Supporting Information

Conjugated Polymers Containing Sulfonic Acid Fluorene Unit for Achieving Multiple Interfacial Modifications in Fullerene-free
 Organic Solar Cells

Lili Lu, Qian Kang, Chenyi Yang, Bowei Xu*, Jianhui Hou*

Experimental Section

Device fabrication

Devices D1-D3, E1-E2, F1-F3 were fabricated taking PFS, PFSF and PFB as anode interlayers (AIL) and cathode interlayers (CIL) simultaneously.

The devices structure of D-type (ITO/interlayer/J52-2F: ITM/Interlayer/Al), E-type (ITO/interlayer/PBDTTTEFT: IEICO-4F/Interlayer/Al) and F-type (ITO/interlayer/PBDB-T: ITIC/Interlayer/Al) were fabricated according to the following conditions:

The pre-cleaned ITO-coated glass substrates were UV/ozone-treated for 20 min . PFS and PFSF were dissolved in methanol with the optimal concentration of $1.5 \mathrm{mg} / \mathrm{ml}$ and spin-coated on the ITO-electrode according to the devices A-1 mentioned above. All the photoactive materials J52-2F: ITM (D/A1:1), PBDTTTEFT: IEICO-4F (D/A 1:2) and PBDB-T: ITIC (D/A 1:1) were dissolved in CB at the polymer concentration of $10 \mathrm{mg} / \mathrm{mL}$. To dissolve the polymers fully, active layer solution PBDB-T: ITIC was stirred at $40{ }^{\circ} \mathrm{C}$, PBDTTTEFT: IEICO-4F and J52-2F: IT-M at $60{ }^{\circ} \mathrm{C}$ for 2 h at least. Before spin-coating, 1,8 -iodooctane (0.5%, v / v) was added to the active layers solution $\mathrm{J} 52-2 \mathrm{~F}$: IT-M and PBDB-T: ITIC. In addition, chloronaphthalene $(3 \%, v / v)$ was added to PBDTTTEFT: IEICO-4F. For the cathode interlayer, PFN-Br was dissolved in methanol with the concentration of $0.5 \mathrm{mg} / \mathrm{mL}$, and $0.2 \mathrm{mg} / \mathrm{ml}$ PFS, PFSF were prepared to be spin-coated (3000rpm/min, 30 s) on the
photoactive layer. At last, Al was evaporated on the substrate as cathode under high vacuum.

Characterization and Measurement.

The PCE of devices were measured under $100 \mathrm{~mW} / \mathrm{cm}^{2}$ AM1.5G light source, using an AAA solar simulator. Standard silicon reference cell was purchased from Enli Technology Co., Ltd. The effective area of the device calibrated by microscope is $3.7 \mathrm{~mm}^{2}$. The EQE spectrum was measured by a Solar Cell Spectral Response Measurement System QE-R3011 from Enli Technology Co., Ltd.

Figure S1. (a) The relationship curves of film thickness and UV-vis absorption, (b) the UV-vis absorption curve of PFS, PFSF and PFB with concentration of $0.2 \mathrm{mg} / \mathrm{mL}$ and $1.5 \mathrm{mg} / \mathrm{mL}$.

Table S1.The parameters of thickness and absorption relations.

interlayers	concentrations $(\mathrm{mg} / \mathrm{mL})$	absorption peak intensity	thickness (nm)
PFS	0.2	0.065	3
PFSF	1.5	0.150	7
	0.2	0.084	3
PFB	1.5	0.197	7
	0.2	0.067	3

Figure S2. Chemical structures of photoactive layer materials for D-type device J52-2F: IT-M, E-type device PBDTTTEFT: IEICO-4F and F-type device PBDB-T:

ITIC.

Figure S3.The J-V curves of (a)D-type devices: AIL/J52-2F:ITM/CIL, (b) E-type devices: AIL/ PBDTTTEFT: IEICO-4F /CIL and (c) F-type devices: AIL/ PBDB-T: ITIC /CIL. The corresponding EQE curves of (d) D-type devices, (e) E-type devices and (f) F-type devices.

Table S2. Photovoltaic parameters of the devices D1-D3, E1-E3 and F1-F3.

Num.	device structures	$V_{\text {oc }}$ (V)	J_{sc} $\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$J_{c a l}$ $\left(\mathrm{~mA} / \mathrm{cm}^{2}\right)$	FF	PCE
D1	PEDOT/ BHJ /PFN-Br	0.951	19.0	18.3	70.1	12.7
D2	PFS/ BHJ /PFS	0.828	17.9	17.5	63.7	9.43
D3	PFS/ BHJ /PFSF	0.917	18.1	17.7	63.2	10.4
E1	PEDOT/ BHJ /PFN-Br	0.713	23.1	22.2	64.0	10.6
E2	PFS/ BHJ /PFS	0.702	22.8	21.9	54.1	8.65
E3	PFS/ BHJ /PFSF	0.723	22.7	21.7	58.5	9.61
F1	PEDOT/ BHJ /PFN-Br	0.905	17.7	16.5	69.1	11.1
F2	PFS/ BHJ /PFS	0.812	16.3	14.4	66.6	8.78
F3	PFS/ BHJ /PFSF	0.807	16.9	15.8	67.4	9.20

Figure S4. Electron Paramagnetic Resonance (EPR) curves of PFS, PFSF, and PFB.

