Oxidation of Trace Ethylene at 0 °C over Platinum Nanoparticles Supported on Silica

Shazia S. Satter,^{†,‡} Takuro Yokoya,^{†,‡} Jun Hirayama,[†] Kiyotaka Nakajima,[†] and Atsushi

Fukuoka*,†

[†]Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-

0021, Japan

[‡]Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8,

Kita-ku, Sapporo, Hokkaido 060-8628, Japan

Corresponding author: Atsushi Fukuoka (<u>fukuoka@cat.hokudai.ac.jp</u>), Tel: +81-11-706-9140, Fax: +81-11-706-9139

Number of pages: 6

Number of figures: 6

Contents:

Figure S1. Schematic representation of the flow reactor used in low temperature ethylene oxidation.

Figure S2. Schematic representation of an IR cell connected with a gas-flow system. The IR cell

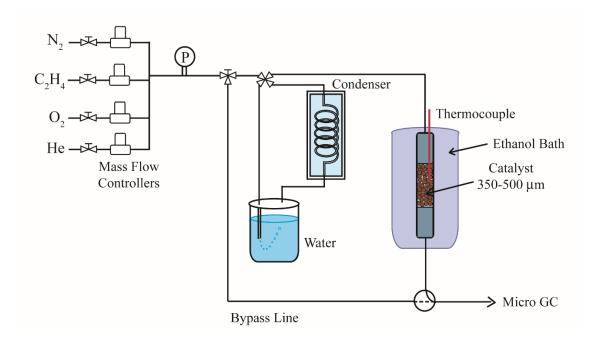

was placed in FTIR spectroscope to monitor the oxidation of trace ethylene (200 ppm) over 10wt% Pt/SBA-15 at 0 °C.

Figure S3. Ethylene conversion (A) and CO₂ yield (B) studied for varying space velocities, SV (a) 1500 mL h⁻¹ g⁻¹ (Pt/SBA-15 0.4 g), (b) 3000 mL h⁻¹ g⁻¹ (Pt/SBA-15 0.2 g) and (c) 6000 mL h⁻¹ g⁻¹ (Pt/SBA-15 0.1 g). Reaction condition: Pt/SBA-15 (Pt 1.8%), C₂H₄ 200 ppm, O₂ 20%, He balance, Flow rate 10 mL min⁻¹.

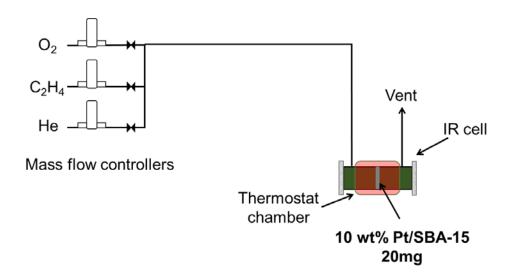
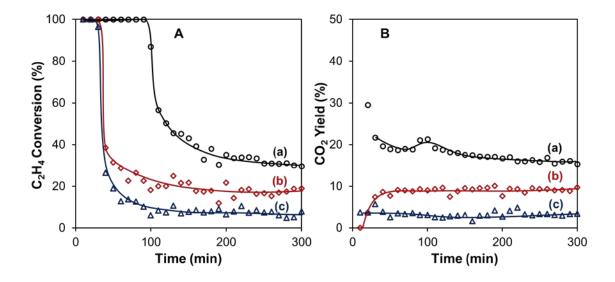
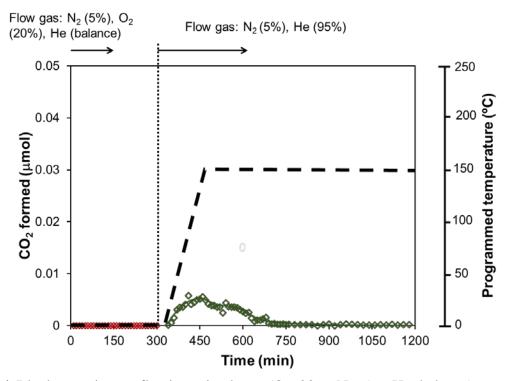
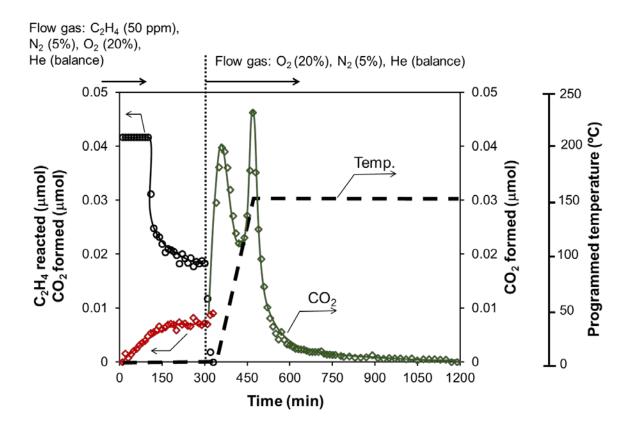

Figure S4. Blank experiment, flowing mixed gas, (O₂: 20%, N₂: 5%, He: balance) over Pt/SBA-15 at 0 °C for 300 min, followed by CO₂ formation (green diamonds) by heat treatment at 150 °C (ramp rate, 1 °C min⁻¹) under a He/N₂ (95%/5%) flow (10 mL min⁻¹). Reaction conditions: catalyst Pt/SBA-15 0.40 g (Pt 1.8 wt%), O₂ 20%, N₂ 5%, He balance, SV 1500 mL h⁻¹ g⁻¹.

Figure S5. Moles of ethylene converted (black circles) and CO₂ formed (red diamonds) over Pt/SBA-15 at 0 °C for 300 min, followed by CO₂ formation (green diamonds) by heat treatment at 150 °C (ramp rate, 1 °C min⁻¹) under a O₂/He/N₂ flow (20%/75%/5%), (10 mL min⁻¹). Reaction conditions: catalyst Pt/SBA-15 0.40 g (Pt 1.8 wt%), C₂H₄ 50 ppm, O₂ 20%, N₂ 5%, He balance, SV 1500 mL h⁻¹ g⁻¹.


Figure S6. Time courses for ethylene conversion (black circles) and CO₂ yield (red diamonds) over Pt/SBA-15 at 25 °C. Reaction conditions: Pt/SBA-15 0.40 g (Pt 1.8 wt%), C₂H₄ 50 ppm, O₂ 20%, N₂ 5 %, He balance, SV 1500 mL h⁻¹ g⁻¹.


Figure S1. Schematic representation of the flow reactor used in low temperature ethylene oxidation.


Figure S2. Schematic representation of an IR cell connected with a gas-flow system. The IR cell was placed in FTIR spectroscope to monitor the oxidation of trace ethylene (200 ppm) over 10wt% Pt/SBA-15 at 0 °C.

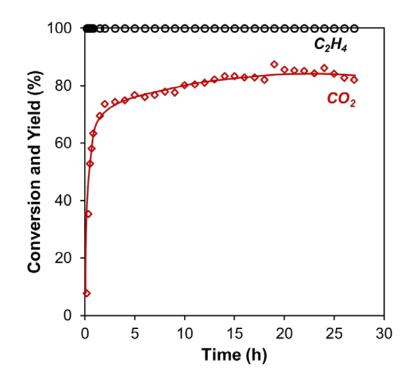

Figure S3. Ethylene conversion (A) and CO₂ yield (B) studied for varying space velocities, SV (a) 1500 mL h⁻¹ g⁻¹ (Pt/SBA-15 0.4 g), (b) 3000 mL h⁻¹ g⁻¹ (Pt/SBA-15 0.2 g) and (c) 6000 mL h⁻¹ g⁻¹ (Pt/SBA-15 0.1 g). Reaction condition: Pt/SBA-15 (Pt 1.8%), C₂H₄ 200 ppm, O₂ 20%, He balance, Flow rate 10 mL min⁻¹.

Figure S4. Blank experiment, flowing mixed gas, (O₂: 20%, N₂: 5%, He: balance) over Pt/SBA-15 at 0 °C for 300 min, followed by CO₂ formation (green diamonds) by heat treatment at 150 °C (ramp rate, 1 °C min⁻¹) under a He/N₂ (95%/5%) flow (10 mL min⁻¹). Reaction conditions: catalyst Pt/SBA-15 0.40 g (Pt 1.8 wt%), O₂ 20%, N₂ 5%, He balance, SV 1500 mL h⁻¹ g⁻¹.

Figure S5. Moles of ethylene converted (black circles) and CO₂ formed (red diamonds) over Pt/SBA-15 at 0 °C for 300 min, followed by CO₂ formation (green diamonds) by heat treatment at 150 °C (ramp rate, 1 °C min⁻¹) under a O₂/He/N₂ flow (20%/75%/5%), (10 mL min⁻¹). Reaction conditions: catalyst Pt/SBA-15 0.40 g (Pt 1.8 wt%), C₂H₄ 50 ppm, O₂ 20%, N₂ 5%, He balance, SV 1500 mL h⁻¹ g⁻¹.

Figure S6. Time courses for ethylene conversion (black circles) and CO₂ yield (red diamonds) over Pt/SBA-15 at 25 °C. Reaction conditions: Pt/SBA-15 0.40 g (Pt 1.8 wt%), C₂H₄ 50 ppm, O₂ 20%, N₂ 5 %, He balance, SV 1500 mL h⁻¹ g⁻¹.