (br, 1H), $2.03(\mathrm{ddd}, J=13.7,9.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.91,142.40,133.34,131.17,128.66,128.11,126.74,59.20,41.32,31.37,30.37,26.01,25.34,20.23$; HRMS (ESI) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]+: 216.1388$; found 216.1385. $[\alpha]^{22}{ }_{\mathrm{D}}=+36.7^{\circ}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. Product 5 was converted to N -acetylated product for the determination of enantiomeric excess. The enantiomeric excess was determined to be $\mathbf{9 1 \%}$ by chiral HPLC analysis (CHIRALPAK OJ-H column, $1 \mathrm{~mL} / \mathrm{min}, 5 \%$ isopropanol in hexanes, $\lambda=254 \mathrm{~nm}$): $t_{\mathrm{R}}($ major $)=14.549 \mathrm{~min}, t_{\mathrm{R}}($ major $)=30.668 \mathrm{~min}$.

Scheme S2: Synthetic Diversification of Aminoketone 4 to generate 1,2-Amino Alcohols. i. reduction:

ii. Grignard addition:

20
(1S,2R)-2-amino-2-cinnamyl-1,2,3,4-tetrahydronaphthalen-1-ol (20)
To a 20 mL vial was added $4(57 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and methanol ($4 \mathrm{~mL}, 0.05 \mathrm{M}$). The vial was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. $\mathrm{NaBH}_{4}\left(8.5 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.1\right.$ equiv.) was added at $0^{\circ} \mathrm{C}$ (CAUTION: gas evolved). Then the reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 min , before removal of all the volatiles under reduced pressure. The crude was purified via silica column chromatography $(1 \% \rightarrow 2 \% \rightarrow 5 \% \rightarrow 10 \% \mathrm{MeOH} / \mathrm{DCM})$ to afford pure product 20 as a white paste $(51.7 \mathbf{m g}, \mathbf{9 0 \%}$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.47(\mathrm{dd}, J=5.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{dd}, J=5.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dt}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H})$, $2.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{dd}, J=14.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{br}, 3 \mathrm{H}), 2.05(\mathrm{dt}, J=13.4,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.72(\mathrm{dt}, J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.28,137.16,135.32,134.16,128.72,128.56$, $128.54,127.60,127.30,126.47,126.19,125.10,75.78,54.66,38.19,31.06,25.87$. HRMS (ESI) m/z calc'd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]+: 280.1701$; found 280.1708. $[\alpha]^{23}{ }_{\mathrm{D}}=-34.4^{\circ}\left(\mathrm{c}=0.89, \mathrm{CHCl}_{3}\right)$. The amino alcohol was derivatized into oxazolidinone for the determination of relative stereochemistry via $2 D-N M R$ analysis, shown in Scheme $\boldsymbol{S 3} .^{3}$

21
(1S,2R)-2-amino-2-cinnamyl-1-vinyl-1,2,3,4-tetrahydronaphthalen-1-ol (21)
To a flamed-dried 25 mL RBF was added $4(55.5 \mathrm{mg}, 0.18 \mathrm{mmol}, 1$ equiv) and THF ($2 \mathrm{~mL}, 0.1 \mathrm{M}$) under N_{2}. The solution was cooled to $-78^{\circ} \mathrm{C}$, followed by the addition of vinylmagnesium bromide solution (1 M in THF) ($0.6 \mathrm{~mL}, 0.6 \mathrm{mmol}, 3$ equiv.). The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with $\mathrm{DCM}(10 \mathrm{~mL} \times 3)$. The organic layers were combined and dried over anhydrous NaSO_{4}. After filtration, all the volatiles were removed under reduced pressure. The crude was purified via silica column chromatography ($1 \% \rightarrow 2 \% \rightarrow 5 \% \rightarrow 10 \% \mathrm{MeOH} / \mathrm{DCM})$ to afford pure product 21 as a white paste ($\mathbf{3 6 . 0} \mathbf{~ m g}$, $\mathbf{6 5 \%}$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.53-7.44$ (m, 1H), 7.39 $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dt}, J=$ $15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=17.1,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.20(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{dd}, J=14.2,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.37 (dd, $J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ (ddd, $J=13.8,6.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{ddd}, J=13.9,9.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.45$ (br, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.90,139.59,137.37,134.91,133.76,128.55,128.53,127.23,127.16,127.13,126.37$, $126.12,126.06,115.41,78.75,56.57,37.46,31.14,26.15$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}[\mathrm{M}+\mathrm{H}]+: 306.1858$; found 306.1862. $[\alpha]^{24}{ }_{\mathrm{D}}=-89.93^{\circ}\left(\mathrm{c}=1.54, \mathrm{CHCl}_{3}\right)$. The relative stereochemistry was determined via $2 D-N M R$ analysis, shown in Scheme S3.

Scheme S3: Determination of Relative Stereochemistry of the Amino Alcohols. Oxazolidinone formation:

20

$E t_{3} \mathrm{~N}, \mathrm{DCM}$

22

To an oven-dried 1-dram vial was added 20 ($50 \mathrm{mg}, 0.18 \mathrm{mmol}$, 1 equiv), dry DCM (0.9 mL) and triethylamine (0.05 mL , 0.36 mmol , 2 equiv) under N_{2}. Phenyl chloroformate ($28 \mathrm{mg}, 0.18 \mathrm{mmol}, 1$ equiv.) was added at room temperature. The reaction was stirred for 90 mins. Then, the volatiles were removed under reduced pressure. The crude was purified via silica column chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \% \mathrm{EtOAc} /$ Hexanes $)$ to afford pure product 22 as a thick paste $(15.9 \mathrm{mg}, 30 \%$ yield). The un-cyclized carbamate was also isolated as the major side product ($30.5 \mathrm{mg}, 42 \%$ yield).

Compound 21 was also exposed to the same condition. However, only un-cyclized carbamate was isolated without the formation of oxazolidinone, presumably due to the congested tertiary alcohol in 21.

22
(3aR,9bS)-3a-cinnamyl-3a,4,5,9b-tetrahydronaphtho[2,1-d]oxazol-2(3H)-one (22): ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J$ $=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{ddd}, J=15.6,8.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{ddd}, J=18.1$, $10.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (ddd, $J=17.6,9.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ (ddd, $J=13.1,9.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-$ $1.99(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{ddd}, J=14.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.02,136.58$, $135.84,134.17,132.24,128.62,128.40,127.78,127.73,126.40,126.24,122.58,122.18,83.19$, 61.75, 35.42, 28.17, 25.16 .

NOE correlation:

The ${ }^{1} \mathrm{H}$ signals of compound 22 were unambiguously assigned by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, COSY and HSQC NMR analysis. NOESY NMR revealed the following NOE correlation: $\mathrm{H}_{\mathrm{a}}(\delta 5.33) \rightarrow \mathrm{H}_{\mathrm{b}}(\delta 3.11), \mathrm{H}_{\mathrm{a}}(\delta 5.33) \rightarrow \mathrm{H}_{\mathrm{d}}(\delta 2.02), \mathrm{H}_{\mathrm{c}}(\delta 2.98) \rightarrow \mathrm{H}_{\mathrm{f}}(\delta 1.90), \mathrm{H}_{\mathrm{e}}$ $(\delta 2.25) \rightarrow \mathrm{H}_{\mathrm{f}}(\delta 1.90), \mathrm{H}_{\mathrm{e}}(\delta 2.25) \rightarrow \mathrm{H}_{\mathrm{g}}(\delta 6.08)$. These NOE strongly agree with the conformation shown above, which establishes the trans- relationship ${ }^{3}$ between the hydroxyl and the amino group.

NOE correlation:

The ${ }^{1} \mathrm{H}$ signals of compound 21 were unambiguously assigned by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{COSY}$ and HSQC NMR analysis. NOESY NMR revealed the NOE correlation between $\mathrm{H}_{\mathrm{a}}(\delta 6.20) \rightarrow \mathrm{H}_{\mathrm{b}}(\delta 1.89)$, which dictates the vinyl group at the (pseudo)axial position; $H_{d}(\delta 2.94) \rightarrow H_{e}(\delta 2.37)$, which dictates the phenylpropenyl group also at the (pseudo)axial position. These two results establish the trans- relationship between the hydroxyl and the amino group. Additional NOE signals also agree with the conformation shown above: $\mathrm{H}_{\mathrm{c}}(\delta 1.98) \rightarrow \mathrm{H}_{\mathrm{e}}(\delta 2.37), \mathrm{H}_{\mathrm{c}}(\delta 1.98) \rightarrow \mathrm{H}_{\mathrm{f}}(\delta 6.35)$.

Table S4. Optimization for the Asymmetric C-H Alkylation with $\boldsymbol{\beta}$-ketoester Nucleophiles.

Come

Entry 1:
General procedure for $\boldsymbol{\beta}$-ketoester 6: To a $1 / 2$ dram borosilicate vial with stir bar was added ligand $\mathbf{L 5}(4.2 \mathrm{mg}, 0.01 \mathrm{mmol}$, 0.1 equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Benzene $(0.2 \mathrm{~mL})$ was added, and the vial was capped and stirred at $45^{\circ} \mathrm{C}$ for 10 mins. Separately, to a $\frac{1 / 2}{}$ dram borosilicate vial with stir bar was added $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($11 \mathrm{mg}, 0.05 \mathrm{mmol}$, 0.5 equiv), 2, 6 -dimethylbenzoquinone ($20 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) and $6(47 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv). The catalyst solution was subsequently added to the reaction flask, and benzene (0.4 mL) was used to rinse the catalyst vial, also transferred and added to the reaction flask. Allylbenzene ($13.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1$ equiv) was added. The $1 / 2$ dram vial was sealed with a Teflon cap, and allowed to stir for 72 hours at $5^{\circ} \mathrm{C}$. Afterward, the reaction mixture was directly subjected to flash column chromatography ($1 \% \rightarrow 2 \% \mathrm{EtOAc} /$ hexanes) to provide product 9 as a white film. Run 1 ($29.8 \mathrm{mg}, 85 \%$ yield, 74% ee); Run 2 ($29.4 \mathrm{mg}, 84 \%$ yield, 74% ee) Average: 85\% Yield, 74\% ee.

Entry 2 :
Reaction proceeded according to the General procedure for Entry 1 using ligand $\mathbf{L} 7$ ($4.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Run 1 ($31.3 \mathrm{mg}, 89 \%$ yield, 70% ee); Run 2 ($32.2 \mathrm{mg}, 92 \%$ yield, 70% ee); Average: 91% Yield, 70% ee.

Entry 3 :
Reaction proceeded according to the General procedure for Entry 1 using ligand $\mathbf{L 8}$ ($4.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Run 1 ($31.6 \mathrm{mg}, 90 \%$ yield, 89% ee); Run 2 ($30.1 \mathrm{mg}, 86 \%$ yield, 89% ee); Average: $\mathbf{8 8 \%}$ Yield, $\mathbf{8 9 \%}$ ee.

Entry 4 :
Reaction proceeded according to the General procedure for Entry 1 using ligand $\mathbf{L 9}$ ($5.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Run 1 ($33.2 \mathrm{mg}, 95 \%$ yield, 92% ee); Run 2 ($32.6 \mathrm{mg}, 93 \%$ yield, 92% ee); Average: $\mathbf{9 4 \%}$ Yield, 91% ee.

Entry 5:
General procedure for $\boldsymbol{\beta}$-ketoester 7: To a $1 / 2$ dram borosilicate vial with stir bar was added ligand $\mathbf{L 9}(5.2 \mathrm{mg}, 0.01 \mathrm{mmol}$, 0.1 equiv) and $\operatorname{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Dioxane $(0.3 \mathrm{~mL})$ was added, and the vial was capped and stirred at $45^{\circ} \mathrm{C}$ for 10 mins. Separately, to a $1 / 2$ dram borosilicate vial with stir bar was added $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($11 \mathrm{mg}, 0.05 \mathrm{mmol}$, 0.5 equiv), 2,6-dimethylbenzoquinone ($20 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) and $7(45 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv). The catalyst solution was subsequently added to the reaction flask, and dioxane (0.3 mL) was used to rinse the catalyst vial, also transferred and added to the reaction flask. The vial was sealed with a Teflon cap, cooled to $5^{\circ} \mathrm{C}$ in a cold room for 10 min . Allylbenzene ($13 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) was added via syringe, and the reaction vial was again capped and stirred for 72 hours at $5^{\circ} \mathrm{C}$. Subsequently, the reaction mixture was directly subjected to flash column chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 50 \%$ $\mathrm{EtOAc} /$ hexanes) to provide the alkylated product $\mathbf{1 0}$ as a clear oil: $\mathbf{2 7 . 9} \mathbf{~ m g , ~} \mathbf{8 1 \%}$ yield, $\mathbf{8 7 \%} \mathbf{e e}$.

Entry 6 :
Reaction proceeded according to the General procedure for Entry 5 using ligand $\mathbf{L 1 0}$ ($6.1 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Run 1 $(19.9 \mathrm{mg}, 58 \%$ yield, 90% ee); Run $2(24.4 \mathrm{mg}, 71 \%$ yield, 90% ee); Run 3 ($23.8 \mathrm{mg}, 69 \%$ yield, 90% ee). Average: $\mathbf{6 6 \%}$ yield, $\mathbf{9 0 \%}$ ee.

The absolute stereochemistry of alkylated product with β-ketoesters $\mathbf{6}$ was assigned based on crystal structure of $\mathbf{9 e}$ (vide infra). For alkylation with β-ketoesters 7 , the absolute stereochemistry was inferred from $9 \mathbf{e}$.

Tert-butyl 2-cinnamyl-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (9): ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.72-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.57(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=15.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=14.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (dd, $J=14.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.97,172.30,164.21$, $138.44,136.86,135.16,128.45,127.50,126.27,124.87,122.47,121.37,119.66,113.47,91.48$, $83.80,37.54,27.83$. The enantiomeric excess was determined to be $\mathbf{9 1 \%}$ by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 50 \% \mathrm{MeCN}$ in $\left.\mathrm{H}_{2} \mathrm{O}, \lambda=280 \mathrm{~nm}\right): t_{\mathrm{R}}($ minor $)=26.470 \mathrm{~min}, t_{\mathrm{R}}($ major $)=29.699 \mathrm{~min} .[\alpha]^{22}{ }_{\mathrm{D}}=+104.5(\mathrm{c}=$ $0.59, \mathrm{CHCl}_{3}$). HRMS (ESI) m/z calc'd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]+: 373.1416$; found 373.1416.

Isopropyl 2-cinnamyl-5-isopropoxy-3-oxo-2,3-dihydrofuran-2-carboxylate (10a): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.55(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{td}, J=14.9,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.08 (hept, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=14.7,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{dd}, J=14.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.3, 184.2, 164.7, 137.0, 135.4, 128.6, 127.7, 126.4, 121.1, 92.1, 79.6, 70.7, 36.9, 21.9, 21.8,
21.75. The enantiomeric excess was determined to be 90% by chiral HPLC analysis (CHIRALPAK OJ-H column, $0.5 \mathrm{~mL} / \mathrm{min}, 5 \%$ isopropanol in hexane, $\lambda=254 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=14.389 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=$ 15.554 min.$) ;[\alpha]^{22}=+99.22\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]: 345.1702$; found 345.1692.

Table S5. Substrate Scope with $\boldsymbol{\beta}$-ketoester Nucleophiles.

$+\xrightarrow[8]{\substack{\mathrm{Zn}(\mathrm{OAc})_{2} \\ \mathrm{DMBQ}}}$

General procedure A for $\boldsymbol{\beta}$-ketoester 6 in Table S5: To a $1 / 2$ dram borosilicate vial with stir bar was added ligand $\mathbf{L 9}$ (5.2 $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.05$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05$ equiv). Benzene $(0.2 \mathrm{~mL})$ was added, and the vial was capped and stirred at $45^{\circ} \mathrm{C}$ until all solids had dissolved. Separately, to a second 1 dram borosilicate vial with stir bar was added nucleophile 6 ($94 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv), 2,6 -dimethylbenzoquinone ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($22 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.5$ equiv). The catalyst solution was subsequently added to the reaction flask, and Benzene (1.0 mL) was used to rinse the catalyst vial, also transferred and added to the reaction flask (total volume: 1.2 mL). The reaction vial was sealed with a Teflon cap and cooled at $5^{\circ} \mathrm{C}$ for 10 min . Allylarene $\mathbf{8}(0.20 \mathrm{mmol}, 1.0$ equiv) was then added and the reaction was allowed to stir for 72 hours at $5^{\circ} \mathrm{C}$. Afterward, the reaction mixture was directly subjected to flash column chromatography to provide product.

Tert-butyl (R)-2-cinnamyl-6-methoxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (9b): Allylbenzene ($13.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1$ equiv) reacted with nucleophile $\mathbf{6 b}$ according to the general procedure A. Purification by flash column chromatography ($5 \% \rightarrow 10 \%$ $\mathrm{EtOAc} /$ hexanes) provided the product as a clear oil: Run 1 ($30.7 \mathrm{mg}, 81 \%$ yield, 92% ee); Run 2 ($32.5 \mathrm{mg}, 85 \%$ yield, 92% ee); Run 3 ($29.6 \mathrm{mg}, 78 \%$ yield, 92% ee). Average: $\mathbf{8 1 \%}$ ($\pm \mathbf{3 . 8 \%}$) yield, $\mathbf{9 2 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK OJ-H column, $1 \mathrm{~mL} / \mathrm{min}, 2 \%$ isopropanol in hexanes, $\lambda=280 \mathrm{~nm}$): $t_{\mathrm{R}}($ minor $)=21.130 \mathrm{~min}, t_{\mathrm{R}}($ major $)=$ $23.398 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.54(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.67-$ $6.62(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dt}, J=15.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, J=14.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ $(\mathrm{dd}, J=14.6,6.8,1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.43,174.84,168.65,164.54,136.94,134.98,128.44$, $127.45,126.27,125.91,121.62,112.64,112.30,96.16,92.28,83.65,55.92,37.52,27.85$. HRMS (ESI) m/z calc'd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+: 381.1702$; found 381.1690. $[\alpha]^{22}{ }_{\mathrm{D}}=-33.0^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$.

Tert-butyl (R)-2-cinnamyl-6-fluoro-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (9c): Allylbenzene ($13.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1$ equiv) reacted with nucleophile $\mathbf{6 c}$ according to the general procedure A. Purification by flash column chromatography ($1 \% \rightarrow 2 \% \mathrm{EtOAc} /$ hexanes) provided the product as a clear oil: Run $1(34.7 \mathrm{mg}, 94 \%$ yield, 90% ee); Run $2(34.3 \mathrm{mg}, 93 \%$ yield, 90% ee); Run 3 (33.8 mg , 92% yield, 90% ee). Average: 93\% ($\pm \mathbf{1 . 2 \%}$) yield, $\mathbf{9 0 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK OJ-H column, $1 \mathrm{~mL} / \mathrm{min}, 2 \%$ isopropanol in hexanes, $\lambda=280 \mathrm{~nm}): t_{\mathrm{R}}($ minor $)=6.422 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.157 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- $d) \delta 7.66(\mathrm{dd}, J=$ $8.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{td}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ $(\mathrm{d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dt}, J=15.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=14.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=14.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.97,173.73(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 169.52(\mathrm{~d}, J=259.2 \mathrm{~Hz}), 163.88,136.75,135.42$, $128.49,127.61,126.79(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 126.28,120.94,116.34,111.40(\mathrm{~d}, J=24.4 \mathrm{~Hz}), 100.93(\mathrm{~d}, J=26.1 \mathrm{~Hz}) .92 .64$, 84.04, 37.37, 27.81. ${ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform-d) δ-95.86. HRMS (ESI) m/z calc'd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{FO}_{4}[\mathrm{M}+\mathrm{Na}]+$: 391.1322; found 391.1321. $[\alpha]^{23}{ }_{\mathrm{D}}=+46.7^{\circ}\left(\mathrm{c}=1.44, \mathrm{CHCl}_{3}\right)$.

9d

Tert-butyl
(R,E)-2-(3-(4-(cyclopropylcarbamoyl)phenyl)allyl)-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (9d): 4-allyl- N-cyclopropylbenzamide ($40.2 \mathrm{mg}, 0.2$ $\mathrm{mmol}, 1.0$ equiv) reacted with nucleophile 6 according to the general procedure \mathbf{A}. Purification by flash column chromatography $(20 \% \rightarrow 30 \%$ Acetone/hexanes) provided the product as a colorless gel. Run $1(78.9 \mathrm{mg}, 91 \%$ yield, 94% ee); Run $2(77.1 \mathrm{mg}$, 89% yield, 94% ee); Run $3(79.0 \mathrm{mg}, 91 \%$ yield, 94% ee). Average: $\mathbf{9 0 \%}$ ($\mathbf{\pm 1 . 2 \%}$) yield, $\mathbf{9 4 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK IA- 3 column, $1 \mathrm{~mL} / \mathrm{min}, 5 \%$ isopropanol in hexanes, $\lambda=254 \mathrm{~nm}$): $t_{\mathrm{R}}($ minor $)=53.437 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=57.398 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 7.67-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=9.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{br}, 1 \mathrm{H}), 6.16(\mathrm{ddd}, J=$ $15.8,7.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ (ddd, $J=14.6,7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~m}, 2 \mathrm{H}), 0.58(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.84,172.23,168.40,164.11,139.87,138.56,134.22,133.20,127.13,126.27,124.88$, $123.67,122.59,119.55,113.45,91.26,83.94,37.50,27.81,23.12,6.76$. HRMS (ESI) m/z calc'd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]+$: 434.1967; found 434.1961. $[\alpha]^{22}{ }_{\mathrm{D}}=+84.1^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.

9 e

Tert-butyl
(R, E)-2-(3-(4-(morpholinosulfonyl)phenyl)allyl)-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (9e): 4-((4-allylphenyl)sulfonyl)morpholine (54 mg , $0.2 \mathrm{mmol}, 1.0$ equiv) reacted with nucleophile $\mathbf{6}$ according to the general procedure \mathbf{A}. Purification by flash column chromatography ($20 \% \rightarrow 30 \%$ EtOAc/hexanes) provided the product as a white solid: Run $1(89.2 \mathrm{mg}, 89 \%$ yield, $\mathbf{9 2 \%}$ ee).
Using $2.5 \mathrm{~mol} \%$ catalyst: $\mathbf{L 9}\left(5.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05\right.$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}$, $0.01 \mathrm{mmol}, 0.05$ equiv), nucleophile $6(235 \mathrm{mg}, 1 \mathrm{mmol}, 2.0$ equiv), 2,6 -dimethylbenzoquinone ($102 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($55 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.5$ equiv). 4-((4-allylphenyl)sulfonyl)morpholine ($135 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 equiv) in Benzene (total reaction volume: 3 mL): Run 2 ($184.6 \mathrm{mg}, 74 \%$ yield, 92% ee); Run 3 ($175 \mathrm{mg}, 70 \%$ yield, 92% ee). Average: $\mathbf{7 2 \%}$ yield, $\mathbf{9 2 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK IB-3 column, $1 \mathrm{~mL} / \mathrm{min}, 5 \%$ isopropanol in hexanes, $\lambda=280 \mathrm{~nm}): t_{\mathrm{R}}($ major $)=19.003 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=21.562 \mathrm{~min}$. ${ }^{1} \mathrm{H}$ NMR $(500$ MHz , Chloroform- d) $\delta 7.66(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dt}, J=15.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.21(\mathrm{dd}, J=14.6,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.99-2.95(\mathrm{~m}, 4 \mathrm{H}), 2.92(\mathrm{dd}, J=14.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.74,172.24,164.05$, $141.54,138.62,133.61,133.43,128.16,126.73,125.73,124.95,122.68,119.54,113.46,91.05,84.03,66.09,45.96,37.33$, 27.82. HRMS (ESI) m/z calc'd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+: 500.1732$; found 500.1736. $[\alpha]^{22}{ }_{\mathrm{D}}=+83.6^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. Single crystals suitable for X-ray crystallography were grown by slow diffusion from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Hexane}$. The absolute stereochemistry is determined by X-ray crystallography shown on page S33.

Tert-butyl (R,E)-2-(3-(benzo[d][1,3]dioxol-5-yl)allyl)-3-oxo-2,3-dihydrobenzofuran-2carboxylate (9f): Safrole ($33 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) reacted with nucleophile $\mathbf{6}$ according to the general procedure A. Purification by flash column chromatography ($5 \% \rightarrow 8 \%$ $\mathrm{EtOAc} /$ hexanes $)$ provided the product as a clear oil: Run 1 ($69.3 \mathrm{mg}, 88 \%$ yield, 92% ee); Run 2 ($68.8 \mathrm{mg}, 87 \%$ yield, 92% ee); Run 3 ($69.4 \mathrm{mg}, 88 \%$ yield, 92% ee). Average: $\mathbf{8 8 \%}$ $\mathbf{(} \mathbf{} \mathbf{0 . 4 \%} \mathbf{)}$ yield, $\mathbf{9 2 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.75 \mathrm{~mL} / \mathrm{min}, 45 \% \mathrm{MeCN}$ in $\left.\mathrm{H}_{2} \mathrm{O}, \lambda=280 \mathrm{~nm}\right): t_{\mathrm{R}}$ (minor) $=34.062 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=36.926 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 7.68-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.46(\mathrm{dd}, J=15.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.86(\mathrm{~m}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=14.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.97,172.27,164.21,147.89,147.14,138.44,134.71,131.35,124.85,122.46,120.92$,
$119.67,119.49,113.45,108.16,105.57,101.00,91.53,83.77,37.48,27.83$. HRMS (ESI) m/z calc'd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]+$: 417.1314; found 417.1320. $[\alpha]^{23}{ }_{\mathrm{D}}=+107.2^{\circ}\left(\mathrm{c}=0.87, \mathrm{CHCl}_{3}\right)$.

Tert-butyl (R,E)-6-(3-(2-(tert-butoxycarbonyl)-3-oxo-2,3-dihydrobenzofuran-2-yl)prop-1-en-1-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (9g): Tert-butyl 6-allyl-3,4-dihydroquinoline- $1(2 H)$-carboxylate $\mathbf{8 d}(55 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) reacted with nucleophile 6 according to the general procedure A. Purification by flash column chromatography $(5 \% \rightarrow 10 \% \rightarrow 15 \% \mathrm{EtOAc} /$ hexanes $)$ provided the product as a clear oil: Run 1 ($94.5 \mathrm{mg}, 93 \%$ yield, 90% ee); Run 2 ($98.3 \mathrm{mg}, 97 \%$ yield, 90% ee); Run 3 ($97.8 \mathrm{mg}, 97 \%$ yield, 90% ee). Average: $\mathbf{9 6 \%}$ $\mathbf{(} \mathbf{~} \mathbf{2 . 0 \%} \mathbf{)}$) yield, $\mathbf{9 0 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK IB-3 column, 1 $\mathrm{mL} / \mathrm{min}, 1 \%$ isopropanol in hexanes, $\lambda=280 \mathrm{~nm}): t_{\mathrm{R}}$ (major) $=6.752 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=9.283 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=$ 8.6, 2.1 Hz, 1H), $6.95(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dt}, J=15.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.15$ (dd, $J=14.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=14.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{p}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$, $1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.02,172.29,164.24,153.83,138.42,138.00,134.68,131.81,129.69,126.42$, 124.84, 123.93, 123.70, 122.44, 120.01, 119.69, 113.46, 91.57, 83.75, 80.81, 44.75, 37.60, 28.38, 27.84, 27.54, 23.44. HRMS (ESI) m / z calc'd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]+$: 506.2543; found 506.2551. $[\alpha]^{23}{ }_{\mathrm{D}}=+83.4^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.

Tert-butyl (R,E)-2-(3-(1-methyl-2-oxo-1,4-dihydro-2H-benzo[d][1,3]oxazin-6-yl)allyl)-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (9h): 6-allyl-1-methyl-1,4-dihydro-2 H benzo $[d][1,3]$ oxazin-2-one ($41 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) reacted with nucleophile 6 according to the general procedure A. Purification by flash column chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 40 \% \mathrm{EtOAc} /$ hexanes $)$ provided the product as a clear oil: Run 1 (78.5 $\mathrm{mg}, 90 \%$ yield, 93% ee); Run 2 ($78.3 \mathrm{mg}, 90 \%$ yield, 93% ee); Run 3 ($81.3 \mathrm{mg}, 93 \%$ yield, 93% ee). Average: $\mathbf{9 1 \%}(\pm \mathbf{1 . 9 \%}$) yield, $\mathbf{9 3 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK OJ-H column, $1 \mathrm{~mL} / \mathrm{min}$, 30% isopropanol in hexanes, $\lambda=280 \mathrm{~nm}$): t_{R} (minor) $=21.957 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=27.179 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.49(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=15.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=14.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ $(\mathrm{dd}, J=14.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.86,172.23,164.15,153.12,138.51,137.62$, $133.74,132.04,127.17,124.87,122.55,121.86,121.18,120.68,119.62,113.44,112.92,91.37,83.86,67.28,37.43,31.55$, 27.82. HRMS (ESI) m / z calc'd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]+$: 436.1760; found 436.1767. $[\alpha]_{\mathrm{D}}^{23}=+90.3^{\circ}\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right)$.

9i

Tert-butyl (\boldsymbol{R}, E)-2-(3-cyclohexylallyl)-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (9i): To a $1 / 2$ dram borosilicate vial with stir bar was added ligand $\mathbf{L 9}(5.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Benzene $(0.2 \mathrm{~mL})$ was added, and the vial was capped and stirred at $45^{\circ} \mathrm{C}$ for 10 mins . Separately, to a $1 / 2$ dram borosilicate vial with stir bar was added $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($11 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.5$ equiv), 2,6-dimethylbenzoquinone ($20 \mathrm{mg}, 0.15$ mmol, 1.5 equiv) and 6 ($47 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv). The catalyst solution was subsequently added to the reaction flask, and benzene (0.4 mL) was used to rinse the catalyst vial, also transferred and added to the reaction flask. Allylcyclohexane (12.4 $\mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was added. The vial was sealed with a Teflon cap, and allowed to stir for 72 hours at room temperature. Afterward, the reaction mixture was directly subjected to flash column chromatography ($1 \% \rightarrow 2 \%$ $\mathrm{EtOAc} / \mathrm{hexanes}$) to provide product 9 i as a colorless oil. Run 1 ($29.6 \mathrm{mg}, 83 \%$ yield, $79 \% \mathrm{ee}$); Run 2 ($30.4 \mathrm{mg}, 85 \%$ yield, 79% ee); Run 3 (28.7 mg , 81% yield, 79% ee); Average: $\mathbf{8 3 \%}$ ($\pm \mathbf{2 . 4 \%}$) yield, $\mathbf{7 9 \%}$ ee. The enantiomeric excess was determined to be 79% by chiral HPLC analysis (CHIRALPAK AD-RH column, $0.5 \mathrm{~mL} / \mathrm{min}, 55 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}, \lambda=254$ $\mathrm{nm}): t_{\mathrm{R}}($ minor $)=30.213 \mathrm{~min}, t_{\mathrm{R}}($ major $)=33.981 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- $d) \delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=15.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{ddd}, J=15.6,7.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=14.4$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=14.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.20-1.01(\mathrm{~m}, 3 \mathrm{H}), 0.92$ (m, 2H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.25,172.32,164.38,142.60,138.23,124.64,122.23,119.96,118.43,113.36$, 91.73, 83.49, 40.55, 37.19, 32.62, 27.82, 26.08, 25.82. HRMS (ESI) m/z calc'd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+$: 357.2066 ; found 357.2062. $[\alpha]^{23}{ }_{\mathrm{D}}=+75.5^{\circ}\left(\mathrm{c}=0.67, \mathrm{CHCl}_{3}\right)$.

9j

Tert-butyl (R,E)-2-(4,4-diethoxybut-2-en-1-yl)-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (9j): To a $1 / 2$ dram borosilicate vial with stir bar was added ligand $\mathbf{L 9}(5.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Benzene $(0.2 \mathrm{~mL})$ was added, and the vial was capped and stirred at $45^{\circ} \mathrm{C}$ for 10 mins. Separately, to a $1 / 2$ dram borosilicate vial with stir bar was added $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate $(11 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.5$ equiv), 2,6-dimethylbenzoquinone (20 mg , $0.15 \mathrm{mmol}, 1.5$ equiv) and $\mathbf{6}(47 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv). The catalyst solution was subsequently added to the reaction flask, and benzene (0.4 mL) was used to rinse the catalyst vial, also transferred and added to the reaction flask. 3-Butenal diethyl acetal ($14.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was added. The vial was sealed with a Teflon cap, and allowed to stir for 48 hours at
room temperature. Afterward, the reaction mixture was directly subjected to flash column chromatography (silica neutralized with $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $5 \% \mathrm{EtOAc} /$ hexanes, flushed with $5 \% \rightarrow 8 \% \rightarrow 10 \% \mathrm{EtOAc} /$ hexanes) to provide product $9 \mathbf{j}$ as a colorless oil. Run 1 ($31.6 \mathrm{mg}, 84 \%$ yield, 79% ee); Run 2 ($29.7 \mathrm{mg}, 79 \%$ yield, 79% ee); Run 3 ($30.3 \mathrm{mg}, 80 \%$ yield, 79% ee); Average: $\mathbf{8 1 \%}(\pm \mathbf{2 . 6 \%}$) yield, $\mathbf{7 9 \%}$ ee. The product is converted into aldehyde $\mathbf{9 j}$ ' (see below) for chiral HPLC analysis. The enantiomeric excess was determined to be 79% by chiral HPLC analysis (CHIRALPAK OJ-H column, 1 $\mathrm{mL} / \mathrm{min}, 10 \%$ isopropanol in hexanes, $\lambda=254 \mathrm{~nm}$): t_{R} (minor) $=5.381 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=8.786 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.65(\mathrm{~m}, 2 \mathrm{H}), 4.75-4.72(\mathrm{~m}$, $1 \mathrm{H}), 3.55-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{dd}, J=14.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=14.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$, 1.13 (dt, $J=11.1,7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.95,172.33,164.14,138.36,133.32,125.62$, 124.77, $122.40,119.72,113.45,100.98,91.11,83.85,60.98,60.91,36.40,27.76,15.12,15.10$. HRMS (ESI) m/z calc' $\mathrm{d}_{\text {for }} \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6}$ $[\mathrm{M}+\mathrm{Na}]+: 399.1784$; found 399.1783. $[\alpha]^{23}{ }_{\mathrm{D}}=+37.2^{\circ}\left(\mathrm{c}=1.6, \mathrm{CHCl}_{3}\right)$.

9j'

Tert-butyl ($\boldsymbol{R}, \boldsymbol{E}$)-3-oxo-2-(4-oxobut-2-en-1-yl)-2,3-dihydrobenzofuran-2-carboxylate (9 j '): ${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 9.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=15.1$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=15.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, J=1.0 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 195.27, 193.13, 172.22, 163.66, 148.59, 138.85, 136.75, 125.08, 122.95, 119.24, 113.52, 89.92, 84.50, 36.37, 27.75. HRMS (ESI) m/z calc'd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]+: 325.1052$; found 325.1055.

General procedure B for $\boldsymbol{\beta}$-ketoester 7 in Table S5: To a $1 / 2$ dram borosilicate vial with stir bar was added ligand $\mathbf{L 1 0}$ (6.1 $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). Dioxane (0.3 mL) was added, and the vial was capped and stirred at $45^{\circ} \mathrm{C}$ until all solids had dissolved. Separately, to a second $1 / 2$ dram borosilicate vial with stir bar was added nucleophile, 2,6-dimethylbenzoquinone $\left(20.8 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5\right.$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($11 \mathrm{mg}, 0.05 \mathrm{mmol}$, 0.5 equiv). The catalyst solution was subsequently added to the reaction flask, and dioxane (volume specified below) was used to rinse the catalyst vial, also transferred and added to the reaction flask. The reaction vial was sealed with a Teflon cap and cooled at $5^{\circ} \mathrm{C}$ for 10 min . Allylarene $\mathbf{8}(0.10 \mathrm{mmol}, 1$ equiv) was then added and the reaction was allowed to stir for 72 hours at $5^{\circ} \mathrm{C}$. Afterward, the reaction mixture was directly subjected to flash column chromatography to provide product.

Methyl (R)-2-cinnamyl-4-methyl-3-oxo-5-(thiophen-2-yl)-2,3-dihydrofuran-2-carboxylate (10b): Allylbenzene ($13.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1$ equiv) was reacted with nucleophile 7 b ($24 \mathrm{mg}, 0.10$ mmol, 1 equiv) in Dioxane ($\mathbf{1 . 5} \mathbf{m L}$ total volume) using 1 dram vial according to the general procedure B. Purification by flash column chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 50 \%$ EtOAc/hexanes) provided the product as a clear oil. Run 1 ($29.1 \mathrm{mg}, 82 \%$ yield, 91% ee); Run 2 ($28.6 \mathrm{mg}, 81 \%$ yield, 91% ee); Run 3 ($30.1 \mathrm{mg}, 85 \%$ yield, 91% ee). Average: $\mathbf{8 3 \%}$ ($\pm \mathbf{2 . 2 \%}$) yield, $\mathbf{9 1 \%}$ ee. The enantiomeric excess was determined to be 91% by chiral HPLC analysis (CHIRALPAK IB- 3 column, 0.5 $\mathrm{mL} / \mathrm{min}, 10 \%$ isopropanol in hexane, $\lambda=254 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=9.52 \mathrm{~min}, t_{\mathrm{R}}($ major $)=10.04 \mathrm{~min}$.). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.80(\mathrm{dd}, J=3.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.16(\mathrm{~m}, 6 \mathrm{H}), 6.56(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dt}, J=$ $15.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=14.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.0,174.9,166.1,137.1,135.4,132.1,132.0,131.1,128.6,128.5,127.7,126.5,121.3,107.9,89.8,53.5$, 37.9, 7.2; HRMS (ESI) m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 355.1004$; found 355.0998. $[\alpha]^{22}{ }_{\mathrm{D}}=+93.19\left(\mathrm{c}=0.13, \mathrm{CHCl}_{3}\right)$.

Methyl (R)-5-cinnamyl-5'-ethyl-3-methyl-4-oxo-4,5-dihydro-[2,2'-bifuran]-5-carboxylate (10c): Allylbenzene ($13.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1$ equiv) was reacted with nucleophile $7 \mathrm{c}(25 \mathrm{mg}$, $0.10 \mathrm{mmol}, 1$ equiv) in Dioxane ($\mathbf{0 . 6} \mathbf{~ m L}$ total volume) according to the general procedure B. Purification by flash column chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 50 \%$ EtOAc/hexanes) provided the product as a clear oil. Run $1(23.2 \mathrm{mg}, 63 \%$ yield, 93% ee); Run $2(24.5 \mathrm{mg}, 67 \%$ yield, 93% ee); Run 3 ($25.6 \mathrm{mg}, 70 \%$ yield, 93% ee). Average: $\mathbf{6 7 \%}$ ($\mathbf{~} \mathbf{3 . 3 \%}$) yield, $\mathbf{9 3 \%}$ ee. The enantiomeric excess was determined to be 93% by chiral HPLC analysis (CHIRALPAK OJ-H column, $0.5 \mathrm{~mL} / \mathrm{min}, 20 \%$ isopropanol in hexane, $\lambda=230 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=10.82 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=12.83 \mathrm{~min}$.) ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=$ $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dt}, J=15.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, J=14.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.77(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8,170.8,166.2,163.6$, $143.9,137.1,135.2,128.6,127.6,126.5,121.4,117.7,107.7,107.2,89.6,53.4,37.9,21.9,11.9,6.4 ;$ HRMS (ESI) m/z calc'd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]: 367.1545$; found 367.1541. $[\alpha]^{22}{ }_{\mathrm{D}}=+135.15\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right)$.

Methyl (R,E)-5-(3-(3-((diethoxyphosphoryl)oxy)phenyl)allyl)-5'-ethyl-3-methyl-4-oxo-4,5-dihydro-[2,2'-bifuran]-5-carboxylate (10d): 3-allylphenyl diethyl phosphate ($27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was reacted with nucleophile $7 \mathrm{c}(25 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) in Dioxane ($0.6 \mathbf{m L}$ total volume) according to the general procedure \mathbf{B}.
10d

Purification by flash column chromatography ($10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 50 \% \mathrm{EtOAc} /$ hexanes $)$ provided the product as a clear oil. Run 1 ($39.1 \mathrm{mg}, 75 \%$ yield, 93% ee); Run 2 ($37.2 \mathrm{mg}, 72 \%$ yield, 93% ee); Run 3 ($38.8 \mathrm{mg}, 75 \%$ yield, 93% ee). Average: $\mathbf{7 4 \%} \mathbf{(~} \mathbf{2} .0 \%$) yield, $\mathbf{9 3 \%}$ ee. The enantiomeric excess was determined to be 93% by chiral HPLC analysis (CHIRALPAK IB-3 column, $0.5 \mathrm{~mL} / \mathrm{min}, 5 \%$ isopropanol in hexane, $\lambda=254 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=36.87 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=38.83 \mathrm{~min}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.50(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ $(\mathrm{dt}, J=15.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.14(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=14.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=14.7,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.77(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.29(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.6$, $170.8,166.2,163.7,151.0\left(\mathrm{~d}, J_{P}=6.3 \mathrm{~Hz}\right), 143.8,139.0,134.3,129.7,123.2,122.7,119.0\left(\mathrm{~d}, J_{P}=5.0 \mathrm{~Hz}\right), 117.8\left(\mathrm{~d}, J_{P}=5.0\right.$ $\mathrm{Hz}), 117.8,107.7,107.1,89.4,64.7\left(\mathrm{~d}, J_{P}=6.3 \mathrm{~Hz}\right), 53.4,37.8,21.9,16.2\left(\mathrm{~d}, J_{P}=5.0 \mathrm{~Hz}\right), 11.9,6.4 ;{ }^{31} \mathrm{P}$ NMR (202MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-5.2$; HRMS (ESI) m / z calc'd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{9} \mathrm{P}[\mathrm{M}+\mathrm{H}]: 519.1784$; found 519.1786. $[\alpha]^{23}{ }_{\mathrm{D}}=+121.00(\mathrm{c}=0.10$, $\left.\mathrm{CHCl}_{3}\right)$.

Tert-butyl (R,E)-3-(3-(5'-ethyl-5-(methoxycarbonyl)-3-methyl-4-oxo-4,5-dihydro-[2,2'-bifuran]-5-yl)prop-1-en-1-yl)-1H-indole-1-carboxylate (10e): Tert-butyl 3-allyl-1H-indole-1-carboxylate ($25.7 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was reacted with nucleophile $7 \mathrm{c}(25 \mathrm{mg}, 0.10$ $\mathrm{mmol}, 1$ equiv) in Dioxane ($\mathbf{0 . 6} \mathbf{~ m L}$ total volume) according to the general procedure \mathbf{B}. Purification by flash column chromatography ($10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 50 \%$ EtOAc/hexanes) provided the product as a clear oil. Run $1(29.0 \mathrm{mg}, 57 \%$ yield, 95% ee); Run $2(28.3 \mathrm{mg}$, 56% yield, 95% ee); Run 3 ($30.8 \mathrm{mg}, 61 \%$ yield, 95% ee). Average: $\mathbf{5 8 \%}$ ($\mathbf{~} \mathbf{2 . 6 \%}$) yield, $\mathbf{9 5 \%}$ ee. The enantiomeric excess was determined to be 95% by chiral HPLC analysis (CHIRALPAK IA- 3 column, $0.5 \mathrm{~mL} / \mathrm{min}, 10 \%$ isopropanol in hexane, λ $=330 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=3.76 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=4.48 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.25(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=15.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, J=14.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=14.3$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $197.9,170.8,166.3,163.6,149.7,143.9,135.9,128.8,126.4,124.7,123.7,122.9,121.9,119.9,118.6,117.7,115.4,107.7$, $107.3,89.6,84.0,53.4,38.4,28.3,21.9,11.9,6.4$; HRMS (ESI) m / z calc'd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]$: 506.2179 ; found 506.2178. $[\alpha]^{23}{ }_{\mathrm{D}}=+109.85\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right)$.

Methyl (R, E)-5-(3-(benzo[d][1,3]dioxol-5-yl)allyl)-5'-ethyl-3-methyl-4-oxo-4,5-dihydro-[2,2'-bifuran]-5-carboxylate (10f): Safrole ($14.8 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was reacted with nucleophile $7 \mathrm{c}(25 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) in Dioxane (0.6 mL total volume) according to the general procedure B. Purification by flash column chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 50 \% \mathrm{EtOAc} /$ hexanes $)$ provided the product as a clear oil. Run 1 (37.8 $\mathrm{mg}, 92 \%$ yield, 91% ee); Run $2(35.7 \mathrm{mg}, 87 \%$ yield, 91% ee); Run 3 ($37.3 \mathrm{mg}, 91 \%$ yield, 91% ee). Average: $\mathbf{9 0 \%}(\pm \mathbf{2 . 7 \%}$) yield, $\mathbf{9 1 \%}$ ee. The enantiomeric excess was determined to be 91% by chiral HPLC analysis (CHIRALPAK OJ-H column, $0.5 \mathrm{~mL} / \mathrm{min}, 40 \%$ isopropanol in hexane, $\lambda=260 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=12.82 \mathrm{~min}$, $t_{\mathrm{R}}($ minor $\left.)=16.11 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.87(\mathrm{dt}, J=15.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, J=14.7,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.91(\mathrm{dd}, J=14.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.8,170.8,166.2,163.6,148.0,147.2,143.9,134.8,131.6,121.1,119.5,117.7,108.3,107.7,107.2,105.8$, 101.1, 89.6, 53.4, 37.8, 21.9, 11.9, 6.4; HRMS (ESI) m/z calc'd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]: 411.1444$; found 411.1443. $[\alpha]^{23}{ }_{\mathrm{D}}=$ $+113.49\left(\mathrm{c}=0.23, \mathrm{CHCl}_{3}\right)$.

11a

Methyl (\boldsymbol{E})-2-(3-(4-bromophenyl)allyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (11a): 4-Bromoallylbenzene ($19.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) reacted with nucleophile $7 \mathbf{d}$ ($38 \mathrm{mg}, 0.20$ mmol, 2 equiv.) in Dioxane ($\mathbf{0 . 6} \mathbf{~ m L}$ total volume) according to the general procedure \mathbf{B}. Purification by flash column chromatography ($5 \% \rightarrow 8 \% \rightarrow 10 \%$ EtOAc/hexanes) provided the product as a clear oil: Run 1 ($32.6 \mathrm{mg}, 85 \%$ yield, 79% ee); Run 2 ($31.9 \mathrm{mg}, 83 \%$ yield, 79% ee); Run 3 ($34.7 \mathrm{mg}, 90 \%$ yield, 79% ee). Average: $\mathbf{8 6 \%}(\mathbf{3 . 8 \%}$) yield, $\mathbf{7 9 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK OJ-H column, $1 \mathrm{~mL} / \mathrm{min}, 10 \%$ isopropanol in hexanes, $\lambda=260 \mathrm{~nm}$): t_{R} (minor) $=$ $23.800 \mathrm{~min}, t_{\mathrm{R}}($ major $)=31.201 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- $d) \delta 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.04(\mathrm{dt}, J=15.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.1,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.73(\mathrm{dd}, J=14.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.92,171.20,152.92,135.82,135.55,135.01,133.12$, 131.56, 127.89, 127.73, 126.45, 125.27, 124.87, 121.19, 60.25, 52.88, 38.29, 36.14. HRMS (ESI) m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrO}_{3}$ $[\mathrm{M}+\mathrm{H}]+: 385.0439$; found 385.0433. $[\alpha]^{23}{ }_{\mathrm{D}}=+103.1^{\circ}\left(\mathrm{c}=0.385, \mathrm{CHCl}_{3}\right)$.

Benzyl (R)-2-cinnamyl-1-oxo-4-phenyl-2,3-dihydro-1 \boldsymbol{H}-indene-2-carboxylate (11b): Allylbenzene ($13.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1$ equiv) reacted with nucleophile $7 \mathrm{e}(68 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv.) in Dioxane ($\mathbf{0 . 6} \mathbf{~ m L}$ total volume) according to the general procedure \mathbf{B}. Purification by flash column chromatography $(5 \% \rightarrow 8 \% \rightarrow 10 \% \mathrm{EtOAc} /$ hexanes) provided the product as a clear oil: Run 1 ($36.4 \mathrm{mg}, 79 \%$ yield, 91% ee); Run 2 ($37.7 \mathrm{mg}, 82 \%$ yield, 91% ee); Run 3 (38.9 mg , 85% yield, 91% ee). Average: $\mathbf{8 2 \%}$ ($\mathbf{~} \mathbf{2 . 7 \%}$) yield, $\mathbf{9 1 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK OJ-H column, $1 \mathrm{~mL} / \mathrm{min}, 5 \%$ isopropanol in hexanes, $\lambda=254 \mathrm{~nm}$): $t_{\mathrm{R}}($ major $)=5.261 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=7.151 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 7.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.05(\mathrm{~m}, 5 \mathrm{H}), 6.34(\mathrm{~d}$, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dt}, J=15.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}$, $J=14.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=14.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.92,170.38,150.53,140.33$, $138.72,136.83,135.71,135.56,135.54,134.22,128.72,128.56,128.47,128.43,128.21,127.91,127.83,127.43,126.21$, $124.18,123.80,67.27,60.98,38.33,35.88$. (missing one carbon in the aromatic region, possibly due to overlapping). HRMS (ESI) m / z calc'd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+: 459.1960$; found 459.1945. $[\alpha]^{23}{ }_{\mathrm{D}}=+16.0^{\circ}\left(\mathrm{c}=0.68, \mathrm{CHCl}_{3}\right)$.

Benzyl (R,E)-2-(3-(3-methoxyphenyl)allyl)-1-oxo-4-phenyl-2,3-dihydro-1H-indene-2carboxylate (11c): 3-allylanisole ($14.8 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) reacted with nucleophile 7 e (68 $\mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv.) in Dioxane ($\mathbf{0 . 6} \mathbf{~ m L}$ total volume) according to the general procedure \mathbf{B}. Purification by flash column chromatography ($5 \% \rightarrow 8 \% \rightarrow 10 \%$ EtOAc/hexanes) provided the product as a clear oil: Run 1 ($36.8 \mathrm{mg}, 75 \%$ yield, 92% ee); Run 2 ($33.4 \mathrm{mg}, 68 \%$ yield, 93% ee); Run 3 ($33.5 \mathrm{mg}, 69 \%$ yield, 93% ee). Average: $\mathbf{7 1 \%}$ ($\pm \mathbf{3 . 9 \%}$) yield, $\mathbf{9 3 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK OJ-H column, $1 \mathrm{~mL} / \mathrm{min}, 30 \%$ isopropanol in hexanes, $\lambda=$ $254 \mathrm{~nm}): t_{\mathrm{R}}($ major $)=18.424 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=23.131 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform-d) $\delta 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$, $6.39(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dt}, J=15.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=$ $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=14.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=13.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.95,170.40$, $159.65,150.55,140.34,138.72,138.30,135.73,135.56,134.16,129.42,128.73,128.56,128.51,128.48,128.44,128.22$, $127.87,127.84,124.53,123.80,118.88,113.06,111.49,67.27,60.94,55.22,38.27,35.87$. HRMS (ESI) m/z calc'd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+: 489.2066$; found 489.2057. $[\alpha]^{23}{ }_{\mathrm{D}}=+14.3^{\circ}\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right)$.

Benzyl (R,E)-1-oxo-4-phenyl-2-(3-(4-(trifluoromethyl)phenyl)allyl)-2,3-dihydro-1H-indene-2-carboxylate (11d): 4-trifluoromethylallylbenzene ($18.6 \mathrm{mg}, 0.10 \mathrm{mmol}$, 1 equiv) reacted with nucleophile $\mathbf{7 e}(68 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv.) in Dioxane ($\mathbf{0 . 6} \mathbf{~ m L}$ total volume) according to the general procedure B. Purification by flash column chromatography ($5 \% \rightarrow 8 \%$ EtOAc/hexanes) provided the product as a clear oil: Run $1(40.5 \mathrm{mg}, 77 \%$ yield, $91 \% \mathrm{ee})$; Run 2 ($39.6 \mathrm{mg}, 75 \%$ yield, 91% ee); Run $3(39.3 \mathrm{mg}, 75 \%$ yield, 91% ee). Average: $\mathbf{7 6 \%}(\pm \mathbf{1 . 2} \%)$ yield, $\mathbf{9 1 \%}$ ee. The enantiomeric excess was determined by chiral HPLC analysis (CHIRALPAK OJ-H column, $1 \mathrm{~mL} / \mathrm{min}, 10 \%$ isopropanol in hexanes, $\lambda=254 \mathrm{~nm}): t_{\mathrm{R}}($ major $)=10.815 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.988 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- $d) \delta 7.83(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.39(\mathrm{~m}, 9 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.10(\mathrm{dt}, J=15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.16(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=$ $14.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=14.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.71,170.27,150.34,140.34,140.22$, $138.65,135.81,135.49,135.47,132.90$, 129.18 (q, $J=32.4 \mathrm{~Hz}$), 128.76, 128.58, 128.56, 128.45, 128.29, 127.99, 127.90, $127.10,126.35,125.38(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 124.15(\mathrm{q}, ~ J=271.9 \mathrm{~Hz}), 123.86,67.35,60.78,38.30,36.07 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform- d) $\delta-62.46$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]+$: 527.1834; found 527.1820. $[\alpha]_{\mathrm{D}}^{23}=+10.4^{\circ}(\mathrm{c}=$ $\left.1.51, \mathrm{CHCl}_{3}\right)$.

Scheme S4: Diastereoselective Allylic C-H Alkylation.

12

| Ligand | Yield | d.r.b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L12 | 35% | $1: 1.3$ |

Notes on indication of absolute stereochemistry at the newly formed stereocenter: Crystal structure of 9e unambiguously showed that ArSOX L9 led to (\boldsymbol{R}) at β-ketoester 6 (vide supra). Crystsal structure of 13b corroborated this observation by showing ArSOX ent-L9 led to (S), when estrone derivative 12 was used for alkylation of β-ketoester 6 (vide infra). Therefore, when chiral substrates $\mathbf{1 2 b}, \mathbf{1 2 c}, \mathbf{1 2 d}$ and $\mathbf{1 2 e}$ were evaluated, the absolute stereochemistry of the newly formed stereocenter was inferred from the ligand of choice: $\mathbf{L 9}$ leads to (\boldsymbol{R}), ent-L9 leads to (\boldsymbol{S}).

General procedure for Scheme S4: To a $1 / 2$ dram borosilicate vial with stir bar was added ligand $\mathbf{L 9}$ or ent-L9 (10.4 mg , $0.02 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1$ equiv). Benzene $(0.4 \mathrm{~mL})$ was added, and the vial was capped and stirred at $45^{\circ} \mathrm{C}$ until all solids had dissolved. Separately, to a second 1 dram borosilicate vial with stir bar was added nucleophile 6 ($94 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv), 2,6-dimethylbenzoquinone ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($22 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.5$ equiv). The catalyst solution was subsequently added to the reaction flask, and Benzene (0.8 mL) was used to rinse the catalyst vial, also transferred and added to the reaction flask (total volume: 1.2 mL). Terminal olefin substrate $12(0.20 \mathrm{mmol}, 1.0$ equiv) was then added and the reaction was allowed to stir for 72 hours at room temperature $\left(\mathbf{2 5}^{\circ} \mathbf{C}\right)$. Afterward, the reaction mixture was directly subjected to flash column chromatography to provide the product.

Racemic reaction condition A for Scheme S4: ${ }^{1}$ A $1 / 2$ dram oven dried borosilicate vial equipped with a Teflon magnetic stir bar was charged with nucleophile $6(47 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv), 2,6 -dimethylbenzoquinone (DMBQ) ($20.4 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.5 equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2} /$ bis-sulfoxide catalyst $(5.0 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.1$ equiv.). To the reaction vial was sequentially added DMSO (0.24 mL) and Dioxane (0.06 mL). Terminal olefin substrate $\mathbf{1 2}(0.10 \mathrm{mmol}, 1.0$ equiv) was then added and the reaction was allowed to stir for 24 hours at $\mathbf{4 5} \mathbf{}{ }^{\circ} \mathbf{C}$. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and extracted with ethyl acetate (EtOAc) $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography to provide the racemic standard.

Racemic reaction condition B for Scheme S4: To a 1 dram borosilicate vial with stir bar was added racemic SOX ligand L11 ($6.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1$ equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1$ equiv), 2,6 -dimethylbenzoquinone ($40 \mathrm{mg}, 0.3$ mmol, 1.5 equiv), $\mathrm{Zn}(\mathrm{OAc})_{2}$ dihydrate ($22 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.5$ equiv), nucleophile $6(94 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) and
benzene (1.2 mL). Terminal olefin substrate $\mathbf{1 2}(0.20 \mathrm{mmol}, 1.0$ equiv) was then added and the reaction was allowed to stir for 24 hours at $\mathbf{4 5}^{\circ} \mathbf{C}$. Afterward, the reaction mixture was directly subjected to flash column chromatography to provide the product.

13a
$+$

13b
Tert-butyl (R)-2-((E)-3-((8R,9S,13S,14S,16S,17S)-17-acetoxy-3-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-16-yl)allyl)-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (13a)
Tert-butyl $\quad(S)-2-((E)-3-((8 R, 9 S, 13 S, 14 S, 16 S, 17 S)$-17-acetoxy-3-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta $[a]$ phenanthren-16-yl)allyl)-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (13b)
Estrone derivative $\mathbf{1 2 a}^{4}(71 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) was reacted with nucleophile $\mathbf{6}$ according to the general procedure. Purification by flash column chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \%$ EtOAc/hexanes) provided the diastereomeric product 13a and 13b as a white solid.
With L9: Run 1 ($103.8 \mathrm{mg}, 88 \%$ yield); Run $2(105.2 \mathrm{mg}, 90 \%$ yield). Average: $\mathbf{8 9 \%}$ yield, 16:1 d.r. The diastereomeric ratio was determined by 1 H NMR, after purification of an inseparable mixture of diastereomers.
With ent-L9: Run 1 ($104.7 \mathrm{mg}, 89 \%$ yield); Run $2(105.2 \mathrm{mg}, 90 \%$ yield). Average: $\mathbf{9 0 \%}$ yield, $\mathbf{1 : 1 8}$ d.r. The diastereomeric ratio was determined by 1 H NMR, after purification of an inseparable mixture of diastereomers.
With racemic condition B: Run $1(102.0 \mathrm{mg}, 87 \%$ yield); Run 2 ($96.1 \mathrm{mg}, 82 \%$ yield). Average: $\mathbf{8 5 \%}$ yield, $\mathbf{1 . 5} \mathbf{1} \mathbf{1}$ d.r. The diastereomeric ratio was determined by 1 H NMR, after purification of an inseparable mixture of diastereomers.
13a: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.68-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{dd}, J=$ $8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=15.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{br}, 1 \mathrm{H}), 5.26(\mathrm{dt}, J=14.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.77(\mathrm{~m}, 3 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.16-$ $2.08(\mathrm{~m}, 1 \mathrm{H}), \mathbf{1 . 9 3}(\mathrm{s}, \mathbf{3 H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.22(\mathrm{~m}, 15 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.46,172.42,170.96,164.44,153.71,139.09,138.45,137.97,132.09,126.45,124.71,122.34,120.54,119.93$, $115.30,113.49,112.80,91.57,86.35,83.78,77.27,48.53,44.19,43.69,38.42,36.95,36.82,30.62,29.57,27.80,27.03$, 26.10, 21.04, 12.53. HRMS (ESI) m / z calc'd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]+$: 609.2821; found 609.2826. $[\alpha]^{23}{ }_{\mathrm{D}}=+30.1^{\circ}(\mathrm{c}=0.81$, $\left.\mathrm{CHCl}_{3}\right)$.

13b: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{dd}, J=$ $8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=15.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{br}, 1 \mathrm{H}), 5.27(\mathrm{dt}, J=14.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.71(\mathrm{~m}, 3 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.14-$ $2.08(\mathrm{~m}, 1 \mathrm{H}), \mathbf{1 . 9 7}(\mathrm{s}, \mathbf{3 H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.14(\mathrm{~m}, 15 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.36,172.42,171.02,164.41,153.73,139.18,138.41,137.95,132.05,126.45,124.78,122.38,120.55$, $119.88,115.31,113.48,112.82,91.51,86.32,83.76,77.26,48.55,44.02,43.72,38.37,36.91,36.87,30.25,29.55,27.83$, $27.04,26.07,21.05,12.53 .[\alpha]^{23}=-43.8^{\circ}\left(c=1.05, C H C l_{3}\right)$. Single crystals of $13 b$ suitable for X-ray crystallography were grown by slow diffusion from $E t_{2} \mathrm{O} / \mathrm{Hexane}$. The absolute stereochemistry is determined by X-ray crystallography shown on page S35.

Tert-butyl (S)-2-((E)-3-((R)-2-(tert-butoxycarbonyl)-3-oxo-2,3-dihydrobenzofuran-2-yl)prop-1-en-1-yl)pyrrolidine-1carboxylate (14a)
Tert-butyl (S)-2-((E)-3-((S)-2-(tert-butoxycarbonyl)-3-oxo-2,3-dihydrobenzofuran-2-yl)prop-1-en-1-yl)pyrrolidine-1carboxylate (14b)
Tert-butyl (S)-2-allylpyrrolidine-1-carboxylate $\mathbf{1 2 b}^{\mathbf{5}}(42 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) was reacted with nucleophile $\mathbf{6}$ according to the general procedure. Purification by flash column chromatography ($5 \% \rightarrow 10 \%$ Acetone/hexanes) provided the diastereomeric product $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ as a colorless oil, which solidifies upon refrigeration.
With L9: Run 1 ($82.5 \mathrm{mg}, 93 \%$ yield); Run 2 ($78.2 \mathrm{mg}, 88 \%$ yield). Average: $\mathbf{9 1 \%}$ yield, $\mathbf{8 : 1}$ d.r. The diastereomeric ratio was determined by chiral HPLC analysis (CHIRALPAK IA- 3 column, $1 \mathrm{~mL} / \mathrm{min}, 2 \%$ isopropanol in Hexanes, $\lambda=325 \mathrm{~nm}$): $t_{\mathrm{R}}($ major $)=8.984 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.421 \mathrm{~min}$.

With ent-L9: Run 1 ($75.4 \mathrm{mg}, 85 \%$ yield); Run 2 ($73.6 \mathrm{mg}, 83 \%$ yield). Average: $\mathbf{8 4 \%}$ yield, $\mathbf{1 : 1 7}$ d.r. The diastereomeric ratio was determined by chiral HPLC analysis (CHIRALPAK IA- 3 column, $1 \mathrm{~mL} / \mathrm{min}, 2 \%$ isopropanol in Hexanes, $\lambda=325$ $\mathrm{nm}): t_{\mathrm{R}}($ minor $)=8.946 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.194 \mathrm{~min}$.
With racemic condition A: Run 1 ($33.6 \mathrm{mg}, 38 \%$ yield); Run 2 ($28.7 \mathrm{mg}, 32 \%$ yield). Average: $\mathbf{3 5 \%}$ yield, $\mathbf{1 : 1 . 3}$ d.r. The diastereomeric ratio was determined by chiral HPLC analysis (CHIRALPAK IA- 3 column, $1 \mathrm{~mL} / \mathrm{min}, 2 \%$ isopropanol in Hexanes, $\lambda=325 \mathrm{~nm}): t_{\mathrm{R}}($ minor $)=9.096 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.528 \mathrm{~min}$.
$\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ gave identical 1 H and 13 C NMR, therefore the spectral data of $\mathbf{1 4 b}$ ($1: 17$ d.r.) was reported below:
14a: 8:1 diastereomeric mixture, $[\alpha]^{22}{ }_{D}=+10.6^{\circ}\left(\mathrm{c}=0.75, \mathrm{CHCl}_{3}\right)$.
14b: 1:17 diastereomeric mixture, ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dt}, J=14.5 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.00(\mathrm{br}, 1 \mathrm{H}), 3.26-3.02(\mathrm{~m}, 2 \mathrm{H})$, $2.90(\mathrm{dd}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.64(\mathrm{br}, 1 \mathrm{H}), 1.85-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 196.17,172.38,164.28,154.50,138.33,136.76$ (br), 124.67, 122.33, 120.65 (br), 119.88, 113.37, 91.42, 83.62, 79.04, 58.11 (br), 45.88 (br), 36.36, 31.92, 29.70, 28.45, 27.79. HRMS (ESI) m/z calc'd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{Na}]+: 466.2206$; found 466.2202. $[\alpha]^{22}{ }_{\mathrm{D}}=-103.5^{\circ}\left(\mathrm{c}=0.85, \mathrm{CHCl}_{3}\right)$.

Tert-butyl (R)-2-((S,E)-5-(methoxy(methyl)amino)-4-methyl-5-oxopent-2-en-1-yl)-3-oxo-2,3-dihydrobenzofuran-2carboxylate (15a)

Tert-butyl (S)-2-((S,E)-5-(methoxy(methyl)amino)-4-methyl-5-oxopent-2-en-1-yl)-3-oxo-2,3-dihydrobenzofuran-2carboxylate (15b)
Weinreb amide substrate $\mathbf{1 2} \mathbf{c}^{\mathbf{6}}$ ($31.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) was reacted with nucleophile $\mathbf{6}$ according to the general procedure. Purification by flash column chromatography ($10 \% \rightarrow 20 \% \mathrm{EtOAc} /$ hexanes) provided the diastereomeric product 15a and 15b as a colorless oil.
With L9: Run 1 ($70.1 \mathrm{mg}, 90 \%$ yield); Run 2 (74.3 mg , 95% yield). Average: $\mathbf{9 3 \%}$ yield, 5:1 d.r. The diastereomeric ratio was determined by 1 H NMR, after purification of an inseparable mixture of diastereomers.
With ent-L9: Run 1 ($68.5 \mathrm{mg}, 88 \%$ yield); Run $2(69.9 \mathrm{mg}, 90 \%$ yield). Average: $\mathbf{8 9 \%}$ yield, $\mathbf{1 : 4}$ d.r. The diastereomeric ratio was determined by 1 H NMR, after purification of an inseparable mixture of diastereomers.
With racemic condition A: Run $1(16.8 \mathrm{mg}, 22 \%$ yield); Run $2(14.6 \mathrm{mg}, 19 \%$ yield). Average: $\mathbf{2 1 \%}$ yield, $\mathbf{1 : 1}$ d.r. The diastereomeric ratio was determined by 1 H NMR, after purification of an inseparable mixture of diastereomers.
15a: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J$ $=15.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dt}, J=15.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), \mathbf{3 . 5 5}(\mathrm{s}, \mathbf{3 H}), \mathbf{3 . 0 9}(\mathrm{s}, \mathbf{3 H}), 2.94(\mathrm{dd}, J=14.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=$ $14.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), \underline{\mathbf{1 . 0 2}(\mathbf{d}, \boldsymbol{J}=\mathbf{6 . 9} \mathbf{~ H z}, \mathbf{3 H})}{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.01,175.13,172.29,164.18$, $138.34,136.10,124.70,122.67,122.34,119.80,113.42,91.29,83.70,61.37,38.95,36.79,32.18,27.79,17.66$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]+: 390.1917$; found 390.1911. $[\alpha]_{\mathrm{D}}^{22}=+33.4^{\circ}\left(\mathrm{c}=1.45, \mathrm{CHCl}_{3}\right)$.

15b: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J$ $=15.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{ddd}, J=15.4,7.7 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}), \mathbf{3 . 5 1 (\mathrm { s } , \mathbf { 3 H }) , \mathbf { 3 . 0 5 } (\mathrm { s } , \mathbf { 3 H }) , 2 . 9 4 (\mathrm { dd } , J = 1 4 . 6 , 7 . 5 \mathrm { Hz } , 1 \mathrm { H }) , 2 . 7 3}$ $(\mathrm{dd}, J=14.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), \underline{\mathbf{1} .06(\mathbf{d}, ~ J=\mathbf{6 . 9} \mathbf{~ H z}, \mathbf{3 H})}{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.06,175.10,172.32$, $164.21,138.26,136.16,124.68,122.51,122.30,119.85,113.44,91.35,83.70,61.33,38.81,36.79,32.13,27.75,17.70 .[\alpha]^{22}{ }_{D}$ $=-66.2^{\circ}\left(\mathrm{c}=1.48, \mathrm{CHCl}_{3}\right)$.

Tert-butyl
(R)-2-((R,E)-4-((tert-butyldimethylsilyl)oxy)-5-((4-methoxybenzyl)oxy)pent-2-en-1-yl)-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (16a)
Tert-butyl
(S)-2-((R,E)-4-((tert-butyldimethylsilyl)oxy)-5-((4-methoxybenzyl)oxy)pent-2-en-1-yl)-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (16b)

Chiral diol substrate $\mathbf{1 2 d}^{7}(67.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) was reacted with nucleophile $\mathbf{6}$ according to the general procedure. Purification by flash column chromatography $(2 \% \rightarrow 5 \% \rightarrow 10 \% \mathrm{EtOAc} /$ hexanes $)$ provided the diastereomeric product 16a and $\mathbf{1 6 b}$ as a colorless oil.
With L9: Run 1 ($102.3 \mathrm{mg}, 90 \%$ yield); Run 2 ($106.8 \mathrm{mg}, 94 \%$ yield). Average: $\mathbf{9 2 \%}$ yield, $\mathbf{3 : 1}$ d.r. The diastereomeric ratio was determined by 1 H NMR, after purification of an inseparable mixture of diastereomers.
With ent-L9: Run 1 ($100.2 \mathrm{mg}, 88 \%$ yield); Run 2 ($104.5 \mathrm{mg}, 92 \%$ yield). Average: $\mathbf{9 0 \%}$ yield, $\mathbf{1 : 2 0}$ d.r. The diastereomeric ratio was determined by 1 H NMR, after purification of an inseparable mixture of diastereomers.
With racemic condition A: Run 1 ($51.4 \mathrm{mg}, 45 \%$ yield); Run 2 ($48.8 \mathrm{mg}, 43 \%$ yield). Average: 44\% yield, 1:1.2 d.r. The diastereomeric ratio was determined by 1 H NMR, after purification of an inseparable mixture of diastereomers.
16a: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.67(\mathrm{dd}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.48(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.12(\mathrm{~m}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{dd}, J=14.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=14.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), \mathbf{0 . 7 8}(\mathbf{s}$.
 $129.10,124.71,122.33,121.73,119.99,113.68,113.46,91.41,83.62,74.67,72.89,71.73,55.27,36.33,27.78,25.78,18.18$, $-4.96,-4.98$. HRMS (ESI) m/z calc'd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]+: 591.2754$; found 591.2759. $[\alpha]^{24} \mathrm{D}=+18.5^{\circ}(\mathrm{c}=1.12$, CHCl_{3}).

16b: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=$ $7.4,1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.67(\mathrm{dd}, J=15.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.48(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{dd}, J=14.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=14.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$,
 $130.52,129.11,124.76,122.30,122.09,119.87,113.68,113.40,91.27,83.59,74.74,72.92,71.98,55.26,36.54,27.77$, $25.79,18.19,-4.87,-4.93 .[\alpha]^{24}{ }_{\mathrm{D}}=-36.0^{\circ}\left(\mathrm{c}=1.23, \mathrm{CHCl}_{3}\right)$.

Tert-butyl
(2R)-2-((E)-3-((3R,10S,13S,17S)-17-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-3-((trimethylsilyl)oxy)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)allyl)-3-oxo-2,3-dihydrobenzofuran-2carboxylate (17a)
Tert-butyl (2S)-2-((E)-3-((3R,10S,13S,17S)-17-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-3-((trimethylsilyl)oxy)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)allyl)-3-oxo-2,3-dihydrobenzofuran-2carboxylate (17b)
Androsterone derivative $\mathbf{1 2 e}^{8}(103 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) was reacted with nucleophile $\mathbf{6}$ according to the general procedure. Purification by flash column chromatography ($2 \% \mathrm{EtOAc} /$ hexanes) provided the diastereomeric product 17 a and 17b as a colorless oil.
With L9: Run 1 ($132.2 \mathrm{mg}, 88 \%$ yield); Run 2 ($138.5 \mathrm{mg}, 92 \%$ yield). Average: $\mathbf{9 0 \%}$ yield, 4.3:1 d.r. The diastereomeric ratio was determined by chiral HPLC analysis (CHIRALPAK IC-3 column, $0.8 \mathrm{~mL} / \mathrm{min}, 0.3 \%$ isopropanol in Hexanes, $\lambda=$ $254 \mathrm{~nm}): t_{\mathrm{R}}($ minor $)=4.252 \mathrm{~min}, t_{\mathrm{R}}($ major $)=4.524 \mathrm{~min}$.
With ent-L9: Run 1 ($136.7 \mathrm{mg}, 91 \%$ yield); Run 2 (144.1 mg , 96% yield). Average: $\mathbf{9 3 \%}$ yield, $\mathbf{1 : 5}$ d.r. The diastereomeric ratio was determined by chiral HPLC analysis (CHIRALPAK IC-3 column, $0.8 \mathrm{~mL} / \mathrm{min}, 0.3 \%$ isopropanol in Hexanes, $\lambda=$ $254 \mathrm{~nm}): t_{\mathrm{R}}($ major $)=4.373 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=4.686 \mathrm{~min}$.
With racemic condition B: Run $1(47.0 \mathrm{mg}, 31 \%$ yield); Run $2(45.0 \mathrm{mg}, 30 \%$ yield). Average: $\mathbf{3 1 \%}$ yield, $\mathbf{1 : 1}$ d.r. The diastereomeric ratio was determined by chiral HPLC analysis (CHIRALPAK IC- 3 column, $0.8 \mathrm{~mL} / \mathrm{min}, 0.3 \%$ isopropanol in Hexanes, $\lambda=254 \mathrm{~nm}): t_{\mathrm{R}}($ major $)=4.374 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=4.676 \mathrm{~min}$.
17a: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.64-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dt}, J=15.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=14.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=14.5,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.27(\mathrm{~m}, 5 \mathrm{H}), 1.26-1.15$ $(\mathrm{m}, 4 \mathrm{H}), 1.12-0.94(\mathrm{~m}, 5 \mathrm{H}), 0.92-0.80(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H}), 0.62(\mathrm{~m}, 1 \mathrm{H}), 0.57(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H}),-0.01$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 196.30,172.38,164.37,144.82,138.27,124.65,122.31,119.98,118.05,113.39$, $91.37,83.62,81.86,74.20,54.66,50.68,43.30,40.66,40.49,37.18,36.84,35.59,35.57,33.78,33.16,31.69,30.91,28.19$, $27.79,25.86,23.50,20.60,18.11,11.48,11.37,2.42,-4.51,-4.82$. HRMS (ESI) m/z calc'd for $\mathrm{C}_{44} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]+$: 773.4609; found 773.4595. $[\alpha]^{24}{ }_{\mathrm{D}}=+10.8^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$.

17b: ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.64-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dt}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=14.3,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 5 \mathrm{H}), 1.26-1.15(\mathrm{~m}$, $4 \mathrm{H}), 1.14-0.95(\mathrm{~m}, 5 \mathrm{H}), 0.92-0.80(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H}), 0.66-0.59(\mathrm{~m}, 1 \mathrm{H}), 0.57(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H}),-$ 0.01 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.29,172.37,164.35,144.82,138.29,124.66,122.31,119.96,118.07,113.39$, $91.37,83.62,81.86,74.18,54.66,50.69,43.30,40.52,40.02,37.19,36.89,35.60,35.58,33.80,33.77,31.72,30.91,28.22$, $27.79,25.86,23.50,20.60,18.11,11.47,11.37,2.41,-4.51,-4.82 .[\alpha]^{24}{ }_{\mathrm{D}}=-14.0^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Scheme S5. Crystal Structure of $\operatorname{Pd}(\mathbf{O A c})_{2} /$ ArSOX L9 complex

co-crystallized with 1 equiv. dichloromethane

Crystal data and structure refinement for dd011s .

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
dd011s
C31 H32 Cl2 F3 N O9 Pd S
828.93

100(2) K
$0.71073 \approx$
Monoclinic
P2 ${ }_{1}$
$a=11.5175(6) \approx \quad a=90 \infty$.
$\mathrm{b}=12.9029(7) \approx$
$\mathrm{c}=12.3215(6) \approx$
1686.34(15) \approx^{3}

2
$1.633 \mathrm{Mg} / \mathrm{m}^{3}$

Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242 \infty$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
$0.841 \mathrm{~mm}^{-1}$
840
$0.175 \times 0.165 \times 0.072 \mathrm{~mm}^{3}$
2.591 to 28.302∞.
$-15<=\mathrm{h}<=15,-17<=\mathrm{k}<=17,-16<=1<=14$
21000
$8294[\mathrm{R}(\mathrm{int})=0.0265]$
99.8 \%

Semi-empirical from equivalents
0.7457 and 0.6863

Full-matrix least-squares on F^{2}
8294 / 1 / 440
1.091
$\mathrm{R} 1=0.0240, \mathrm{wR} 2=0.0498$
$\mathrm{R} 1=0.0262, \mathrm{wR} 2=0.0508$
-0.029(8)
0.0123(6)
0.497 and -0.463 е. $\approx=3$

Scheme S6. Crystal Structure of the Alkylation Product with Nitroketone (3p)

Crystal data and structure refinement for dd48fsa (3p).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.679 \infty$
Absorption correction
Max. and min. transmission
dd48fsa
C20 H19 N O4
337.36

110(2) K
$1.54178 \approx$
Orthorhombic
$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
$a=7.2794(2) \approx \quad a=90 \infty$.
$\mathrm{b}=7.9760(2) \approx \quad \mathrm{b}=90 \infty$.
$\mathrm{c}=28.9295(8) \approx \quad \mathrm{g}=90 \infty$.
$1679.66(8) \approx 3$
4
$1.334 \mathrm{Mg} / \mathrm{m}^{3}$
$0.762 \mathrm{~mm}^{-1}$
712
$0.574 \times 0.185 \times 0.157 \mathrm{~mm}^{3}$
3.055 to 68.249∞.
$-8<=\mathrm{h}<=8,-8<=\mathrm{k}<=9,-32<=1<=34$
15671
$3063[\mathrm{R}(\mathrm{int})=0.0410]$
99.9 \%

Integration
1.0000 and 0.7163

Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

Full-matrix least-squares on F^{2}
3063 / 0 / 227
1.071
$\mathrm{R} 1=0.0293, \mathrm{wR} 2=0.0695$
$\mathrm{R} 1=0.0316, \mathrm{wR} 2=0.0709$
-0.01(9)
0.0060(5)
0.221 and -0.171 e. $\approx \sim^{-3}$

Scheme S7. Crystal Structure of the Alkylation Product with $\boldsymbol{\beta}$-ketoester (9e)

Crystal data and structure refinement for dd95is (9e).

Identification code	dd95is	
Empirical formula	C 26 H 29 N O 7 S	
Formula weight	499.56	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$0.71073 \approx$	
Crystal system	Triclinic	$\mathrm{a}=74.9956(16) \infty$.
Space group	P 1	$\mathrm{~b}=81.3175(16) \infty$.
Unit cell dimensions	$\mathrm{a}=8.1073(3) \approx$	
	$\mathrm{b}=12.6392(5) \approx$	
	$\mathrm{c}=13.2065(6) \approx$	
Volume	$1236.04(9) \approx 3$	
Z	2	
Density (calculated)	$1.342 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.177 \mathrm{~mm}^{-1}$	
F(000)	528	
Crystal size	$0.388 \times 0.275 \times 0.152 \mathrm{~mm}^{3}$	
Theta range for data collection	2.620 to 28.350∞.	

Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242 \infty$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
$-10<=\mathrm{h}<=10,-16<=\mathrm{k}<=16,-17<=1<=17$
102095
$12247[\mathrm{R}(\mathrm{int})=0.0717]$
99.9 \%

Semi-empirical from equivalents
0.7457 and 0.6562

Full-matrix least-squares on F^{2}
12247 / 145 / 675
1.038
$R 1=0.0376, w R 2=0.0824$
$R 1=0.0479, w R 2=0.0874$
-0.01(3)
0.0170(14)
0.383 and -0.304 е.$\approx \sim^{-3}$

Scheme S8. Crystal Structure of the Alkylation Product with $\boldsymbol{\beta}$-ketoesters (13b)

Crystal data and structure refinement for dd27esa (13b).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
dd27esa
C36 H42 O7
586.69

100(2) K
$1.54178 \approx$
Orthorhombic
P2 ${ }_{1} 2_{1} 2_{1}$
$\mathrm{a}=12.9410(3) \approx$
$a=90 \infty$.
$\mathrm{b}=13.1806(3) \approx$
$b=90 \infty$.
$\mathrm{g}=90 \infty$.
$\mathrm{c}=18.8817(4) \approx$

4
$1.210 \mathrm{Mg} / \mathrm{m}^{3}$
$0.670 \mathrm{~mm}^{-1}$
1256
$0.354 \times 0.163 \times 0.116 \mathrm{~mm}^{3}$
4.090 to 68.447∞.
$-15<=\mathrm{h}<=15,-15<=\mathrm{k}<=15,-22<=1<=22$
26546

Independent reflections
Completeness to theta $=67.679 \infty$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
$5895[\mathrm{R}(\mathrm{int})=0.0365]$
100.0 \%

Integration
0.9388 and 0.8218

Full-matrix least-squares on F^{2}
5895 / 31/397
1.165
$\mathrm{R} 1=0.0391, \mathrm{wR} 2=0.0943$
$\mathrm{R} 1=0.0427, w R 2=0.0971$
0.08(8)
n/a
0.293 and -0.328 e. $\approx \approx^{-3}$

Scheme S9. Ligand Synthesis

1. Amino alcohol synthesis

Chiral amino alcohol was synthesized based on the procedure by Sharpless, ${ }^{9}$ except step iv reduction ${ }^{10}$. The asymmetric dihydroxylation was based on the procedure by Sharpless. ${ }^{11}$ Compound S1a is commercial available. Compound S1b, ${ }^{12}$ S1c, ${ }^{10} \mathbf{S} 1 \mathbf{d}^{\mathbf{1 0}}$ was synthesized and matched with previous reports.

$$
\begin{aligned}
& \text { (S)-2-amino-2-(4-(tert-butoxy)phenyl)ethan-1-ol (S1e): White solid. }{ }^{1} \mathrm{H} \text { NMR (500 } \mathrm{MHz}, \\
& \text { Chloroform- } d) \delta 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{dd}, J=8.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 3.72(\mathrm{dd}, J=10.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=10.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{br}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \\
& \left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.70,137.53,126.83,124.22,78.47,68.09,56.81,28.85 . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} \\
& \text { calc'd for } \left.\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]+: 210.1494 ; \text { found } 210.1498 .[\alpha]^{22}{ }_{\mathrm{D}}=32.8^{\circ}(\mathrm{c}=0.92, \mathrm{CHCl})_{3}\right) .
\end{aligned}
$$

2. Oxazoline synthesis

Amino alcohol and benzoyl chloride was coupled to form the oxazoline according to published procedure. ${ }^{13}$ Compound S2a was synthesized and matched with previous report. ${ }^{14}$

S2b
(S)-2-(2-bromophenyl)-4-(4-(trifluoromethyl)phenyl)-4,5-dihydrooxazole (S2b): colorless oil. ${ }^{1}$ H NMR (500 MHz , Chloroform- d) $\delta 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.52(\mathrm{dd}, J=10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.77,146.05,134.02,132.02,131.48,129.96(\mathrm{q}, ~ J=32.05 \mathrm{~Hz}), 129.31$, $127.23,127.13,125.75(\mathrm{q}, J=3.9 \mathrm{~Hz}), 124.13(\mathrm{q}, J=272.37 \mathrm{~Hz}), 121.98,74.58,70.06 .{ }^{19} \mathrm{~F}$ NMR (470 MHz, CDCl_{3}) $\delta-62.86$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ONOF}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]+: 370.0054$; found 370.0059. $[\alpha]^{22}{ }_{\mathrm{D}}$ $=-16.6^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

(S)-2-(2-bromophenyl)-4-(4-(tert-butyl)phenyl)-4,5-dihydrooxazole (S2c): colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (d, $J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.42(\mathrm{dd}, J=10.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$
$(\mathrm{dd}, J=10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.04,150.59,139.04$, $133.87,131.75,131.55,129.83,127.12,126.49,125.68,121.95,74.98,70.16,34.55,31.37$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNO}[\mathrm{M}]+: 358.0807$; found 358.0810. $[\alpha]^{22}{ }_{\mathrm{D}}=-39.6^{\circ}\left(\mathrm{c}=1.18, \mathrm{CHCl}_{3}\right)$.

$=-41.9^{\circ}\left(\mathrm{c}=1.16, \mathrm{CHCl}_{3}\right)$.

(S)-2-(2-bromophenyl)-4-(4-(tert-butoxy)phenyl)-4,5-dihydrooxazole (S2e): white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.77$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (t, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.40$ (dd, $J=10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=10.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.12,154.88,136.87,133.88,131.79,131.54,129.75,127.36$, 127.14, 124.46, 121.93, 78.54, 75.11, 70.08, 28.85. HRMS (ESI) m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNO}_{2}$ $[\mathrm{M}+\mathrm{H}]+: 374.0756$; found 374.0744. $[\alpha]^{22}{ }_{\mathrm{D}}=-41.4^{\mathrm{o}}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.

(S)-2-(2-bromophenyl)-4-(3,4,5-trimethoxyphenyl)-4,5-dihydrooxazole (S2f): white solid upon refrigeration. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform-d) $\delta 7.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (d, $J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 2 \mathrm{H}), 5.38(\mathrm{dd}, J=10.2$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.23,153.51,137.87,137.38,133.89,131.87,131.41,129.69$, 127.23, 121.89, 103.65, 74.95, 70.63, 60.85, 56.18. HRMS (ESI) m/z calc'd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{Br}$ $[\mathrm{M}+\mathrm{H}]+: 392.0497$; found 392.0504. $[\alpha]^{26}{ }_{\mathrm{D}}=-34.4^{\circ}\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right)$.
(S)-2-(2-bromophenyl)-4-(4-methoxyphenyl)-4,5-dihydrooxazole (S2d): colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (t, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{dd}, J=10.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ $(\mathrm{dd}, J=10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 163.97, 159.13, 134.27, 133.88, 131.80, 131.53, 129.80, 127.95, 127.16, 121.95, 114.15, 75.12, 69.97, 55.32. HRMS (ESI) m/z calc'd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrO}_{2}[\mathrm{M}]+: 332.0286$; found 332.0277. [$\left.\alpha\right]^{22}{ }_{\mathrm{D}}$ -

(S)-2-(2-bromo-4-(trifluoromethyl)phenyl)-4-(3,4,5-trimethoxyphenyl)-4,5dihydrooxazole (S2g): white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.98$ - 7.93 (m, $1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 2 \mathrm{H}), 5.41(\mathrm{dd}, J=10.3,8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=10.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.10,153.59,137.54,137.38,133.73(\mathrm{q}, J=33.3$ $\mathrm{Hz}), 133.08,131.91,130.94(\mathrm{q}, J=3.9 \mathrm{~Hz}), 124.12(\mathrm{q}, J=3.6 \mathrm{~Hz}), 122.73(\mathrm{q}, J=273.67$ Hz), 122.37, 103.63, 75.14, 70.74, 60.87, 56.19. ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.49$. HRMS (EI) m/z calc'd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrF}_{3} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]+: 460.0371$; found 460.0376. $[\alpha]^{22}{ }_{\mathrm{D}}=-30.86^{\circ}\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right)$.

(R)-2-(2-bromo-4-(trifluoromethyl)phenyl)-4-(3,4,5-trimethoxyphenyl)-4,5dihydrooxazole (ent-S2g): white solid. $[\alpha]^{22}{ }_{\mathrm{D}}=31.74^{\circ}\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right)$.

3. Sulfinate synthesis

The synthesis of chiral sulfinate was based on previous reports. ${ }^{15}$
($1 R, 2 S, 5 R$)-2-isopropyl-5-methylcyclohexyl (S)-4-bromobenzenesulfinate (S3a): To a mixture

S3a of 4-bromosulfonyl chloride ($5 \mathrm{~g}, 19.5 \mathrm{mmol}, 1.01$ equiv.) and (-)-menthol ($3.02 \mathrm{~g}, 19.3 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added $\mathrm{Et}_{3} \mathrm{~N}(26.9 \mathrm{~mL}, 193 \mathrm{mmol}, 10$ equiv.), and the reaction was stirred 15 minutes at $0^{\circ} \mathrm{C}$. A solution of triphenylphosphine ($5.06 \mathrm{~g}, 19.3 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$, and the reaction was stirred 3 hours at $0^{\circ} \mathrm{C}$. The mixture was washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 30 \mathrm{~mL})$ and brine $(1 \times 30 \mathrm{~mL})$, the organic layer was dried
over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography ($10 \% \mathrm{EtOAc}$ in hexanes) to afford the product as a mixture of diastereomers. The diastereomeric mixture was dissolved in a minimal amount of acetone and one drop of HCl (conc.) was added. Recrystallization at $\mathbf{0}^{\circ} \mathbf{C}$ afforded the product as a single diastereomer ($2.3 \mathrm{~g}, 6.4 \mathrm{mmol}, 33 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{td}, J=10.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{qd}, J=7.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.58(\mathrm{~m}, 2 \mathrm{H})$, $1.56-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~m}, 1 \mathrm{H}), 1.12-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.81(\mathrm{~m}, 4 \mathrm{H})$, $0.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.3,132.3,126.8,126.8,80.8,48.0,43.0,34.1,31.9,25.4,23.3$, 22.2, 21.0, 15.6; HRMS (ESI) m/z calc'd for $\mathrm{C}_{16} \mathrm{H}_{124} \mathrm{O}_{2} \mathrm{SBr}[\mathrm{M}+\mathrm{H}]: 359.0680$; found 359.0685. $[\alpha]^{23}{ }_{\mathrm{D}}=-151.98(\mathrm{c}=0.76$, CHCl_{3}).

Isopropyl 2-cinnamyl-5-isopropoxy-3-oxo-2,3-dihydrofuran-2-carboxylate (S3b): To a round bottom flask with a reflux condenser was added sulfinate $\mathbf{S 3 a}(1.2 \mathrm{~g}, 3.34 \mathrm{mmol}, 1$ equiv.), 9 -anthraceneboronic acid ($1.11 \mathrm{~g}, 5.01 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($366 \mathrm{mg}, 0.5$ mmol, 0.15 equiv.), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.42 \mathrm{~g}, 13.36 \mathrm{mmol}, 4$ equiv.). The atmosphere in the flask was replaced with argon, and a mixture of degassed 1:1:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$: toluene (45 mL) was added to the flask. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 18 hours. After cooling to room temperature, the mixture was partitioned with EtOAc (100 mL) and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 100 \mathrm{~mL}$), and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude material was purified by silica gel chromatography $(5 \% \rightarrow 10 \%$ EtOAc in hexanes) to afford the product as an off-white solid ($1.2 \mathrm{~g}, 79 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 4 \mathrm{H})$, $7.48(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{td}, J=10.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 1.82-$ $1.69(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{qd}, J=13.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-0.88(\mathrm{~m}$, $4 \mathrm{H}), 0.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.5,143.1,135.4,132.1,131.4,130.1,128.6,127.4,126.5$, $125.9,125.5,125.36,80.9,48.1,43.2,34.2,32.0,25.4,23.3,22.3,21.1,15.7$; HRMS (ESI) m/z calc'd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$: 457.2201; found 457.2197. $[\alpha]^{23}{ }_{\mathrm{D}}=-103.60\left(\mathrm{c}=0.275, \mathrm{CHCl}_{3}\right)$.

4. Ligand synthesis

i. For ligands without CF_{3} group: Oxazoline (synthesized from Scheme S9.2) was coupled with sulfinate (commercial available or synthesized from Scheme S9.3) using previously reported procedure. ${ }^{14}$
ii. For ligands with CF_{3} group ($\mathbf{L 4}, \mathbf{L} 9$, ent-L9): To a flame-dried flask under nitrogen was added the oxazoline (1 equiv.), THF (0.1 M), and TMEDA (1.0 equiv.). The solution was cooled to $-94^{\circ} \mathrm{C}$ (acetone/liquid N_{2} bath) with stirring, and nbutyllithium (1.6 M in hexane, 1.0 equiv.) was added slowly via syringe dropwise. The reaction was stirred at $-94^{\circ} \mathrm{C}$ for 5 minutes. (NOTE: maintaining the temperature at $-94^{\circ} \mathrm{C}$ was critical for this reaction. It was found to be effective by keeping the acetone bath frozen by liquid N_{2}). The reaction was warmed to $-78^{\circ} \mathrm{C}$ by switching to acetone/dry ice bath, upon which
the sulfinate (3.0 equiv.) was added slowly as a solution in THF (0.5 M) dropwise via syringe. The reaction was stirred at $78^{\circ} \mathrm{C}$ for 30 minutes, then $0^{\circ} \mathrm{C}$ for 1 hour, and room temperature for 2 hours. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) solution and diluted with EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc two times. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude residue was purified via column chromatography (acetone/hexane) to afford the desired product.
Ligand L1, L3 was synthesized and matched with previous report. ${ }^{14}$

(S)-2-(2-((S)-(4-(tert-butyl)phenyl)sulfinyl)phenyl)-4-phenyl-4,5-dihydrooxazole (L2): white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.49-8.45(\mathrm{~m}, 1 \mathrm{H}), 8.01$ (dd, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.79 (t, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.19(\mathrm{~m}$, $2 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{dd}, J=10.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.72,153.78,146.67,143.28,141.52$, $132.11,130.23,129.94,128.59,127.59,126.83,126.80,125.79,125.29,124.89,74.40,70.72,34.80$, 31.17. HRMS (EI) m/z calc'd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$: 404.1684; found 404.1690. $[\alpha]^{22}{ }_{\mathrm{D}}=-166.7^{\circ}\left(\mathrm{c}=0.57, \mathrm{CHCl}_{3}\right)$.

(S)-2-(2-((S)-p-tolylsulfinyl)phenyl)-4-(4-(trifluoromethyl)phenyl)-4,5-dihydrooxazole (L4): white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.47$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{dd}, J=10.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ $(\mathrm{dd}, J=10.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.18,146.49,145.50,145.49,143.43,140.95,132.36,130.34,130.08,129.83$ ($q, J=32.4 \mathrm{~Hz}$), $127.08,126.95,125.63,125.48(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 124.49,124.04(\mathrm{q}, J=272.46 \mathrm{~Hz}), 74.04,70.24,21.23 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-62.52$. HRMS (EI) m/z calc'd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{SF}_{3}[\mathrm{M}+\mathrm{H}]+: 430.1089$; found 430.1080. $[\alpha]_{\mathrm{D}}^{22}=-116.8^{\circ}(\mathrm{c}=0.64$, $\left.\mathrm{CHCl}_{3}\right)$.

(S)-4-(4-(tert-butyl)phenyl)-2-(2-((S)-p-tolylsulfinyl)phenyl)-4,5-dihydrooxazole (L5): white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.44$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.97(\mathrm{~m}, 4 \mathrm{H}), 5.39(\mathrm{dd}, J=10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=10.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.52,150.52,146.81$, $143.50,140.60$, $138.49,132.07,130.21,129.98$, 129.42, 126.90, 126.57, 125.44, 125.15, 124.91, 74.32, 70.37, 34.53, 31.38, 21.37. HRMS (EI) m / z calc'd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+: 418.1841$; found 418.1836. [$\left.\alpha\right]_{\mathrm{D}}^{22}$ $=-171.4^{\circ}\left(\mathrm{c}=1.34, \mathrm{CHCl}_{3}\right)$.

(S)-4-(4-methoxyphenyl)-2-(2-((S)-p-tolylsulfinyl)phenyl)-4,5-dihydrooxazole (L6): white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.93$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.78$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{dd}, J=10.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (dd, $J=10.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 161.46,159.04,146.75,143.51,140.70,133.70,132.08,130.23,129.98,129.42$, 127.97, 126.86, 125.19, 124.89, 113.90, 74.46, 70.20, 55.31, 21.34. HRMS (EI) m/z calc'd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$: 392.1320; found 392.1324. $[\alpha]^{22}{ }_{D}=-191.6^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

(S)-4-(4-(tert-butoxy)phenyl)-2-(2-((S)-p-tolylsulfinyl)phenyl)-4,5-dihydrooxazole (L7): white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.94-6.85(\mathrm{~m}, 4 \mathrm{H}), 5.38(\mathrm{dd}, J=10.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.63,154.84$, 146.76, 143.51, 140.78, 136.27, 132.13, 130.24, 129.96, 129.44, 127.34, 126.84, 125.20, 124.92, 124.15, 78.54, 74.48, 70.27, 28.86, 21.32. HRMS (ESI) m/z calc'd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+: 434.1790$; found 434.1783. $[\alpha]^{23}{ }_{D}=-219.1^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.

(S)-2-(2-((S)-p-tolylsulfinyl)phenyl)-4-(3,4,5-trimethoxyphenyl)-4,5-dihydrooxazole (L8): white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 2 \mathrm{H}), 5.34(\mathrm{dd}, J=10.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=10.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.73$, $153.38,147.24,143.46,140.81,137.42,137.12,132.22,130.25,129.96,129.31,126.93$, $125.15,124.75,103.79,74.35,71.04,60.86,55.98,21.26$; HRMS (ESI) m / z calc'd for
$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+: 452.1532$; found 452.1532. $[\alpha]^{22}{ }_{\mathrm{D}}=-111.9^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.

(S)-2-(2-((S)-p-tolylsulfinyl)-4-(trifluoromethyl)phenyl)-4-(3,4,5-trimethoxyphenyl)-4,5-dihydrooxazole (L9): white foam. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.76$ (s, 1H), $8.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.27(\mathrm{~s}, 2 \mathrm{H}), 5.38(\mathrm{dd}, J=10.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=10.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ $(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $160.71,153.44,149.18,142.67,141.33,137.58,136.60,134.12(\mathrm{q}, J=33.5 \mathrm{~Hz}), 130.56$, $129.44,127.75,127.10,127.06(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.36(\mathrm{q}, J=273.67 \mathrm{~Hz}), 122.42(\mathrm{q}, J=$ 3.8 Hz), 103.84, 74.56, 71.27, 60.87, 55.97, 21.27. ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.25 . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+: 520.1406$; found 520.1414. $[\alpha]^{22}{ }_{\mathrm{D}}=-68.1^{\circ}\left(\mathrm{c}=0.71, \mathrm{CHCl}_{3}\right)$.

(R)-2-(2-((R)-p-tolylsulfinyl)-4-(trifluoromethyl)phenyl)-4-(3,4,5-trimethoxyphenyl)-4,5-dihydrooxazole (ent-L9): white foam. $[\alpha]^{22}{ }_{D}=68.7^{\circ}(\mathrm{c}=1.31$, CHCl_{3}).
(S)-2-(2-((S)-(4-(anthracen-9-yl)phenyl)sulfinyl)phenyl)-4-(3,4,5-

$\left.0.2, \mathrm{CHCl}_{3}\right)$.
trimethoxyphenyl)-4,5-dihydrooxazole (L10): white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.55-8.46(\mathrm{~m}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.85(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s} 2 \mathrm{H}), 5.46(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.31(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4$, 153.7 , 147.8, 146.0, 141.6, 137.6, 137.1, 135.4, 132.8, 131.8, 131.4, 130.7, 130.1, 130.0, 128.6, 127.3, 126.7, 126.4, 125.8, 125.4, 125.3, 125.2, 103.9, 74.8, 71.2, 60.9, 56.3; HRMS (ESI) m / z calc'd for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{~S}[M+\mathrm{H}]: 614.2015$; found 614.2010. $[\alpha]^{21}{ }_{\mathrm{D}}=-229.29(\mathrm{c}=$

Scheme S10. Substrate Synthesis: Allylarenes.

i. Allylarene synthesis

2a

2e

2i

General procedure for Stille coupling (S5): To a flamed-dried RBF was added bromoarene (1 equiv), lithium chloride (5 equiv), dry THF (0.1 M) and finally allyltributylstannane (1.1 equiv). The solution was stirred and degassed under dry argon for 15 mins. Then, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.1$ equiv) was added as a solid and the reaction flask was fitted with an oven-dried condenser. The reaction was heated in $80^{\circ} \mathrm{C}$ oil bath for 22 hours under argon. After cooled down to RT, the reaction was diluted with water, which was then partition into a separatory funnel. The aqueous layer was extracted with EtOAc 3 times. The organic layers were combined and dried over anhydrous MgSO_{4}. The solid was filtered off and the solvent was removed under reduced pressure. The crude was purified via silica column chromatography.

4-allyltoluene (2a), 4-allylanisole (2b), 4-allylbromobenzene ($\mathbf{2 c}$), safrole ($\mathbf{8 c}$) are commercially available. Substrate $\mathbf{2 d}$) ${ }^{16}$ $\mathbf{2 e},{ }^{17} \mathbf{2 f},{ }^{18} \mathbf{2 g},{ }^{1} \mathbf{2 h},{ }^{19} \mathbf{2 i},{ }^{20} \mathbf{2 k}{ }^{1}$ has been reported in literature and synthesized accordingly or based on general procedure (S5).

8

6-allyl-1-methyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (8b): Yellowish solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (ddt, $J=$ $16.9,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 5.12-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.40,136.98,136.64,134.96,129.16,124.47,120.67,116.21,112.86$, 67.39, 39.32, 31.53. HRMS (ESI) m/z calc'd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]+:$ 204.1025; found 204.1028.

Tert-butyl 6-allyl-3,4-dihydroquinoline-1(2H)-carboxylate (8d): Colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 5.95$ (ddt, J $=16.8,10.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.98,137.61$, 136.70, 134.83, 129.77, 128.49, 125.93, 124.11, 115.57, 80.61, 44.63, 39.59, 28.42, 27.48, 23.59. HRMS (ESI) m/z calc'd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]+: ~ 296.1626$; found 296.1632 .

4-((4-allylphenyl)sulfonyl)morpholine (8e): White solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) δ 7.68 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.95$ (ddt, $J=16.9,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.09$ $(\mathrm{m}, 2 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.48(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 145.90,135.75,132.79,129.30,128.06,117.21,66.12,46.00,39.96$. HRMS (ESI) m/z calc'd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+:$: 268.1007; found 268.1001.

3-allylphenyl diethyl phosphate (8f): To a flame-dried RBF under argon was added 3-allylphenol ($350 \mathrm{mg}, 2.5 \mathrm{mmol}, 1$ equiv.), anhydrous THF (8 mL), and DABCO ($420 \mathrm{mg}, 3.75 \mathrm{mmol}, 1.5$ equiv.) at room temperature. To this mixture was added diethylchlorophosphate ($540 \mathrm{mg}, 3.75$ mmol, 1.5 equiv.) dissolved in THF (2 mL) dropwise via syringe. The reaction was stirred at room temperature overnight. Afterward, the reaction was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{HCl}(5 \%$ aq.), NaHCO_{3} (sat. aq.), and brine. The organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was purified by silica gel chromatography ($20 \% \rightarrow 30 \% \rightarrow 50 \% \mathrm{EtOAc}$ in hexanes) to afford the product as a clear oil $\left(450 \mathrm{mg}, 67 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.17(\mathrm{~m}, 4 \mathrm{H}), 3.38(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.9\left(\mathrm{~d}, J_{P}=7.5 \mathrm{~Hz}\right), 142.3,136.8,129.7,125.4,120.3\left(\mathrm{~d}, J_{P}=5.0 \mathrm{~Hz}\right) 117.7\left(\mathrm{~d}, J_{P}=\right.$ $5.0 \mathrm{~Hz}), 116.5,64.7\left(\mathrm{~d}, J_{P}=6.3 \mathrm{~Hz}\right), 40.0,16.2\left(\mathrm{~d}, J_{P}=6.3 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.2 ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]$: 271.1099; found 271.1105.

Scheme S11. Substrate Synthesis: Nucleophiles.

i. 2-Nitrotetralone synthesis

General procedure for the synthesis of 2-nitroketone nucleophiles: the silyl enol ether was synthesized using a previous procedure ${ }^{21}$; the silyl enol ether was purified via silica gel column chromatography (NOTE: fast elution to minimize product decomposition on silica). The 2-nitroketone nucleophile was synthesized via the nitration of silyl enol ether based on a previous method ${ }^{22}$ (NOTE: the crude material was purified via recrystallization from $\mathrm{Et}_{2} \mathrm{O} /$ Hexane or $\mathrm{DCM} / \mathrm{Hexane}$).

5-methoxy-2-nitro-3,4-dihydronaphthalen-1(2H)-one (11): White solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (dd, $J=12.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{dt}, J=16.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.65$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.68,156.66,131.71,131.36,128.02,119.66,115.58$, 89.56, 55.82, 27.44, 20.67. HRMS (ESI) m / z calc'd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]+: 222.0766$; found 222.0762.

6-bromo-2-nitro-3,4-dihydronaphthalen-1(2H)-one (1m): White solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 5.43$ (dd, $J=12.1$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dq}, J=13.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 185.48,144.14,131.91,131.23,130.59,130.01,129.28,89.16,28.02,26.32$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{Na}]+: 291.9585$; found 291.9580 .

6-nitro-5-oxo-5,6,7,8-tetrahydronaphthalen-2-yl pivalate (1n): White solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.44(\mathrm{dd}, J=12.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dq}, J=13.4,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.37 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.21,176.35,156.20,144.50,130.45,127.94$, $121.65,121.31,89.38,39.31,28.16,27.03,26.69$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]+$:
292.1174; found 292.1175 .

6-(benzyloxy)-2-nitro-3,4-dihydronaphthalen-1(2H)-one (10): Pink solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H})$, $5.40(\mathrm{dd}, J=12.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.13-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dq}, J=13.3$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.81,163.96,145.27,135.70,131.09,128.78,128.43$, 127.46, 123.98, 114.91, 113.74, 89.55, 70.34, 28.32, 26.96. HRMS (ESI) m/z calc'd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]+: 298.1069$; found 298.1066.

1p
7-methoxy-2-nitro-3,4-dihydronaphthalen-1(2H)-one (1p): White solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.51(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.5,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.43(\mathrm{dd}, J=12.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dq}, J=13.2$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.40,158.89,135.38,131.21,130.17,123.58,109.91$, 89.75, 55.63, 28.59, 25.93. HRMS (ESI) m/z calc'd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]+: 220.0610$; found 220.0614 .

The synthesis of benzofuranone-type β-ketoester nucleophile $\mathbf{6}$ was based on a previous procedure. ${ }^{23}$

iii. β-ketoester 7a synthesis

To a flame-dried round bottom flask equipped with a reflux condenser was added dimethyl 3-oxoglutarate (1 equiv.), isopropanol (2.5 equiv.), toluene (0.8 M) and DMAP (0.1 equiv.). The mixture was refluxed for 24 hours. Afterward, the mixture was cooled and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography ($5 \% \mathrm{EtOAc}$ in hexanes) to afford the isopropyl ester product.

To a flame-dried round bottom flask was added the isopropyl ester substrate (1 equiv.) and $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{M}) . \mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv) was added, and the reaction was cooled to $0^{\circ} \mathrm{C} .4$-Acetamidobenzenesulfonyl azide (1.0 equiv.) was added, and the reaction was warmed to room temperature and stirred 4 hours. Afterward, the suspension was filtered through celite and rinsed with EtOAc. The mixture was concentrated under reduced pressure and purified by silica gel column chromatography (20% EtOAc in hexanes) to afford the diazo ester which was taken on to the next step.

To a flame-dried RBF in a glove box was added a catalytic amount of $\mathrm{Rh}_{2} \mathrm{OAc}_{4}$. The flask was sealed with a septum and taken out of the glove box, after which an argon balloon was added. Benzene (0.1 M) was added, and the mixture was heated to $50^{\circ} \mathrm{C}$. A 1 M solution of the ketone substrate in benzene was added under slow addition conditions, and the reaction was stirred for 1 hour after completion of addition. Evolution of nitrogen gas was observed. The reaction was subsequently rapidly cooled in an ice bath, and filtered through celite (rinsing with EtOAc) to remove the majority of the catalyst. The crude mixture was concentrated under reduced pressure and was purified by silica gel column chromatography $(20 \% \rightarrow 30 \%$ $\rightarrow 50 \%$ EtOAc in hexanes) to afford the β-ketoester product. NOTE: The product was moderately unstable to silica gel, so the column purification was performed in a rapid manner. Additionally the β-ketoester product was observed to decompose after prolonged exposure to the atmosphere, however it was stable when stored either under vacuum, or in a glovebox freezer under argon atmosphere.

[^0]iv. β-ketoester 7b, 7c synthesis

To a flame-dried round bottom flask was added methyl 3-oxopentanoate (1 equiv.) and $\mathrm{CH}_{3} \mathrm{CN}$ (0.4 M). 4Acetamidobenzenesulfonyl azide (1.1 equiv.) was added, and the reaction was cooled to $0^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}$ (1.2 equiv) was added, and the reaction was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes before warming to room temperature. The reaction was stirred overnight. Afterward, the suspension was filtered through celite and rinsed with EtOAc. The mixture was concentrated under reduced pressure and purified by silica gel column chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford the diazo ester which was taken on to the next step.

To a flame-dried RBF under argon was added the diazo ester (1 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$, and the reaction was cooled to $-78^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}$ (1.1 equiv.) was added, followed by TiCl_{4} dropwise (1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.1$ equiv), and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for two hours. A solution of the aldehyde (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{M})$ was added dropwise, and the reaction was stirred for 1 hour at $-78^{\circ} \mathrm{C}$. After complete conversion of the starting material was observed by TLC, $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq.) was added dropwise at $-78^{\circ} \mathrm{C}$, and the reaction was allowed to warm to room temperature. The quenched reaction mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$ and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography $(20 \% \rightarrow 30 \%$ EtOAc in hexanes) to afford the alcohol product that was taken on to the next step.

To a flame-dried RBF equipped with a reflux condenser was added the alcohol substrate (1 equiv.) and $\mathrm{CH}_{3} \mathrm{CN}(0.1$ M) under argon. Freshly prepared IBX (1.5 equiv.) was added, and the reaction was stirred for 2 hours at $80^{\circ} \mathrm{C}$. After the flask was cooled, cold $\mathrm{Et}_{2} \mathrm{O}$ was added, and the suspension was filtered through celite and rinsed with cold $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated under reduced pressure, and the crude mixture was purified by silica gel column chromatography $(20 \% \rightarrow 30 \%$ EtOAc in hexanes) to afford the ketone product that was taken on to the next step.

To a flame-dried RBF in a glove box was added a catalytic amount of $\mathrm{Rh}_{2} \mathrm{OAc}_{4}$. The flask was sealed with a septum and taken out of the glove box, after which an argon balloon was added. Toluene (0.1 M) was added, and the mixture was heated to $80^{\circ} \mathrm{C}$. A 1 M solution of the ketone substrate in toluene was added, and the reaction was stirred for ten minutes.

Evolution of nitrogen gas was observed. The reaction was subsequently rapidly cooled in an ice bath, and filtered through celite (rinsing with EtOAc) to remove the majority of the catalyst. The crude mixture was concentrated under reduced pressure and was purified by silica gel column chromatography ($20 \% \mathrm{EtOAc}$ in hexanes) to afford the β-ketoester product. NOTE: The products were moderately unstable to silica gel, so the column purification was performed in a rapid manner. Additionally the β-ketoester products were observed to decompose after prolonged exposure to the atmosphere, however they were stable when stored either under vacuum, or in a glovebox freezer under argon atmosphere.

7b

Methyl 4-methyl-3-oxo-5-(thiophen-2-yl)-2,3-dihydrofuran-2-carboxylate (7b): product exists in solution as an enol:keto-tautomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ enol-tautomer: δ 7.95-7.50 (br. s, 1H), $7.44(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$; keto-tautomer: $\delta 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ enoltautomer: $\delta 132.45,132.03,130.90,128.38,127.75,126.55,125.56,124.01,108.90,51.42,7.09$; ketotautomer: $\delta 195.34,175.16,164.26,147.99,131.60,126.83,126.12,108.00,81.13,53.02,6.64$.
HRMS (EI) m/z calc'd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$: 239.0378; found 239.0382.

Methyl 5'-ethyl-3-methyl-4-oxo-4,5-dihydro-[2,2'-bifuran]-5-carboxylate (7c): product exists in solution as an approx. 10:1 enol:keto-tautomeric mixture: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ enol-tautomer $\delta 8.11-7.36$ (br. s, 1H), $6.65(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, keto-tautomer $\delta 7.09(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (enol:keto-tautomeric mixture) $\delta 164.6,163.7,159.3,144.3,123.9,117.9,110.2,108.4,107.8,106.4,81.1,53.3,51.6,21.9,21.6$, 12.1, 11.9, 6.9, 6.3; HRMS (ESI) m/z calc'd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]: 251.0919$; found 251.0921 .

β-ketoester 7e was synthesized from the trans-esterification reaction ${ }^{24}$ of the methyl ester ${ }^{25}$.

7e

Benzyl 1-oxo-4-phenyl-2,3-dihydro-1 \boldsymbol{H}-indene-2-carboxylate (7e): product exists in solution as an enol:keto-tautomeric mixture: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform-d) keto-tautomer: $\delta 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63(\mathrm{dd}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.29(\mathrm{~m}, 11 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63(\mathrm{dd}, J=17.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=17.4,8.2 \mathrm{~Hz}, 1 \mathrm{H})$. enol-tautomer: $\delta 7.67(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56-7.29(\mathrm{~m}, 12 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) keto-tautomer: δ $199.33,168.99,150.97,140.47,138.68,135.56,128.72,128.63,128.59,128.49,128.47,128.31,128.20$, 128.16, 127.90, 123.66, 67.39, 53.49, 30.18. enol-tautomer: $\delta 169.54,140.83,139.81,138.80,137.38,136.03,135.75$, $130.11,127.64,127.56,119.88,102.57,65.79,32.51$ (incomplete number of carbons, presumably due to overlapping). HRMS (ESI) m/z for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]$: 365.1154 .

References:

1. Howell, J. M.; Liu, W.; Young, A. J.; White, M. C., J. Am. Chem. Soc. 2014, 136, 5750.
2. Imaeda, T.; Ono, K.; Nakai, K.; Hori, Y.; Matsukawa, J.; Takagi, T.; Fujioka, Y.; Tarui, N.; Kondo, M.; Imanishi, A.; Inatomi, N.; Kajino, M.; Itoh, F.; Nishida, H., Biorg. Med. Chem. 2017, 25, 3719.
3. (a) Delgado, A.; Garcia, J. M.; Mauleon, D.; Minguillon, C.; Subirats, J. R.; Feliz, M.; Lopez, F.; Velasco, D., Can. J. Chem. 1988, 66, 517; (b) Delgado, A.; Mauleón, D.; Rosell, G.; Granados, R., Eur. J. Med. Chem. 1988, 23, 31; (c) Macchia, B.; Balsamo, A.; Breschi, M. C.; Lapucci, A.; Lucacchini, A.; Macchia, F.; Manera, C.; Martinelli, A.; Martini, C., J. Med. Chem. 1992, 35, 1009.
4. (a) Fevig, T. L.; Katzenellenbogen, J. A., J. Org. Chem. 1987, 52, 247; (b) Dionne, P.; Ngatcha, B. T.; Poirier, D., Steroids 1997, 62, 674.
5. Park, S. H.; Kang, H. J.; Ko, S.; Park, S.; Chang, S., Tetrahedron: Asymmetry 2001, 12, 2621.
6. Pattillo, C. C.; Strambeanu, II; Calleja, P.; Vermeulen, N. A.; Mizuno, T.; White, M. C., J. Am. Chem. Soc. 2016, 138, 1265-72.
7. Smith, A. B., 3rd; Freeze, B. S.; Lamarche, M. J.; Hirose, T.; Brouard, I.; Rucker, P. V.; Xian, M.; Sundermann, K. F.; Shaw, S. J.; Burlingame, M. A.; Horwitz, S. B.; Myles, D. C., Org. Lett. 2005, 7, 311.
8. Tchedam Ngatcha, B.; Luu-The, V.; Labrie, F.; Poirier, D., J. Med. Chem. 2005, 48, 5257.
9. Chang, H. T.; Sharpless, K. B., Tetrahedron Lett. 1996, 37, 3219.
10. Kawasaki, K.; Katsuki, T., Tetrahedron 1997, 53, 6337.
11. Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu, D. Q.; Zhang, X. L., J. Org. Chem. 1992, 57, 2768.
12. Pan, X. G.; Jia, L. B.; Liu, X. J.; Ma, H. K.; Yang, W. Q.; Schwarz, J. B., Tetrahedron: Asymmetry 2011, 22, 329.
13. Behenna, D. C.; Stoltz, B. M., J. Am. Chem. Soc. 2004, 126, 15044.
14. Ammann, S. E.; Liu, W.; White, M. C., Angew. Chem. Int. Ed. 2016, 55, 9571.
15. (a) Trost, B. M.; Rao, M.; Dieskau, A. P., J. Am. Chem. Soc. 2013, 135, 18697; (b) Hulce, M.; Mallomo, J. P.; Frye, L. L.; Kogan, T. P.; Posner, G. H., (S)-(+)-2-(p-Toluenesulfinyl)-2-Cyclopentenone: Precursor for Enantioselective Synthesis of 3-Substituted Cyclopentanones. In Organic Syntheses, 2003; pp 196-196.
16. Matsubara, R.; Gutierrez, A. C.; Jamison, T. F., J. Am. Chem. Soc. 2011, 133, 19020.
17. Uchiyama, M.; Furuyama, T.; Kobayashi, M.; Matsumoto, Y.; Tanaka, K., J. Am. Chem. Soc. 2006, 128, 8404.
18. Qi, X. X.; Chen, P. H.; Liu, G. S., Angew. Chem. Int. Ed. 2017, 56, 9517.
19. Black, M.; Cadogan, J. I. G.; McNab, H.; MacPherson, A. D.; Roddam, V. P.; Smith, C.; Swenson, H. R., J. Chem. Soc., Perkin Trans. 1 1997, 2483.
20. Qiu, Y. A.; Ma, D. K.; Fu, C. L.; Ma, S. M., Tetrahedron 2013, 69, 6305.
21. Fedorov, O. V.; Kosobokov, M. D.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D., J. Org. Chem. 2015, 80, 5870.
22. Rathore, R.; Kochi, J. K., J. Org. Chem. 1996, 61, 627.
23. (a) Nakajima, M.; Yamamoto, S.; Yamaguchi, Y.; Nakamura, S.; Hashimoto, S., Tetrahedron 2003, 59, 7307; (b) Zhao, L.; Huang, G. X.; Guo, B. B.; Xu, L. J.; Chen, J.; Cao, W. G.; Zhao, G.; Wu, X. Y., Org. Lett. 2014, 16, 5584. (c) Wang, H.; Wang, Y.; Zhang, C.; Jiang, Y.; Chu, M.; Li, Z.; Du, X.; Xu, D. Org. Biomol. Chem. 2017, 15, 4191.
24. Smith, A. M.; Rzepa, H. S.; White, A. J.; Billen, D.; Hii, K. K., J. Org. Chem. 2010, 75, 3085.
25. Karmaker, P. G.; Qiu, J.; Wu, D.; Reng, M.; Yang, Z.; Yin, H.; Chen, F. X., Org. Biomol. Chem. 2017, 15, 7753.

[^0]:

 Isopropyl 5-isopropoxy-4-methyl-3-oxo-2,3-dihydrofuran-2-carboxylate (7a): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.13(\mathrm{hept}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{hept}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (s, 1H), 1.45 (dd, $J=6.6,1.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.32(\mathrm{dd}, J=6.3,2.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.2,185.2$, 163.3, 82.7, 79.6, 77.6, 70.8, 22.0, 21.84, 21.82, 21.78; HRMS (ESI) m/z calc'd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$: 229.1076 ; found 229.1079 .

