Formal [1+2+3] Annulations: Domino Access to Carbazoles and Indolocarbazole Alkaloids

Yang Men,^{†,‡} Zhongyan Hu,[†] Jinhuan Dong,[†] Xianxiu Xu,^{*,†} and Bo Tang^{*,†}

[†] College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.

[‡] Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Northeast Normal University, Changchun 130024, China

Table of contents

1.	General Information	.1		
2.	Experimental Procedures	1		
	2.1 Synthesis of the starting materials	1		
	2.2 Optimization of reaction conditions	1		
	2.3 Synthetic procedure of carbazoles 3 , 9 and 12	1		
	2.4 Control experiments	4		
	2.5 References.	5		
3.	Analytical data of compounds 3-5, 7-9, 11, 12	6		
4. Copies of ¹ H NMR and ¹³ C NMR spectra of compounds 3 - 5, 7-9, 11, 1224				
5.	X-ray Crystallographic Data of compound 3a .	.78		

1. General Information

All reagents were purchased from commercial sources and used without further purification, unless otherwise indicated. All reactions were carried out without any particular precautions to extrude moisture or oxygen, unless otherwise indicated. All reactions were monitored by TLC, which was performed on precoated aluminum sheets of silica gel 60 (F254). The products were purified by flash column chromatography on silica gel (300–400 mesh). NMR spectra were obtained on a Varian Inova 400, 500 or a Bruker 400 spectrometer, with CDCl₃ or DMSO-*d*6 as solvents. All chemical shifts are given in ppm. High-resolution mass spectra (HRMS) were recorded on a Bruker micro TOF IV focus spectrometer.

2. Experimental Procedures

2.1 Synthesis of starting materials.

Isocyanides **1** were synthesized according to known literature procedure.^{1,2,3} Ketones **2** were synthesized according to known literature procedure.^{4,5,6,7,8,9}

2.2 Optimization of reaction conditions

Table S1. Optimization of Reaction Conditions^{*a*}

	CO_2Me + Ph	solvent temperature 24 h	MeO ₂ C
entry	Solvent	Temp (°C)	Sa Vield of 3a (%)
1	EtOH	60	10 ^b
2	EtOH	80	85 ^b
3	EtOH	100	89 ^b
4	EtOH	120	57 ^b
5	MeOH	100	49 ^c
6	CF ₃ CH ₂ OH	100	80 ^c
7	<i>i</i> -PrOH	100	73 ^c
8	<i>t</i> -BuOH	100	64 ^{<i>c</i>}
9	DMF	100	56 [°]
10	toluene	100	20 ^c
11	CH₃CN	100	33 [°]
12	THF	100	10 ^{<i>c</i>}

^{*a*}Reaction conditions: **1a** (0.45 mmol), **2a** (0.3 mmol), solvent (1 mL). ^{*b*}Isolated yields. ^{*c*}Determined by ¹H NMR spectroscopy using 1,2dibromoethane as an internal standard.

2.3 Synthesis of products 3, 9 and 12

General synthetic procedures of **3** (taking **3a** for example)

Isocyanide **1a** (84.2 mg, 0.45 mmol) and ketone **2a** (56.4 mg, 52.2 μ L, 0.3 mmol) were dissolved in EtOH (1 mL) in a sealed tube, the reaction mixture was set in a pre-heated (100 °C) metal block and kept stirring until ketone **2a** was completely consumed as indicated by TLC. Cooled to room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (silica gel; petroleum: ethyl acetate = 25:1-15:1) to give carbazole **3a** (95.3 mg, 89% yield) as a white solid.

Gram-scale synthesis of 3be

Isocyanide **1b** (1.262 g, 6.75 mmol) and ketone **2e** (1.001 g, 4.5 mmol) were dissolved in EtOH (5 mL) in a sealed tube. Then the reaction mixture was set in a pre-heated (100 $^{\circ}$ C) metal block and kept stirring until ketone **2e** was completely consumed as indicated by TLC (24 h). The reaction mixture was cooled to room temperature and the solvent was removed in vacuo. The crude product was purified by flash column chromatography (silica gel; petroleum: ethyl acetate = 25:1-10:1) to afford carbazole **3be** (1.642 g, 90% yield) as a light yellow solid.

Synthetic procedure of Arcyriaflavin A^{10,11}

Isocyanide **1a** (84.2 mg, 0.45 mmol), 3-(2-nitrophenyl)-2-oxobut-3-enoate **6** (70.5 mg, 0.3 mmol) and MeOH (1 mL) were added into a sealed tube, and the reaction mixture was stirred in a pre-heated (150 $^{\circ}$ C) metal block until the compound **6** was completely consumed as indicated by TLC. Cooled to room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (silica gel; petroleum: ethyl acetate = 10:1) to give carbazole **7** (81.2 mg, 67% yield) as a light yellow solid.

To a stirred solution of **7** (80.8 mg, 0.2 mmol) in EtOH (1 mL) and DCM (0.5 mL) was added potassium hydroxide (112 mg, 2.0 mmol). The mixture was refluxed until TLC indicated complete consumption of the compound **7**. The mixture was cooled to room temperature and then quenched with 1*N* HCl. The mixture was extracted with ethyl acetate (3 x 5 mL), dried over MgSO₄, and concentrated in vacuo to afford the crude anhydride, which was used in the next step without further purification. The crude anhydride with ammonium acetate (5 g) was heated to 140 °C overnight. The mixture was cooled to room temperature, dissolved in DCM, washed with brine, and extracted with DCM (3 x 5 mL). The organic layer was combined and dried over MgSO₄. The solvent was removed in vacuo and the residue was purified by flash column chromatography (silica gel; petroleum: ethyl acetate = 10:1 to 1:1) to give carbazole **8** (54.2 mg, 76% yield) as a bright yellow solid.

Carbazole **8** (35.7 mg, 0.1 mmol) was dissolved in $P(OEt)_3$ (0.5 mL) and refluxed for 4h as TLC indicated complete consumption of the compound **8**. The mixture was cooled to room temperature, evaporated under reduced pressure and purified by flash column chromatography (silica gel; petroleum: ethyl acetate = 15:1 to 5:1) to give Arcyriaflavin A **9** (16.6 mg, 51% yield) as an orange solid.

Synthetic procedure of Racemosin B

Isocyanide **10** (116 mg, 128 μ L, 0.9 mmol), ketoester **10** (70.5 mg, 0.3 mmol) and MeOH (1 mL) were added into a sealed tube, and the reaction mixture was stirred in a pre-heated (130 °C) metal block until ketoester **10** was completely consumed as indicated by TLC. Cooled to room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (silica gel; petroleum: dichloromethane = 1:3) to give carbazole **11** (54.1 mg, 52% yield) as a yellow solid.

Carbazole **11** (34.6 mg, 0.1 mmol), triethyl phosphite (66.4 mg, 69 μ L, 0.4 mmol) and 1,2dichlorobenzene (0.4 mL) were added into a sealed tube. Then the reaction mixture was set in a preheated (180 °C) metal block and kept stirring until carbazole **11** was completely consumed as indicated by TLC. The reaction mixture was concentrated in vacuo and purified by flash column chromatography (silica gel; petroleum: ethyl acetate = 25:1-15:1) to give Racemosin B **12** (14.1 mg, 45% yield) as a white solid.

2.4 Control Experiments.

From 1a and 2aa to 4

Isocyanide **1a** (84.2 mg, 0.45 mmol) and ketone **2aa** (84.8 mg, 0.3 mmol) were dissolved in EtOH (1 mL) in a sealed tube, the reaction mixture was set in a pre-heated (100 $^{\circ}$ C) metal block and kept stirring until ketone **2aa** was completely consumed as indicated by TLC. Cooled to room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (silica gel; petroleum: ethyl acetate = 25:1-15:1) to give furan **4** (113.2 mg, 80% yield) as a deep yellow solid.

From 4 to 3aa

Furan 4 (93.9 mg, 0.2 mmol) was dissolved in EtOH (1 mL) in a sealed tube and the reaction was carried out in a pre-heated (130 °C) metal block. The reaction mixture was kept stirring for 18 h and then cooled to room temperature. The solvent was removed in vacuo and the residue was purified by flash column

chromatography (silica gel; petroleum: ethyl acetate = 25:1-15:1) to give carbazole **3aa** (49.7 mg, 55% yield) as a yellow solid and recover **4** (34.7 mg, 37%).

From 1a and 2ae to 3ae and 5

Isocyanide **1a** (84.2 mg, 0.45 mmol), ketone **2ae** (56.4 mg, 0.3 mmol) and EtOH (1 mL) were added into a sealed tube. After the reaction mixture was stirred in a pre-heated (100 $^{\circ}$ C) metal block for 24 h, ketone **2ae** was completely consumed as indicated by TLC. The reaction mixture was cooled to room temperature and the solvent was removed in vacuo. The crude product was purified by flash column chromatography (silica gel; petroleum: ethyl acetate = 15:1-1:1) to afford hydroxyl carbazole **5** (70.5 mg, 63% yield) as a yellow solid and carbazole **3ae** (15.8 mg, 28% yield) as a yellow solid.

Hydroxyl carbazole **5** (56.4 mg, 0.3 mmol), DBU (9.1 mg, 9 μ L, 0.06 mmol) and EtOH (1 mL) were added into a sealed tube. After the reaction mixture was set in a pre-heated (100 °C) metal block for 4 h, hydroxyl carbazole **5** was completely consumed as indicated by TLC in. Cooled to room temperature, the reaction mixture was concentrated and purified by flash column chromatography (silica gel; petroleum: ethyl acetate = 15:1-5:1) to give carbazole **3ae** (85.6 mg, 80% yield).

2.5 References:

- Li, A.; Eilaf, A.; Chen, X.; Matthew, C.; Andrew, P. C.; Dong, H.; Jin, M.; Ma, L.; Bijoy, P.; Kam, W. S.; Arno, G. S.; Kathryn, M. S.; Paula, A. R. T.; Brian, V.; Weng, Q.; Doug, W.; Mark, J. M. Org. Biomol. Chem. 2007, 5, 61.
- [2] Mamoru, T.; Hirokazu, F.; Keika, K.; Naoto, C. J. Org. Chem. 2010, 75, 4841.
- [3] Hu, Z.; Yuan, H.; Men, Y.; Liu, Q.; Zhang, J.; Xu, X. Angew. Chem. Int. Ed. 2016, 55, 7077.; Angew. Chem. 2016, 128, 7193-7196.
- [4] Vijay, N.; Sreekanth, A. R.; Vinod, A. U. Org. Lett. 2001, 3, 3495.
- [5] Meng, Q.; Zhu, L.; Zhang, Z. J. Org. Chem. 2008, 73, 7209.
- [6] Brijesh, K. S.; Amit, J.; Saurin, R.; Jayendra, Z. P.; Rina, S.; Preeti, R.; Archana, G.; Amitgiri, G.; Nisha, S.; Neha, G.; Harilal, P.; Bhupendra, M.; Manish, S.; Bipin, P.; Mukul, R. J.; Pankaj, R. P. J. Med. Chem. 2007, 50, 5951.
- [7] Bu, Z. Journal of Henan Institute of Science and Technology 2006, 34, 61.
- [8] Mohammad, B. T.; Reihaneh, B. Bioorg. & Med. Chem. Lett. 2006, 16, 3697.
- [9] Devulapally, S.; Pramod, K. D. New J. Chem. 2017, 41, 5168.
- [10] Lee, S.-j.; Kim, K.-H.; Cheon, C.-H. Org. Lett. 2017, 19, 2785-2788.
- [11] Marta, A.; Fr éd éric, B.; Esther, C.; Manuel, M.; Fernando, T. Synlett 2000, 6, 832-834.

3. Analytical data of compounds 3-5, 7-9, 11, 12.

3a, Methyl 2-acetyl-3-methyl-1-phenyl-9*H***-carbazole-4-carboxylate.** White solid in 89% yield, 95.3 mg, m.p. 161-163 °C. ¹H NMR (500 MHz, CDCl₃) δ 2.03 (s, 3H), 2.41 (s, 3H), 4.14 (s, 3H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 1H), 7.48 (m, 3H), 7.53 (m, 2H), 7.89 (d, *J* = 8.0 Hz, 1H), 8.10 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 16.5, 32.6, 52.5, 110.9, 119.9, 120.1, 121.2, 121.6, 121.7, 122.4, 126.7, 126.8, 128.7, 129.4, 129.7, 135.5, 136.1, 139.6, 140.3, 170.0, 206.9. HRMS (ESI-TOF) m/z calculated for C₂₃H₁₉NNaO₃⁺ ([M+Na]⁺) 380.1257, found 380.1244.

3b, Methyl 2-acetyl-3-methyl-1-(*p*-tolyl)-9*H*-carbazole-4-carboxylate. Yellow solid in 86% yield, 95.7 mg, m.p. 214-215 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.04 (s, 3H), 2.40 (s, 3H), 2.45 (s, 3H), 4.14 (s, 3H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.32-7.37 (m, 5H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 8.11 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 16.5, 21.3, 32.7, 52.5, 110.9, 119.7, 120.0, 121.2, 121.6, 121.7, 122.5, 126.4, 126.7, 129.5, 130.1, 132.4, 136.1, 138.6, 139.5, 140.2, 170.0, 207.1. HRMS (ESI-TOF) m/z calculated for C₂₄H₂₁NNaO₃⁺ ([M+Na]⁺) 394.1414, found 394.1422.

3c, Methyl 2-acetyl-1-(4-(*tert***-butyl)phenyl)-3-methyl-9***H***-carbazole-4-carboxylate.** Yellow solid in 70% yield, 86.7 mg, m.p. 282-284 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.40 (s, 9H), 2.03 (s, 3H), 2.40 (s, 3H), 4.14 (s, 3H), 7.22 (t, *J* = 8.0 Hz, 1H), 7.36-7.44 (m, 4H), 7.55 (d, *J* = 8.4 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 1H), 8.09 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 16.5, 31.3, 32.6, 52.5, 110.9, 119.7, 120.0, 121.2, 121.6, 121.7, 122.5, 126.4 (2C), 126.8, 129.3, 132.4, 136.2, 139.6, 140.3, 151.8, 170.0, 207.2. **HRMS** (ESI-TOF) m/z calculated for C₂₇H₂₇NNaO₃⁺ ([M+Na]⁺) 436.1883, found 436.1893.

3d, Methyl 2-acetyl-1-(4-methoxyphenyl)-3-methyl-9*H***-carbazole-4-carboxylate.** Yellow solid in 73% yield, 87.8 mg, m.p. 258-260 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.04 (s, 3H), 2.39 (s, 3H), 3.88 (s, 3H), 4.13 (s, 3H), 7.05 (d, *J* = 8.4 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.34-7.44 (m, 4H), 7.88 (d, *J* = 8.0 Hz, 1H), 8.12 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 16.5, 32.6, 52.5, 55.4, 110.9, 114.8, 119.7, 120.0, 121.2, 121.6, 121.7, 122.2, 126.3, 126.7, 127.4, 130.9, 136.3, 139.6, 140.3, 159.8, 170.0, 207.2. **HRMS** (ESI-TOF) m/z calculated for C₂₄H₂₁NNaO₄⁺ ([M+Na]⁺) 410.1363, found 410.1359.

3e, Methyl 2-acetyl-1-(4-chlorophenyl)-3-methyl-9*H***-carbazole-4-carboxylate. Colorless crystal in 89% yield, 104.5 mg, m.p. 212-213 °C. ¹H NMR (500 MHz, CDCl₃) \delta 2.07 (s, 3H), 2.39 (s, 3H), 4.14 (s, 3H), 7.23 (t,** *J* **= 7.5 Hz, 1H), 7.35 (d,** *J* **= 8.0 Hz, 1H), 7.40-7.44 (m, 3H), 7.51 (d,** *J* **= 8.0 Hz, 2H), 7.87 (d,** *J* **= 8.0 Hz, 1H), 8.06 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) \delta 16.5, 32.8, 52.6, 110.9, 120.0, 120.2, 121.1, 121.6, 121.7, 127.0, 129.7, 131.1, 133.8, 134.9, 135.9, 139.6, 140.3, 169.8, 206.7. HRMS (ESI-TOF) m/z calculated for C₂₃H₁₈ClNNaO₃⁺ ([M+Na]⁺) 414.0867, found 414.0877.**

3f, Methyl 2-acetyl-3-methyl-1-(4-nitrophenyl)-9*H***-carbazole-4-carboxylate.** Deep yellow solid in 93% yield, 112.2 mg, m.p. 253-254 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.10 (s, 3H), 2.40 (s, 3H), 4.15 (s, 3H), 7.25 (t, *J* = 7.2 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 8.08 (s, 1H), 8.38 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 16.5, 32.9, 52.7, 111.0, 119.7, 120.4, 120.5, 120.9, 121.6, 121.8, 124.5, 127.3, 127.8, 130.9, 135.6, 139.6, 140.4, 142.5, 147.8, 169.6, 206.2. HRMS (ESI-TOF) m/z calculated for C₂₃H₁₈N₂NaO₅⁺ ([M+Na]⁺) 425.1108, found 425.1090.

3g, Methyl 2-acetyl-1-(3-chlorophenyl)-3-methyl-9*H***-carbazole-4-carboxylate. White solid in 90% yield, 105.7 mg, m.p. 156 °C. ¹H NMR (400 MHz, CDCl₃) \delta 2.09 (s, 3H), 2.39 (s, 3H), 4.14 (s, 3H), 7.23 (t,** *J* **= 7.2 Hz, 1H), 7.30-7.40 (m, 2H), 7.41 (d,** *J* **= 7.2 Hz, 1H), 7.43-7.48 (m, 2H), 7.50 (s, 1H), 7.87 (d,** *J* **= 7.6 Hz, 1H), 8.12 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 16.5, 32.7, 52.6, 111.0, 120.1, 120.2, 120.7, 121.1, 121.6, 121.7, 127.0, 127.1, 128.2, 128.9, 129.5, 130.7, 135.3, 135.9, 137.3, 139.6, 140.3, 169.8, 206.5. HRMS (ESI-TOF) m/z calculated for C₂₃H₁₈ClNNaO₃⁺ ([M+Na]⁺) 414.0867, found 414.0867.**

3h, Methyl 2-acetyl-3-methyl-1-(*m***-tolyl**)-*9H***-carbazole-4-carboxylate.** Colorless crystal in 95% yield, 105.7 mg, m.p. 160-161 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.04 (s, 3H), 2.40 (s, 3H), 2.43 (s, 3H), 4.13 (s, 3H), 7.21 (t, *J* = 7.8 Hz), 7.25-7.30 (m, 3H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 2H), 7.88 (d, *J* = 7.6 Hz, 1H), 8.10 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 16.5, 21.5, 32.6, 52.5, 110.9, 119.8, 120.0, 121.2, 121.6, 121.7, 122.7, 126.5, 126.7, 126.8, 129.3, 129.5, 130.2, 135.4, 136.1, 139.2, 139.5, 140.3, 170.0, 206.9. HRMS (ESI-TOF) m/z calculated for C₂₄H₂₁NNaO₃⁺ ([M+Na]⁺) 394.1414, found 394.1416.

3i, Methyl 2-acetyl-1-(2-chlorophenyl)-3-methyl-9*H***-carbazole-4-carboxylate.** Colorless crystal in 60% yield, 70.5 mg, m.p. 185-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.13 (s, 3H), 2.42 (s, 3H), 4.15 (s, 3H), 7.23 (t, *J* = 7.8 Hz, 1H), 7.33 (dd, *J*₁ = 7.6 Hz, *J*₂ = 2.0Hz, 1H), 7.35-7.49 (m, 4H), 7.59 (dd, *J*₁ = 8.0 Hz, *J*₂ = 0.8 Hz, 1H), 7.84 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 16.6, 32.0, 52.5, 111.0, 119.6, 119.8, 120.1, 121.2, 121.4, 121.7, 126.9, 127.3, 127.6, 130.1, 130.4, 133.2, 133.7, 134.0, 136.0, 139.9, 140.5, 169.9, 206.2. HRMS (ESI-TOF) m/z calculated for C₂₃H₁₈ClNNaO₃⁺ ([M+Na]⁺) 414.0867, found 414.0868.

3j, Methyl 2-acetyl-3-methyl-1-(*o*-tolyl)-9*H*-carbazole-4-carboxylate. White solid in 77% yield, 85.7 mg, m.p. 181-183 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.08 (s, 3H), 2.10 (s, 3H), 2.41 (s, 3H), 4.15 (s, 3H), 7.20-7.27 (m, 2H), 7.27-7.35 (m, 2H), 7.35-7.42 (m, 3H), 7.76 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 16.6, 19.8, 32.2, 52.5, 110.9, 119.6, 120.1, 121.3, 121.6, 121.7, 121.9, 126.4, 126.6, 126.8, 129.1, 130.6, 130.9, 134.4, 136.1, 137.3, 139.9, 140.3, 170.1, 206.3. HRMS (ESI-TOF) m/z calculated for C₂₄H₂₁NO₃Na⁺ ([M+Na]⁺) 394.1414, found 394.1414.

3k, Methyl 2-acetyl-3-methyl-1-(2-nitrophenyl)-9*H***-carbazole-4-carboxylate. Yellow solid in 82% yield, 98.9 mg, m.p. 220-221 °C. ¹H NMR (400 MHz, CDCl₃) \delta 2.20 (s, 3H), 2.42 (s, 3H), 4.15 (s, 3H), 7.22 (t,** *J* **= 7.2 Hz, 1H), 7.31 (d,** *J* **= 8.0 Hz, 1H), 7.39-7.45 (m, 2H), 7.63 (td,** *J***₁ = 7.8 Hz,** *J***₂ = 1.6 Hz, 1H), 7.70 (td,** *J***₁ = 7.6 Hz,** *J***₂ = 1.2 Hz, 1H), 7.79 (s, 1H), 7.87 (d,** *J* **= 8.0 Hz), 8.11 (dd,** *J***₁ = 8.0 Hz,** *J***₂ = 1.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 16.7, 32.2, 52.6, 111.1, 118.0, 120.2, 120.4, 121.1, 121.5, 121.8, 124.9, 127.1, 127.5, 129.7, 130.1, 133.5, 133.8, 135.9, 139.2, 140.5, 149.3, 169.7, 206.0. HRMS (ESI-TOF) m/z calculated for C₂₃H₁₈N₂NaO₅⁺ ([M+Na]⁺) 425.1108, found 425.1112.**

31, Methyl 2-acetyl-1-(3,5-bis(trifluoromethyl)phenyl)-3-methyl-9*H***-carbazole-4-carboxylate. Colorless crystal in 70% yield, 103.5 mg, m.p. 243-244 °C. ¹H NMR (400 MHz, CDCl₃) \delta 2.14 (s, 3H), 2.41 (s, 3H), 4.15 (s, 3H), 7.26 (t,** *J* **= 7.2 Hz, 1H), 7.38 (d,** *J* **= 8.0 Hz, 1H), 7.45 (t,** *J* **= 7.2 Hz, 1H), 7.88 (d,** *J* **= 8.4 Hz, 1H), 7.91 (s, 1H), 7.95 (s, 2H), 8.03 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 16.5, 32.9, 52.7, 111.1, 118.8, 120.6 (2C), 121.0, 121.6, 121.8, 122.9 (q,** *J* **= 271.6 Hz), 122.5-122.7 (m), 127.4, 128.0, 130.0-130.2 (m), 132.8 (q,** *J* **= 33.5 Hz), 135.8, 137.8, 140.0, 140.4, 169.5, 205.7. HRMS** (ESI-TOF) m/z calculated for C₂₅H₁₇F₆NNaO₃⁺ ([M+Na]⁺) 516.1005, found 516.1026.

3m, Methyl 2-acetyl-3-methyl-1-(naphthalen-1-yl)-9*H***-carbazole-4-carboxylate. White solid in 71% yield, 86.7 mg, m.p. 208-209 °C. ¹H NMR (400 MHz, CDCl₃) \delta 1.89 (s, 3H), 2.46 (s, 3H), 4.18 (s, 3H), 7.22 (t,** *J* **= 8.0 Hz, 1H), 7.35-7.42 (m, 2H), 7.48 (d,** *J* **= 8.0 Hz, 1H), 7.50 (d,** *J* **= 8.4 Hz, 1H), 7.55 (t,** *J* **= 8.0 Hz, 1H), 7.59 (t,** *J* **= 7.8 Hz, 1H), 7.64 (s, 1H), 7.92 (d,** *J* **= 7.6 Hz, 1H), 7.99 (t,** *J* **= 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 16.6, 32.2, 52.6, 110.9, 119.6, 120.1, 120.6, 121.1, 121.7, 121.8, 125.7, 125.9, 126.6, 126.8, 127.0, 127.1, 128.7, 129.4, 129.5, 131.2, 132.4, 133.8, 136.7, 140.3, 140.7, 170.1, 206.4. HRMS (ESI-TOF) m/z calculated for C₂₇H₂₁NNaO₃⁺ ([M+Na]⁺) 430.1414, found 430.1410.**

3n, Methyl 2-acetyl-3-methyl-1-(naphthalen-2-yl)-9*H***-carbazole-4-carboxylate. Light yellow crystal in 70% yield, 85.5 mg, m.p. 215 °C. ¹H NMR (400 MHz, CDCl₃) \delta 2.01 (s, 3H), 2.43 (s, 3H), 4.15 (s, 3H), 7.23 (t,** *J* **= 7.6 Hz, 1H), 7.33 (d,** *J* **= 8.4 Hz, 1H), 7.41 (t,** *J* **= 7.6 Hz, 1H), 7.56-7.59 (m, 3H), 7.88-7.95 (m, 4H), 8.01 (d,** *J* **= 8.4 Hz, 1H), 8.15 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 16.5, 32.7, 52.6, 110.9, 119.9, 120.1, 121.2, 121.8, 122.4, 126.8, 126.9 (2C), 126.99, 127.02, 127.9, 128.3, 129.1, 129.3, 132.9, 133.0, 133.5, 136.3, 139.8, 140.3, 170.0, 206.9. HRMS** (ESI-TOF) m/z calculated for C₂₇H₂₁NNaO₃⁺ ([M+Na]⁺) 430.1414, found 430.1432.

3p, Methyl 2-acetyl-3-methyl-1-(thiophen-3-yl)-9*H***-carbazole-4-carboxylate. White solid in 77% yield, 83.9 mg, m.p. 158-160 °C. ¹H NMR (400 MHz, CDCl₃) \delta 2.08 (s, 3H), 2.39 (s, 3H), 4.13 (s, 3H), 7.22 (t, J = 8.0 Hz, 1H), 7.28 (dd, J_1 = 5.2 Hz, J_2 = 1.2 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.40-7.45 (m, 2H), 7.54-7.57 (m, 1H), 7.88 (d, J = 8.0 Hz, 1H), 8.21 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 16.4, 32.3, 52.5, 110.9, 117.4, 119.9, 120.1, 121.2, 121.5, 121.7, 125.6, 126.7, 126.9, 127.5, 128.3, 135.3, 136.2, 139.7, 140.2, 169.9, 207.3. HRMS (ESI-TOF) m/z calculated for C₂₁H₁₇NNaO₃S⁺ ([M+Na]⁺) 386.0821, found 386.0821.**

3q, Methyl 2-acetyl-3-methyl-1-(1-tosyl-1*H***-indol-3-yl)-9***H***-carbazole-4-carboxylate. Colorless crystal in 84% yield, 138.6 mg, m.p. 219-221 °C. ¹H NMR (400 MHz, CDCl₃) \delta 1.79 (s, 3H), 2.37 (s, 3H), 2.40 (s, 3H), 4.15 (s, 3H), 7.22 (t,** *J* **= 7.0 Hz, 1H), 7.24-7.31 (m, 5H), 7.37-7.46 (m, 2H), 7.63 (s, 1H), 7.83 (d,** *J* **= 8.0 Hz, 1H), 7.89 (d,** *J* **= 8.0 Hz, 1H), 8.07 (s, 1H), 8.14 (d,** *J* **= 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 16.4, 21.5, 32.1, 52.6, 111.0, 112.5, 114.2, 116.6, 119.9, 120.1, 120.5, 120.9, 121.2, 121.6, 124.1, 125.7, 126.9, 127.0, 127.2, 129.0, 130.0, 134.8, 135.0, 136.6, 140.2, 140.6, 145.4, 169.9, 206.5. HRMS (ESI-TOF) m/z calculated for C₃₂H₂₆N₂NaO₅S⁺ ([M+Na]⁺) 573.1455, found 573.1473.**

3r, *(E)*-**Methyl 2-acetyl-3-methyl-1-styryl-9***H***-carbazole-4-carboxylate.** Colorless crystal in 87% yield, 100.0 mg, m.p. 210-212 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 2.38 (s, 3H), 2.51 (s, 3H), 4.12 (s, 3H), 7.13 (d, *J* = 16.8 Hz, 1H), 7.21-7.25 (m, 1H), 7.27 (d, *J* = 16.4 Hz, 1H), 7.33-7.38 (m, 1H), 7.40-7.47 (m, 4H), 7.55 (d, *J* = 7.2 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 8.44 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 16.3, 33.0, 52.5, 111.0, 118.3, 120.2, 120.3, 121.2, 121.3, 121.7, 122.0, 126.5, 126.7, 126.9, 128.7, 128.9, 135.7, 135.8, 136.3, 139.3, 140.2, 169.9, 207.7. **HRMS** (ESI-TOF) m/z calculated for C₂₅H₂₁NNaO₃⁺ ([M+Na]⁺) 406.1414, found 406.1400.

3s, Methyl 2-acetyl-1-cyclohexyl-3-methyl-9*H***-carbazole-4-carboxylate.** White solid in 94% yield, 102.4 mg, m.p. 202-203 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.34-1.52 (m, 3H), 1.77-2.08 (m, 7H), 2.32 (s, 3H), 2.54 (s, 3H), 2.65-2.75 (m, 1H), 4.10 (s, 3H), 7.19 (t, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 8.31 (d, *J* = 18.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 16.2, 26.0, 26.7, 31.4, 42.0, 52.4, 110.8, 119.8, 120.3, 120.4, 120.7, 121.3, 125.3, 125.5, 126.5, 135.7, 139.7, 139.9, 170.1, 208.5. HRMS (ESI-TOF) m/z calculated for C₂₃H₂₅NNaO₃⁺ ([M+Na]⁺) 386.1727, found 386.1724.

3t, Methyl 3-ethyl-1-phenyl-2-propionyl-9*H***-carbazole-4-carboxylate.** Colorless crystal in 74% yield, 85.5 mg, m.p. 153-154 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 0.81 (t, *J* = 7.2 Hz, 3H), 1.28 (t, *J* = 7.4 Hz, 3H), 2.26 (q, *J* = 7.2 Hz, 2H), 2.70 (q, *J* = 7.6 Hz, 2H), 4.15 (s, 3H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 7.2 Hz, 1H), 7.43-7.56 (m, 5H), 7.85 (d, *J* = 8.4 Hz, 1H), 8.09 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 7.7, 17.1, 24.5, 38.7, 52.5, 110.9, 119.9, 120.0, 121.3, 121.6, 122.5, 126.3, 126.8, 128.6, 129.4, 129.8, 135.7, 136.0, 139.5, 140.3, 170.1, 209.6. **HRMS** (ESI-TOF) m/z calculated for C₂₅H₂₃NNaO₃⁺ ([M+Na]⁺) 408.1570, found 408.1564.

3u, Methyl 2-benzoyl-1,3-diphenyl-9*H***-carbazole-4-carboxylate.** Colorless crystal in 66% yield, 95.2 mg, m.p. 214-215 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 3.68 (s, 3H), 7.11-7.15 (m, 5H), 7.44-7.50 (m, 13H), 8.05 (d, J = 8.0 Hz, 1H), 8.21 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 52.2, 111.0, 119.9, 120.1, 121.2, 122.0, 124.3, 126.4, 127.0, 127.1, 127.4, 127.7, 128.1, 128.7, 129.2, 129.8, 132.5, 135.0, 136.5, 137.2, 137.8, 138.3, 140.5, 169.5, 197.8. **HRMS** (ESI-TOF) m/z calculated for C₃₃H₂₃NNaO₃⁺ ([M+Na]⁺) 504.1570, found 504.1569.

3v, **2-Ethyl 4-methyl 3-methyl-1-phenyl-9***H***-carbazole-2,4-dicarboxylate.** Light orange crystal in 77% yield, 89.4 mg, m.p. 187-188 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 0.96 (t, *J* = 7.0 Hz, 3H), 2.51 (s, 3H), 4.06 (q, *J* = 6.8 Hz, 2H), 4.14 (s, 3H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 1H), 7.45-7.55 (m, 5H), 7.90 (d, *J* = 8.0 Hz, 1H), 8.08 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 13.7, 16.8, 52.5, 61.0, 110.9, 120.0, 120.3, 121.2, 121.9, 123.4, 124.4, 126.3, 126.9, 128.3, 129.0, 131.6, 136.1, 140.4, 169.1, 169.9. **HRMS** (ESI-TOF) m/z calculated for C₂₄H₂₁NNaO₄⁺ ([M+Na]⁺) 410.1363, found 410.1363.

3w, 2-Ethyl 4-methyl 3-ethyl-1-phenyl-9*H***-carbazole-2,4-dicarboxylate.** Colorless crystal in 80% yield, 96.5 mg, m.p. 157-159 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 0.95 (t, *J* = 7.2 Hz, 3H), 1.31 (t, *J* = 7.6 Hz, 3H), 2.87 (q, *J* = 7.6 Hz, 2H), 4.04 (q, *J* = 7.2 Hz, 2H), 4.14 (s, 3H), 7.22 (t, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.45-7.55 (m, 5H), 7.87 (d, *J* = 8.0 Hz, 1H), 8.05 (s, 1H). ¹³C NMR

(100 MHz, CDCl₃) δ 13.6, 16.7, 24.8, 52.4, 61.0, 110.9, 120.0, 120.3, 121.3, 121.7, 124.6, 126.0, 126.9, 128.3, 129.0, 129.2, 129.9, 131.3, 136.2, 140.4, 169.2, 169.9. **HRMS** (ESI-TOF) m/z calculated for C₂₅H₂₃NNaO₄⁺ ([M+Na]⁺) 424.1519, found 424.1516.

3x, 2-Ethyl 4-methyl 1-phenyl-3-propyl-9*H***-carbazole-2,4-dicarboxylate.** Colorless crystal in 66% yield, 82.4 mg, m.p. 132-134 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, *J* = 7.2 Hz, 3H), 0.98 (t, *J* = 6.8 Hz, 3H), 1.68-1.74 (m, 2H), 2.79-2.85 (m, 2H), 4.03 (q, *J* = 7.2 Hz, 2H), 4.14 (s, 3H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.39-7.42 (m, 5H), 7.87 (d, *J* = 8.0 Hz, 1H), 8.02 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 14.5, 25.6, 33.5, 52.4, 61.0, 110.9, 120.0, 120.3, 121.3, 121.8, 124.6, 126.1, 126.9, 128.3, 128.7, 129.0, 129.2, 131.5, 136.1, 136.2, 140.4, 169.2, 170.0. HRMS (ESI-TOF) m/z calculated for C₂₆H₂₅NNaO₄⁺ ([M+Na]⁺) 438.1676, found 438.1674.

3y, 2-Ethyl 4-methyl 1,3-diphenyl-9*H***-carbazole-2,4-dicarboxylate.** Colorless crystal in 77% yield, 103.9 mg, m.p. 168-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.74 (t, J = 7.2 Hz, 3H), 3.69 (s, 3H), 3.76 (q, J = 7.2 Hz, 2H), 7.24 (t, J = 8.4 Hz, 1H), 7.33-7.40 (m, 4H), 7.41-7.50 (m, 4H), 7.50-7.58 (m, 4H), 8.00 (d, J = 8.0 Hz, 1H), 8.14 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 13.4, 52.2, 60.9, 110.9, 120.0, 120.2, 121.4, 122.3, 124.2, 126.4, 127.2, 127.4, 127.7, 128.5, 129.0, 129.3, 129.7, 129.9, 131.5, 135.7, 137.0, 138.6, 140.5, 168.3, 169.3. HRMS (ESI-TOF) m/z calculated for C₂₉H₂₃NNaO₄⁺ ([M+Na]⁺) 472.1519, found 472.1522.

3z, Methyl 2-cyano-1,3-diphenyl-9*H***-carbazole-4-carboxylate.** Yellow solid in 80% yield, 96.5 mg, m.p. 236-237 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 3.72 (s, 3H), 7.28 (t, *J* = 7.8 Hz, 1H), 7.41-7.58 (m, 8H), 7.62 (t, *J* = 7.4 Hz, 2H), 7.67 (m, 2H), 8.01 (d, *J* = 8.4 Hz, 1H), 8.36 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 52.5, 108.6, 111.3, 117.7, 120.8 (2C), 122.5, 122.6, 126.7, 128.3, 128.4, 129.4, 129.5, 129.7, 130.7, 134.2, 135.3, 136.6, 137.3, 141.2, 168.6. **HRMS** (ESI-TOF) m/z calculated for C₂₇H₁₈N₂NaO₂⁺ ([M+Na]⁺) 425.1260, found 425.1266.

3aa, Methyl 3-(*tert*-butyl)-2-cyano-1-phenyl-9*H*-carbazole-4-carboxylate. Colorless crystal in 72% yield, 82.5 mg, m.p. 260-262 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.76(s, 9H), 4.13 (s, 3H), 7.24 (t, *J* = 7.2 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.43-7.48 (m, 1H), 7.53-7.63 (m, 5H), 7.81 (d, *J* = 8.0 Hz, 1H), 8.11 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 31.4, 37.8, 52.8, 108.4, 111.3, 120.0, 120.6, 121.0, 121.5, 122.2, 125.6, 127.9, 129.3 (2C), 129.5, 133.5, 134.9, 135.4, 140.0, 140.9, 171.1. HRMS (ESI-TOF) m/z calculated for C₂₅H₂₂N₂NaO₂⁺ ([M+Na]⁺) 405.1573, found 405.1583.

3ab, Trimethyl 1-(4-chlorophenyl)-9*H***-carbazole-2,3,4-tricarboxylate.** Yellow solid in 73% yield, 98.7 mg, m.p. 211-213 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 3.61 (s, 3H), 3.72 (s, 3H), 4.02 (s, 3H), 7.23-7.28 (m, 1H), 7.28-7.32 (m, 2H), 7.34-7.38 (m, 2H), 7.48-7.57 (m, 2H), 7.88 (d, *J* = 8.0 Hz, 1H), 10.11 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 51.3, 51.5, 51.9, 108.0, 110.4, 119.1, 119.9, 120.5, 120.9, 126.4, 126.96, 127.04, 130.4, 130.5, 132.3, 133.1, 134.3, 138.1, 139.7, 165.0, 167.2, 167.6. **HRMS** (ESI-TOF) m/z calculated for C₂₄H₁₈ClNNaO₆⁺ ([M+Na]⁺) 474.0715, found 474.0713.

3ac, 3-Ethyl 4-methyl 1-phenyl-9*H***-carbazole-3,4-dicarboxylate.** White crystal in 47% yield, 52.8 mg, m.p. 155-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.41 (t, *J* = 7.2 Hz, 3H), 4.17 (s, 3H), 4.40 (q, *J* = 7.2 Hz, 2H), 7.24-7.29 (m, 1H), 7.41-7.49 (m, 3H), 7.57 (t, *J* = 7.6 Hz, 2H), 7.66 (d, *J* = 7.2 Hz, 2H), 7.93 (d, *J* = 8.0 Hz, 1H), 8.12 (s, 1H), 8.68 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 14.3, 52.9, 61.3, 111.1, 119.0, 120.1, 120.8, 121.5, 121.6, 125.4, 127.1, 127.2, 128.3, 128.4, 128.7, 129.4, 137.3, 139.9, 140.0, 166.2, 170.0. HRMS (ESI-TOF) m/z calculated for C₂₃H₁₉NNaO₄⁺ ([M+Na]⁺) 396.1206, found 396.1210.

3ad, Methyl 1,3-dimethyl-2,4-dioxo-5-phenyl-2,3,4,6-tetrahydro-1*H*-pyrimido[5,4-*b*]carbazole-11carboxylate. Yellow solid in 64% yield, 81.8 mg, m.p. 291-293 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.35 (s, 3H), 3.72 (s, 3H), 4.18 (s, 3H), 7.21-7.27 (m, 1H), 7.33-7.37 (m, 3H), 7.46-7.60 (m, 4H), 7.93 (s, 1H),

8.05 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 28.6, 35.5, 53.1, 111.3, 112.4, 113.4, 120.3, 120.6, 122.9, 124.4, 127.9, 128.1, 128.4, 128.7, 128.8, 133.1, 135.5, 137.2, 141.8, 151.6, 161.3, 169.2. HRMS (ESI-TOF) m/z calculated for C₂₄H₁₉N₃NaO₄⁺ ([M+Na]⁺) 436.1268, found 436.1268.

3ae, Methyl 2,4-dioxo-5-phenyl-2,3,4,6-tetrahydro-1*H***-pyrimido**[**5,4-***b*]**carbazole-11-carboxylate.** Yellow solid in 93% yield, 107.4 mg, m.p. 274-276 °C. ¹**H NMR** (400 MHz, DMSO- d_6) δ 4.13 (s, 3H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.33 (d, *J* = 6.0 Hz, 2H), 7.43-7.57 (m, 5H), 8.03 (d, *J* = 8.0 Hz, 1H), 10.48 (s, 1H), 10.69 (s, 1H), 11.13 (s, 1H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 53.5, 110.0, 110.7, 112.8, 119.8, 120.1, 123.8, 124.3, 127.8, 128.6, 128.8, 129.2, 130.1, 132.8, 135.7, 137.3, 143.5, 150.2, 162.2, 167.5. **HRMS** (ESI-TOF) m/z calculated for C₂₂H₁₅N₃NaO₄⁺ ([M+Na]⁺) 408.0955, found 408.0958.

3af, Methyl 7-methyl-6-oxo-6,13-dihydrochromeno[**4,3-***a*]**carbazole-8-carboxylate.** Yellow solid in 83% yield, 88.9 mg, m.p. 273-276 °C. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 2.76 (s, 3H), 4.12 (s, 3H), 7.32 (t, *J* = 8.0 Hz, 1H), 7.49 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.52-7.57 (m, 1H), 7.58-7.67 (m, 2H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 8.71 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 12.06 (s, 1H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 20.3, 53.5, 113.5, 117.2, 117.3, 117.5, 119.5, 121.2, 121.4, 122.8, 124.0, 125.1, 126.7, 128.6, 128.7, 129.4, 130.9, 132.9, 143.0, 151.0, 160.1, 169.8. **HRMS** (ESI-TOF) m/z calculated for C₂₂H₁₅NNaO₄⁺ ([M+Na]⁺) 380.0893, found 380.0900.

3ag, Methyl 6-methyl-7-oxo-7,13-dihydrochromeno[**2,3-***a*]**carbazole-5-carboxylate.** Light yellow solid in 63% yield, 67.5 mg, m.p. 246-248 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 2.92 (s, 3H), 4.15 (s, 3H), 7.05 (t, J = 7.2 Hz, 1H), 7.35 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.2 Hz, 1H), 7.42-7.45 (m, 2H), 7.65-7.71 (m, 2H), 8.28 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 8.81 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 19.2, 52.6, 111.5, 116.4, 117.0, 120.5, 120.9, 121.5, 123.3, 123.5, 124.2, 126.1, 126.9, 127.6, 128.4, 134.1, 140.5, 145.0, 154.4, 170.2, 177.9. **HRMS** (ESI-TOF) m/z calculated for C₂₂H₁₅NNaO₄⁺ ([M+Na]⁺) 380.0893, found 380.0894.

3be, Methyl 2-acetyl-1-(4-chlorophenyl)-3,6-dimethyl-9*H***-carbazole-4-carboxylate. Light yellow solid in 95% yield, 115.6 mg, m.p. 186-188 °C. ¹H NMR (400 MHz, CDCl₃) \delta 2.06 (s, 3H), 2.37 (s, 3H), 2.49 (s, 3H), 4.14 (s, 3H), 7.24 (s, 2H), 7.39 (d,** *J* **= 8.4 Hz, 2H), 7.47-7.51 (m, 2H), 7.63 (s, 1H), 8.00 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 16.4, 21.6, 32.7, 52.5, 110.6, 119.8, 120.9, 121.2, 121.3, 121.5, 126.9, 128.4, 129.4, 129.6, 131.1, 133.9, 134.8, 136.2, 138.6, 139.4, 169.9, 206.8. HRMS** (ESI-TOF) m/z calculated for C₂₄H₂₀ClNNaO₃⁺ ([M+Na]⁺) 428.1024, found 428.1028.

3ce, Methyl 2-acetyl-6-chloro-1-(4-chlorophenyl)-3-methyl-9*H***-carbazole-4-carboxylate.** White solid in 75% yield, 95.8 mg, m.p. 220-221 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 2.06 (s, 3H), 2.36 (s, 3H), 4.13 (s, 3H), 7.24 (d, *J* = 2.8 Hz, 1H), 7.35 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.0 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.81 (d, *J* = 1.6 Hz, 2H), 8.08 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 16.5, 32.7, 52.7, 111.9, 119.2, 121.3, 121.6, 122.2, 122.3, 125.6, 127.0, 127.2, 129.7, 131.1, 133.5, 135.1, 136.5, 138.6, 140.3, 169.4, 206.4. **HRMS** (ESI-TOF) m/z calculated for C₂₃H₁₇Cl₂NNaO₃⁺ ([M+Na]⁺) 448.0478, found 448.0486.

3de, Methyl 2-acetyl-1-(4-chlorophenyl)-3-methyl-6-(trifluoromethyl)-9*H***-carbazole-4-carboxylate.** Yellow solid in 34%, 46.9 mg, m.p. 212-213 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 2.08 (s, 3H), 2.40 (s, 3H), 4.15 (s, 3H), 7.41 (t, *J* = 8.0 Hz, 3H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 1H), 8.16 (s, 1H), 8.31 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 16.6, 32.7, 52.6, 111.2, 119.5 (q, *J* = 4.2 Hz), 119.7, 120.8, 121.5, 122.5 (q, *J* = 32.0 Hz), 123.0, 123.7 (q, *J* = 3.2 Hz), 124.9 (q, *J* = 269.3 Hz), 127.1, 129.8, 131.0, 133.3, 135.3, 136.5, 140.7, 141.7, 169.3, 206.3. **HRMS** (ESI-TOF) m/z calculated for C₂₄H₁₇ClF₃NNaO₃⁺ ([M+Na]⁺) 482.0741, found 482.0760.

3ee, Methyl 2-acetyl-1-(4-chlorophenyl)-3,7-dimethyl-9*H***-carbazole-4-carboxylate.** White solid in 82% yield, 99.7 mg, m.p. 222-224 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 2.06 (s, 3H), 2.38 (s, 3H), 2.47 (s, 3H), 4.12 (s, 3H), 7.04 (d, J = 8.0 Hz, 1H), 7.13 (s, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.0 Hz, 1H), 7.98 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 16.6, 22.1, 32.9, 52.6, 111.1, 118.9, 120.3, 121.0, 121.5, 121.6, 122.0, 126.6, 129.7, 131.2, 134.1, 134.9, 136.0, 137.5, 139.2, 141.0, 170.0, 207.0. **HRMS** (ESI-TOF) m/z calculated for C₂₄H₂₀ClNNaO₃⁺ ([M+Na]⁺) 428.1024, found 428.1029.

3fe, Methyl 2-acetyl-7-chloro-1-(4-chlorophenyl)-3-methyl-9*H***-carbazole-4-carboxylate.** White solid in 64% yield, 81.8 mg, m.p. 246-247 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 2.06 (s, 3H), 2.37 (s, 3H), 4.12 (s, 3H), 7.18 (dd, J_1 = 8.6 Hz, J_2 = 1.8 Hz, 1H), 7.33 (d, J = 1.6 Hz, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.4 Hz, 1H), 8.09 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 16.5, 32.7, 52.6, 111.0, 119.5, 119.8, 120.9, 121.2, 122.3, 122.7, 126.8, 129.8, 131.0, 132.8, 133.5, 135.1, 136.2, 140.0, 140.8, 169.6, 206.5. **HRMS** (ESI-TOF) m/z calculated for C₂₃H₁₇Cl₂NNaO₃⁺ ([M+Na]⁺) 448.0478, found 448.0485.

3ge, 1-(4-Benzoyl-1-(4-chlorophenyl)-3-methyl-9*H***-carbazol-2-yl)ethanone.** Colorless crystal in 85% yield, 111.5 mg, m.p. 173-174 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.09 (s, 3H), 2.21 (s, 3H), 6.96-7.10 (m, 1H), 7.28-7.34 (m, 2H), 7.45-7.52 (m, 5H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.99 (d, *J* = 7.2 Hz, 2H), 8.18 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 16.3, 32.8, 110.8, 120.1, 120.2, 120.4, 120.7, 121.3, 122.3, 126.7, 129.1, 129.7, 129.9, 133.7, 134.1, 134.3, 134.9, 135.9, 136.6, 139.7, 140.2, 199.3, 207.2. HRMS (ESI-TOF) m/z calculated for C₂₈H₂₀ClNNaO₂⁺ ([M+Na]⁺) 460.1075, found 460.1074.

3he, 1-(4-(4-Chlorobenzoyl)-1-(4-chlorophenyl)-3-methyl-9*H***-carbazol-2-yl)ethanone.** Light yellow crystal in 80% yield, 120.3 mg, m.p. 246-248 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 2.10 (s, 3H), 2.20 (s, 3H), 6.99-7.03 (m, 1H), 7.31-7.36 (m, 2H), 7.42-7.50 (m, 5H), 7.55 (d, *J* = 8.8 Hz, 2H), 7.93 (d, *J* = 8.0 Hz, 2H), 8.13 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 16.3, 32.8, 110.9, 120.1, 120.3, 120.6, 120.7, 121.1, 122.1, 126.8, 129.5, 129.8, 131.2, 133.1, 133.9, 135.0, 135.9, 139.8, 140.2, 140.9, 198.0, 207.0. **HRMS** (ESI-TOF) m/z calculated for C₂₈H₁₉Cl₂NNaO₂⁺ ([M+Na]⁺) 494.0685, found 494.0698.

3ie, 1-(1-(4-Chlorophenyl)-3-methyl-4-(thiophene-2-carbonyl)-9*H***-carbazol-2-yl)ethanone. Light yellow crystal in 92% yield, 122.4 mg, m.p. 148-150 °C. ¹H NMR (400 MHz, CDCl₃) \delta 2.09 (s, 3H), 2.30 (s, 3H), 7.01-7.07 (m, 2H), 7.30-7.36 (m, 2H), 7.43-7.48 (m, 3H), 7.54 (d,** *J* **= 8.4 Hz, 2H), 7.60 (d,** *J* **= 8.0 Hz, 1H), 7.79 (dd,** *J***₁ = 5.0 Hz,** *J***₂ = 1.0 Hz, 1H), 8.18 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 16.2, 32.7, 110.8, 120.1, 120.2, 120.6, 120.8, 121.2, 122.3, 126.7, 128.7, 129.7, 133.4, 134.0, 134.9, 135.9, 136.1 (2C), 139.7, 140.2, 144.2, 191.1, 207.1. HRMS (ESI-TOF) m/z calculated for C₂₆H₁₈ClNNaO₂S⁺ ([M+Na]⁺) 466.0639, found 466.0654.**

3je, 2-Acetyl-1-(4-chlorophenyl)-3-methyl-9*H***-carbazole-4-carbonitrile. White solid in 85% yield, 91.4 mg, m.p. 306 °C. ¹H NMR (400 MHz, DMSO-d_6) \delta 2.08 (s, 3H), 2.53 (s, 3H), 7.31 (t, J = 6.8 Hz, 1H), 7.46 (d, J = 7.6 Hz, 2H), 7.50-7.57 (m, 2H), 7.66 (d, J = 7.6 Hz, 2H), 8.42 (d, J = 8.0 Hz, 1H), 11.39 (s, 1H). ¹³C NMR (100 MHz, DMSO-d_6) \delta 17.8, 32.9, 103.3, 112.7, 117.9, 120.0, 120.4, 120.9, 122.9, 125.0, 128.3, 128.7, 129.7, 132.1, 133.8, 134.3, 136.4, 139.5, 142.0, 205.6. HRMS (ESI-TOF) m/z calculated for C₂₂H₁₅ClN₂NaO⁺ ([M+Na]⁺) 381.0765, found 381.0774.**

3ke, 1-(1-(4-Chlorophenyl)-3-methyl-4-phenyl-9*H***-carbazol-2-yl)ethanone.** Colorless crystal in 47% yield, 57.7 mg, m.p. 236-238 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.15 (s, 3H), 2.16 (s, 3H), 6.69 (d, J = 8.0 Hz, 1H), 6.87-6.91 (m, 1H), 7.27-7.33 (m, 2H), 7.39-7.43 (m, 2H), 7.49-7.61 (m, 7H), 7.98 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 16.5, 32.9, 110.4, 118.5, 119.5, 122.1, 122.3, 122.5, 123.1, 126.0, 127.7, 129.0, 129.2, 129.6, 131.3, 134.5, 134.6, 135.6, 136.9, 139.7, 140.2, 208.1. **HRMS** (ESI-TOF) m/z calculated for C₂₇H₂₀ClNNaO⁺ ([M+Na]⁺) 432.1126, found 432.1121.

3le, 1-(1,4-Bis(4-chlorophenyl)-3-methyl-9*H***-carbazol-2-yl)ethanone.** Colorless crystal in 59% yield, 78.6 mg, m.p. 241-242 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 2.14 (s, 3H), 2.14 (s, 3H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.92-6.95 (m, 1H), 7.32 (d, *J* = 3.6 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 2H), 8.02 (s, 1H), 9.03 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 16.5, 32.9, 110.6, 118.9, 119.6, 122.1, 122.2, 122.3, 122.8, 126.2, 129.3, 129.6, 130.7, 131.2, 133.7, 134.4, 134.6, 135.4, 135.7, 138.1, 139.7, 140.2, 207.9. **HRMS** (ESI-TOF) m/z calculated for C₂₇H₁₉Cl₂NNaO⁺ ([M+Na]⁺) 466.0736, found 466.0749.

3me, 1-(1-(4-Chlorophenyl)-4-(4-methoxyphenyl)-3-methyl-9*H***-carbazol-2-yl)ethanone.** White solid in 43% yield, 56.7 mg, m.p. 266-268 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.14 (s, 3H), 2.16 (s, 3H), 3.95 (s, 3H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.89-6.94 (m, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 7.29-7.35 (m, 4H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.96 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 16.6, 32.9, 55.3, 110.4, 114.4, 118.4, 119.5, 122.5, 122.6, 122.7, 123.2, 126.0, 129.6, 130.3, 131.2, 134.5, 134.6, 135.6, 136.6, 139.7, 140.1, 159.0, 208.2. HRMS (ESI-TOF) m/z calculated for C₂₈H₂₂ClNNaO₂⁺ ([M+Na]⁺) 462.1231, found 462.1239.

3ne, 1-(1-(4-Chlorophenyl)-3,4-dimethyl-9*H***-carbazol-2-yl)ethanone.** White solid in 55% yield, 57.3 mg, m.p. 249-251 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.11 (s, 3H), 2.38 (s, 3H), 2.88 (s, 3H), 7.27 (t, J = 7.0 Hz, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.40-7.46 (m, 3H), 7.50 (d, J = 8.4 Hz, 2H), 7.92 (s, 1H), 8.28 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 16.0, 16.6, 33.1, 110.6, 116.7, 119.7, 122.0, 122.4, 123.1, 123.7, 125.7, 129.5, 131.4, 132.3, 134.3, 134.7, 135.7, 139.9, 140.1, 208.5. HRMS (ESI-TOF) m/z calculated for C₂₂H₁₈ClNNaO⁺ ([M+Na]⁺) 370.0969, found 370.0977.

3pe, 1-(1-(4-Chlorophenyl)-3-methyl-9*H***-carbazol-2-yl)ethanone.** White solid in 92% yield, 92.0 mg, m.p. 244-246 °C. ¹**H** NMR (400 MHz, DMSO- d_6) δ 2.03 (s, 3H), 2.39 (s, 3H), 7.14-7.19 (m, 1H), 7.38 (td, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 7.43-7.47 (m, 3H), 7.60-7.65 (m, 2H), 8.03 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 10.84 (s, 1H). ¹³**C** NMR (100 MHz, DMSO- d_6) δ 19.8, 33.0, 112.0, 119.4, 120.2, 120.9, 121.6, 122.3, 123.4, 123.5, 126.5, 129.5, 132.2, 133.4, 135.5, 136.4, 139.5, 141.5, 207.2. **HRMS** (ESI-TOF) m/z calculated for C₂₁H₁₆ClNNaO⁺ ([M+Na]⁺) 356.0813, found 356.0815.

3qe, Methyl 9-acetyl-8-(4-chlorophenyl)-10-methyl-7*H***-benzo[***c***]carbazole-11-carboxylate. White solid in 83% yield, 109.8 mg, m.p. 233-235 °C. ¹H NMR (400 MHz, CDCl₃) \delta 2.10 (s, 3H), 2.48 (s, 3H), 4.02 (s, 3H), 7.40-7.42 (m, 2H), 7.44-7.48 (m, 2H), 7.49-7.52 (m, 2H), 7.60-7.65 (m, 1H), 7.81 (d,** *J* **= 8.8 Hz, 1H), 7.94 (d,** *J* **= 8.0 Hz, 1H), 8.21 (d,** *J* **= 8.4 Hz, 1H), 8.49 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 16.9, 32.8, 52.2, 112.4, 114.7, 120.7, 121.4, 122.6, 123.2, 124.0, 126.6, 127.3, 129.3, 129.6, 131.2, 133.6, 135.0, 135.0, 138.3, 138.8, 171.3, 206.7. HRMS (ESI-TOF) m/z calculated for C₂₇H₂₁ClNO₃⁺ ([M+H]⁺) 442.1204, found 442.1206.**

4, (*E*)-Dimethyl 4-(4-chlorophenyl)-5-((2-(3-methoxy-3-oxoprop-1-en-1-yl) phenyl)amino)furan-2,3dicarbox-ylate. Deep yellow solid in 80% yield, 113.2 mg, m.p. 153-155 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 3H), 3.88 (s, 3H), 3.93 (s, 3H), 6.48 (d, *J* = 15.6 Hz, 1H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 8.8 Hz, 2H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 15.6 Hz, 1H), 8.81 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 29.7, 51.80, 51.85, 52.8, 92.0, 113.7, 121.0, 124.8, 126.2, 127.1, 128.1, 129.0, 131.1, 134.1, 136.2, 138.9, 141.7, 157.2, 164.4, 165.1, 166.8. HRMS (ESI-TOF) m/z calculated for C₂₄H₂₀ClNNaO₇⁺ ([M+Na]⁺) 492.0821, found 492.0822.

5, Methyl 7-hydroxy-7-methyl-6-oxo-6,7,8,13-tetrahydrochromeno[4,3-*a*]carbazole-8-carboxylate. Yellow solid in 63% yield, 70.5 mg, m.p. 188-190 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.98 (s, 3H), 3.64 (s, 3H), 4.39 (s, 2H), 7.04 (s, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.76 (t, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 24.2 31.8, 52.7, 88.1, 107.6, 111.3, 115.2, 117.9, 120.7, 121.6, 125.2, 125.4, 127.3, 130.6, 133.2, 133.4, 133.5, 133.6, 143.4, 155.1, 156.5, 171.8. HRMS (ESI-TOF) m/z calculated for C₂₂H₁₈NO₅⁺ ([M+H]⁺) 376.1179, found 376.1161.

7, Methyl 3-methyl-2-(2-nitrophenyl)-9*H***-carbazole-4-carboxylate.** Light yellow solid in 67% yield, 81.2 mg, m.p. 167-168 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 3.58 (s, 3H), 4.07 (s, 3H), 7.20 (s, 1H), 7.20-7.25 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.41-7.45 (m, 1H), 7.49 (td, *J*₁ = 7.8 Hz, *J*₂ = 1.2 Hz, 1H), 7.55 (td, *J*₁ = 7.8 Hz, *J*₂ = 1.2 Hz, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 8.05 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 8.56 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 52.3, 52.9, 111.1, 112.9, 119.7, 120.0, 120.7, 121.0, 122.3, 124.0, 127.4, 128.4, 128.6, 131.9, 132.4, 136.3, 136.6, 140.5, 140.6, 148.3, 167.3, 169.2. **HRMS** (ESI-TOF) m/z calculated for C₂₂H₁₆N₂NaO₆⁺ ([M+Na]⁺) 427.0901, found 427.0916.

8, **4**-(**2**-Nitrophenyl)pyrrolo[**3**,**4**-*c*]carbazole-**1**,**3**(2*H*,**6***H*)-dione. Bright yellow solid in 76% yield, 54.2 mg, m.p. > 300 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.36 (t, *J* = 7.4 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.64-7.68 (m, 2H), 7.71 (s, 1H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.86 (t, *J* = 7.4 Hz, 1H), 8.21 (d, *J* = 8.0 Hz, 1H), 8.88 (d, *J* = 7.6 Hz, 1H), 11.14 (s, 1H), 12.18 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 112.2, 116.4, 118.4, 120.3, 120.4, 120.9, 124.6, 125.3, 127.3, 129.9, 132.6, 133.3, 134.1, 142.3, 144.4, 148.8, 170.2, 170.3. HRMS (ESI-TOF) m/z calculated for C₂₀H₁₁N₃NaO₄⁺ ([M+Na]⁺) requires m/z 380.0642, found 380.0656.

9, 12,13-Dihydro-5*H***-indolo[2,3-***a***]pyrrolo[3,4-***c***]carbazole-5,7(6***H***)-dione. Orange solid in 44% yield, 14.3 mg, m.p. > 300 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 7.27 (t,** *J* **= 7.4 Hz, 2H), 7.43 (t,** *J* **= 7.4 Hz, 2H), 7.67 (d,** *J* **= 8.0 Hz, 2H), 8.96 (d,** *J* **= 8.0 Hz, 2H), 10.91 (s, 1H), 12.63 (s, 2H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 112.3, 115.9, 120.2, 120.4, 122.0, 124.7, 126.9, 129.8, 141.0, 171.9. HRMS (ESI-TOF) m/z calculated for C₂₀H₁₁N₃NaO₂⁺ ([M+Na]⁺) 348.0743, found 348.0746.**

11, Methyl 1-(2-nitrophenyl)-9*H***-carbazole-3-carboxylate.** Yellow solid in 52% yield, 54.1 mg, m.p. 233-235 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.97 (s, 3H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.43-7.48 (m, 1H), 7.60 (dd, *J*₁ = 7.6 Hz, *J*₂ = 1.2 Hz, 1H), 7.65 (td, *J*₁ = 7.8 Hz, *J*₂ = 1.2 Hz, 1H), 7.76 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.2 Hz, 1H), 7.99 (d, *J* = 1.2 Hz, 1H), 8.06 (s, 1H), 8.09 (dd, *J*₁ = 8.2 Hz, *J*₂ = 1.0 Hz, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 8.85 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 52.1, 111.1, 120.2, 120.76, 120.84, 121.8, 122.9, 123.45, 123.55, 124.8, 126.9, 127.0, 129.4, 132.1, 132.7, 133.2, 139.9, 140.3, 149.5, 167.4. HRMS (ESI-TOF) m/z calculated for C₂₀H₁₄N₂NaO₄⁺ ([M+Na]⁺) 369.0846, found 369.0852.

12, Methyl 5,12-dihydroindolo[**3,2**-*a*]**carbazole-6-carboxylate (Racemosin B).** White solid in 45% yield, 14.1 mg, m.p. 265-267 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.03 (s, 3H), 7.26 (t, *J* = 7.4 Hz, 1H), 7.35 (t, *J* = 7.2 Hz, 1H), 7.38-7.51 (m, 2H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 8.25 (d, *J* = 7.2 Hz, 1H), 8.69 (d, *J* = 7.6 Hz, 1H), 8.85 (s, 1H), 11.61 (s, 1H), 12.11 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 52.2, 105.0, 107.2, 111.9, 112.6, 115.5, 120.0, 120.1, 120.5, 121.1, 121.5, 121.7, 124.0, 125.26, 125.31, 137.7, 138.8, 139.5, 140.7, 167.5. HRMS (ESI-TOF) m/z calculated for C₂₀H₁₄N₂NaO₂⁺ ([M+Na]⁺) 337.3266, found 337.3254.

4. Copies of ¹H NMR and ¹³C NMR spectra of compounds 3-5, 7-9, 11, 12.

¹H NMR spectrum of the compound **3a** (500 MHz, CDCl₃)

¹H NMR spectrum of the compound **3b** (400 MHz, CDCl₃)

25

¹H NMR spectrum of the compound **3c** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3d** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3e** (500 MHz, CDCl₃)

¹H NMR spectrum of the compound **3f** (400 MHz, CDCl₃)

200 180 160 140 120 100 80 60 40 20 0

¹H NMR spectrum of the compound **3i** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound 3j (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3k** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3l** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3m** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3n** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound 3p (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3q** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound 3s (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3t** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3u** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound 3v (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3x** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3y** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3aa** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3ab** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3ad** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3ag** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3ce** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3de** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3fe** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3ge** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3he** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3ke** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3le** (400 MHz, CDCl₃)

¹**H NMR** spectrum of the compound **3me** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3ne** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **3pe** (400 MHz, CDCl₃)

¹H NMR spectrum of the compound 4 (400 MHz, CDCl₃)

¹H NMR spectrum of the compound 7 (400 MHz, CDCl₃)

^{200 180 160 140 120 100 80 60 40 20 0}

 ^{1}H NMR spectrum of the compound 11 (400 MHz, CDCl₃)

¹H NMR spectrum of the compound **12** (400 MHz, DMSO-*d6*)

5. X-ray Crystallographic Data of compound 3a.

Crystal data:

Empirical formula	C ₂₃ H ₁₉ NO ₃
Formula weight	357.39
Temperature/K	293(2)
Crystal system	monoclinic
Space group	Cc
a/Å	12.566(14)
b/Å	13.358(13)
c/Å	11.423(11)
α/°	90.00
β/°	96.74(5)
γ/°	90.00
Volume/Å ³	1904(3)
Z	4
Mu (mm-1)	0.083
$\rho_{calc}g/cm^3$	1.247
F(000)	752
Crystal size/mm ³	$0.19 \times 0.16 \times 0.12$
Radiation	MoK\a
Index ranges	$-15 \le h \le 15, -14 \le k \le 14, -13 \le l \le 13$
Reflections collected	12503
Independent reflections	3215 [$R_{int} = 0.0369, R_{sigma} = 0.0436$]
Data/restraints/parameters	3215/2/248
Goodness-of-fit on F ²	1.109
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0424, wR_2 = 0.1285$
Final R indexes [all data]	$R_1 = 0.0555, wR_2 = 0.1168$