## Crystal structure of NaLuW<sub>2</sub>O<sub>8</sub>·2H<sub>2</sub>O and down/upconversion luminescence of the derived NaLu(WO<sub>4</sub>)<sub>2</sub>:Yb/Ln phosphors (Ln=Ho, Er, Tm)

Xiaofei Shi,<sup>a,b,c</sup> Maxim S. Molokeev,<sup>d,e,f</sup> Xuejiao Wang,<sup>g\*</sup> Zhihao Wang,<sup>a,b,c</sup> Qi Zhu,<sup>a,b</sup> and Ji-Guang Li<sup>c\*</sup>

<sup>a</sup>Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819, China

<sup>b</sup>Institute for Ceramics and Powder Metallurgy, School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China

<sup>c</sup>Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan

<sup>d</sup>Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia

<sup>e</sup>Department of Physics, Far Eastern State Transport University, Khabarovsk 680021 (Russia) <sup>f</sup>Siberian Federal University, Krasnoyarsk 660041 (Russia) <sup>g</sup>College of New Energy, Bohai University, Jinzhou, Liaoning 121007, China

\*Corresponding author

Dr. Ji-Guang Li

National Institute for Materials Science

Tel: +81-29-860-4394

E-mail: li.jiguang@nims.go.jp



Figure S1. Indexing of the diffraction peaks of NaLuW<sub>2</sub>O<sub>8</sub>·2H<sub>2</sub>O in the  $2\theta$  ranges of 5-50° (a) and 50-90° (b).

**Table S1.** Main bond lengths (Å) and angles (°) of NaLuW<sub>2</sub>O<sub>8</sub>·2H<sub>2</sub>O. Symmetry codes: (i) x, y, z+1; (ii) -x, -y+1, -z; (iii) x, y, z-1.

| coordinates condition | bond length (Å) | Coordinates condition   | Angle (°) |
|-----------------------|-----------------|-------------------------|-----------|
| Lu—O3                 | 2.316 (9)       | O3—Lu—O3 <sup>i</sup>   | 103 (4)   |
| Lu—O5                 | 2.012 (16)      | O3—Lu—O5                | 90        |
| W—O2                  | 1.8161 (2)      | O2—W—O3                 | 90.6 (5)  |
| W—O3                  | 2.125 (8)       | O2—W—O4                 | 89.3 (6)  |
| W—O4                  | 1.623 (16)      | O3—W—O3 <sup>ii</sup>   | 64.3 (4)  |
| Na—O1                 | 2.350 (5)       | O3—W—O4                 | 147.9 (4) |
| Na—O4                 | 2.370 (14)      | O1—Na—O1 <sup>iii</sup> | 101.2 (2) |
| О5—Н                  | 0.9733          | O1—Na—O4                | 91.4 (4)  |

**Table S2.** 2Theta (°), *d*-spacing (Å) and corresponding *h*, *k*, *l* derived from Rietveld refinement of the XRD pattern of NaLuW<sub>2</sub>O<sub>8</sub>·2H<sub>2</sub>O.

| 2Theta (°) | d-spacing (Å) | h | k | l |
|------------|---------------|---|---|---|
| 8.159      | 10.8276       | 2 | 0 | 0 |
| 16.36      | 5.4138        | 4 | 0 | 0 |
| 17.737     | 4.9966        | 1 | 1 | 0 |
| 21.216     | 4.1844        | 3 | 1 | 0 |
| 24.489     | 3.632         | 0 | 0 | 1 |
| 24.646     | 3.6092        | 6 | 0 | 0 |
| 25.853     | 3.4434        | 2 | 0 | 1 |
| 26.908     | 3.3107        | 5 | 1 | 0 |
| 29.594     | 3.0161        | 4 | 0 | 1 |
| 30.401     | 2.9379        | 1 | 1 | 1 |
| 32.62      | 2.7429        | 3 | 1 | 1 |
| 33.066     | 2.7069        | 8 | 0 | 0 |
| 33.799     | 2.6499        | 7 | 1 | 0 |

| 24.016 | 2 5 ( 7 ( | 0       | •      | 0      |
|--------|-----------|---------|--------|--------|
| 34.916 | 2.5676    | 0       | 2      | 0      |
| 35.022 | 2.5601    | 6       | 0      | l      |
| 35.917 | 2.4983    | 2       | 2      | 0      |
| 36.7   | 2.4468    | 5       | 1      | 1      |
| 38.785 | 2.3199    | 4       | 2      | 0      |
| 41.408 | 2.1788    | 9       | 1      | 0      |
| 41.576 | 2.1704    | 8       | 0      | 1      |
| 41.674 | 2.1655    | 10      | 0      | 0      |
| 42.18  | 2.1407    | 7       | 1      | 1      |
| 43.111 | 2.0966    | 0       | 2      | 1      |
| 43.207 | 2.0922    | 6       | 2      | 0      |
| 43.953 | 2.0584    | 2       | 2      | 1      |
| 46.406 | 1.9551    | 4       | 2      | 1      |
| 48.696 | 1.8684    | 9       | 1      | 1      |
| 48.85  | 1.8629    | 8       | 2      | 0      |
| 48.93  | 1.86      | 10      | 0      | 1      |
| 49.549 | 1.8382    | 11      | 1      | 0      |
| 50.197 | 1.816     | 0       | 0      | 2      |
| 50.288 | 1.8129    | 6       | 2      | 1      |
| 50.536 | 1.8046    | 12      | 0      | 0      |
| 50.948 | 1.791     | 2       | 0      | 2      |
| 53.154 | 1.7217    | 4       | 0      | 2      |
| 53.657 | 1.7068    | 1       | 1      | 2      |
| 53.669 | 1.7064    | 1       | 3      | 0      |
| 55.084 | 1.6659    | 3       | 1      | 2      |
| 55.096 | 1.6655    | 3       | 3      | 0      |
| 55.384 | 1.6576    | 8       | 2      | 1      |
| 55 464 | 1 6554    | 10      | 2      | 0      |
| 56 025 | 1 6401    | 11      | - 1    | 1      |
| 56 698 | 1 6222    | 6       | 0      | 2      |
| 56 932 | 1 6161    | 12      | ů<br>0 | - 1    |
| 57 867 | 1 5922    | 5       | 1      | 2      |
| 57 879 | 1 5919    | 5       | 3      | 0      |
| 58 175 | 1.5919    | 13      | 1      | 0      |
| 59 735 | 1.5468    | 13      | 0      | 0      |
| 59.835 | 1.5400    | 1       | 3      | 1      |
| 61 168 | 1 5139    | 3       | 3      | 1      |
| 61 432 | 1.5081    | 8       | 0      | 2      |
| 61 512 | 1.5061    | 10      | 2      | 1      |
| 61 801 | 1.0005    | 7       | 1      | 2      |
| 61.002 | 1.498     | 7       | 1      | 2      |
| 62 604 | 1.4977    | 0       | 2      | 2      |
| 62.004 | 1.4820    | 12      | 2      | 2      |
| 02.090 | 1.4/04    | 12      | 2      | 0      |
| 03.233 | 1.4089    | 2<br>5  | 2      | 2<br>1 |
| 03./84 | 1.438     | 5<br>12 | 5<br>1 | 1      |
| 04.004 | 1.4525    | 13      | 1      | 1      |
| 05.18/ | 1.43      | 4       | 2      | 2      |
| 65.541 | 1.4231    | 14      | 0      | 1      |

| 67.035 | 1.395  | 9         | 1 | 2 |
|--------|--------|-----------|---|---|
| 67.046 | 1.3948 | 1.3948 9  |   |   |
| 67.226 | 1.3915 | 1.3915 10 |   |   |
| 67.318 | 1.3898 | 15        | 1 | 0 |
| 67.603 | 1.3846 | 7         | 3 | 1 |
| 68.343 | 1.3714 | 6         | 2 | 2 |
| 68.554 | 1.3677 | 12        | 2 | 1 |
| 69.38  | 1.3534 | 16        | 0 | 0 |
| 71.095 | 1.3249 | 14        | 2 | 0 |
| 72.54  | 1.3021 | 9         | 3 | 1 |
| 72.651 | 1.3004 | 8         | 2 | 2 |
| 72.803 | 1.298  | 15        | 1 | 1 |
| 73.205 | 1.2919 | 11        | 1 | 2 |
| 73.215 | 1.2917 | 11        | 3 | 0 |
| 73.742 | 1.2838 | 0         | 4 | 0 |
| 73.993 | 1.2801 | 12        | 0 | 2 |
| 74.345 | 1.2749 | 2         | 4 | 0 |
| 74.799 | 1.2683 | 16        | 0 | 1 |
| 76.145 | 1.2492 | 4         | 4 | 0 |
| 76.466 | 1.2447 | 14        | 2 | 1 |
| 76.55  | 1.2436 | 1         | 3 | 2 |
| 77.076 | 1.2364 | 17        | 1 | 0 |
| 77.739 | 1.2275 | 3         | 3 | 2 |
| 78.048 | 1.2234 | 10        | 2 | 2 |
| 78.532 | 1.217  | 11        | 3 | 1 |
| 79.027 | 1.2107 | 0         | 0 | 3 |
| 79.047 | 1.2104 | 0         | 4 | 1 |
| 79.114 | 1.2096 | 6         | 4 | 0 |
| 79.617 | 1.2032 | 2         | 0 | 3 |
| 79.625 | 1.2031 | 18        | 0 | 0 |
| 79.637 | 1.2029 | 2         | 4 | 1 |
| 80.087 | 1.1973 | 16        | 2 | 0 |
| 80.104 | 1.1971 | 5         | 3 | 2 |
| 80.359 | 1.1939 | 13        | 1 | 2 |
| 80.369 | 1.1938 | 13        | 3 | 0 |
| 81.381 | 1.1815 | 4         | 0 | 3 |
| 81.401 | 1.1812 | 4         | 4 | 1 |
| 81.712 | 1.1775 | 14        | 0 | 2 |
| 81.789 | 1.1766 | 1         | 1 | 3 |
| 82.317 | 1.1704 | 17        | 1 | 1 |
| 82.96  | 1.163  | 3         | 1 | 3 |
| 83.223 | 1.16   | 8         | 4 | 0 |
| 83.619 | 1.1555 | 7         | 3 | 2 |
| 84.304 | 1.1478 | 6         | 0 | 3 |
| 84.324 | 1.1476 | 6         | 4 | 1 |
| 84.506 | 1.1456 | 12        | 2 | 2 |
| 84.829 | 1.142  | 18        | 0 | 1 |
| 85.285 | 1.1371 | 16        | 2 | 1 |

| 85.292 | 1.137  | 5  | 1 | 3 |
|--------|--------|----|---|---|
| 85.564 | 1.1341 | 13 | 3 | 1 |
| 87.624 | 1.1127 | 19 | 1 | 0 |
| 88.272 | 1.1062 | 9  | 3 | 2 |
| 88.373 | 1.1052 | 8  | 0 | 3 |
| 88.393 | 1.105  | 8  | 4 | 1 |
| 88.458 | 1.1043 | 10 | 4 | 0 |
| 88.524 | 1.1037 | 15 | 1 | 2 |
| 88.534 | 1.1036 | 15 | 3 | 0 |
| 88.777 | 1.1012 | 7  | 1 | 3 |
| 89.408 | 1.095  | 0  | 2 | 3 |
| 89.988 | 1.0895 | 2  | 2 | 3 |
| 89.996 | 1.0894 | 18 | 2 | 0 |
|        |        |    |   |   |



**Figure S2.** XRD patterns of NaLuW<sub>2</sub>O<sub>8</sub>·2H<sub>2</sub>O (a) and the NaLu(WO<sub>4</sub>)<sub>2</sub> calcined at 600 °C for 2 hours in air (b). The standard diffractions of NaLu(WO<sub>4</sub>)<sub>2</sub> are included as bars for comparison (c). The main diffractions of NaLuW<sub>2</sub>O<sub>8</sub>·2H<sub>2</sub>O are indicated in (a) according to the indexing of the diffraction peaks in Figure S1.



Figure S3. SEM morphologies for  $Na(Lu_{0.87}Ho_{0.03}Yb_{0.1})W_2O_8 \cdot 2H_2O$  (a) and the  $Na(Lu_{0.87}Ho_{0.03}Yb_{0.1})(WO_4)_2$  obtained by calcining  $Na(Lu_{0.87}Ho_{0.03}Yb_{0.1})W_2O_8 \cdot 2H_2O$  at 600 °C for 2 h (b).

**Table S3.** Cell parameters for the synthesized  $Na(Lu_{0.87}Ln_{0.03}Yb_{0.1})(WO_4)_2$  (Ln=Ho, Er and Tm) and  $NaLu(WO_4)_2$ . The data from JCPDS File No. 00-027-0729 for  $NaLu(WO_4)_2$  are listed at the bottom for comparison.

| Sample                                   | <i>a,b</i> (Å) | c (Å)       | $V(\text{\AA}^3)$ |
|------------------------------------------|----------------|-------------|-------------------|
| $Na(Lu_{0.87}Ho_{0.03}Yb_{0.1})(WO_4)_2$ | 5.17162 (8)    | 11.1878 (2) | 299.22 (1)        |
| $Na(Lu_{0.87}Er_{0.03}Yb_{0.1})(WO_4)_2$ | 5.17119 (7)    | 11.1871 (2) | 299.16(1)         |
| $Na(Lu_{0.87}Tm_{0.03}Yb_{0.1})(WO_4)_2$ | 5.17056 (9)    | 11.1859 (2) | 299.05 (1)        |
| NaLu(WO <sub>4</sub> ) <sub>2</sub>      | 5.16899 (9)    | 11.1840 (2) | 298.82 (1)        |
| PDF No. 00-027-0729                      | 5.166          | 11.174      | 298.21            |



Figure S4. Cell volume V per average ion radii (Lu/Yb/Ho/Er/Tm) of Na(Lu/Yb/Ho/Er/Tm)(WO<sub>4</sub>)<sub>2</sub> compounds

| Excitation<br>power | Но           | Er           | Tm           |
|---------------------|--------------|--------------|--------------|
| 0.6 W               | (0.50, 0.49) | (0.33, 0.62) | (0.25, 0.31) |
| 0.8 W               | (0.49, 0.50) | (0.28, 0.70) | (0.32, 0.35) |
| 1 W                 | (0.49, 0.50) | (0.27, 0.71) | (0.29, 0.31) |
| 1.2 W               | (0.48, 0.51) | (0.26, 0.72) | (0.26, 0.29) |
| 1.4 W               | (0.47, 0.52) | (0.26, 0.72) | (0.24, 0.24) |
| 1.6 W               | (0.47, 0.52) | (0.26, 0.72) | (0.22, 0.22) |
| 1.8 W               | (0.47, 0.52) | (0.25, 0.72) | (0.20, 0.20) |
| 2 W                 | (0.47, 0.53) | (0.25, 0.73) | (0.18, 0.18) |

**Table S4.** CIE chromaticity coordinates (x, y) for the upconversion luminescence of  $Na(Lu_{0.87}Ln_{0.03}Yb_{0.1})(WO_4)_2$  under varying excitation power.

**Table S5.**  $I_{650}/I_{544}$ ,  $I_{531}/I_{657}$  and  $I_{553}/I_{657}$ , and  $I_{476}/I_{650}$  intensity ratios for the Na(Lu<sub>0.87</sub>Ho<sub>0.03</sub>Yb<sub>0.1</sub>)(WO<sub>4</sub>)<sub>2</sub>, Na(Lu<sub>0.87</sub>Er<sub>0.03</sub>Yb<sub>0.1</sub>)(WO<sub>4</sub>)<sub>2</sub>, and Na(Lu<sub>0.87</sub>Tm<sub>0.03</sub>Yb<sub>0.1</sub>)(WO<sub>4</sub>)<sub>2</sub> phosphors under varying excitation power.

| Excitation | Ho                | E                                  | lr        | Tm                |  |
|------------|-------------------|------------------------------------|-----------|-------------------|--|
| power      | $I_{650}/I_{544}$ | I <sub>531</sub> /I <sub>657</sub> | I553/I657 | $I_{476}/I_{650}$ |  |
| 0.6 W      | 3.93              | 3.88                               | 7.19      | 1.02              |  |
| 0.8 W      | 3.56              | 7.61                               | 13.79     | 1.19              |  |
| 1 W        | 3.42              | 9.88                               | 16.46     | 1.81              |  |
| 1.2 W      | 2.97              | 12.19                              | 18.35     | 2.56              |  |
| 1.4 W      | 2.77              | 13.55                              | 19.26     | 3.26              |  |
| 1.6 W      | 2.61              | 15.16                              | 19.91     | 3.78              |  |
| 1.8 W      | 2.53              | 16.56                              | 20.32     | 4.92              |  |
| 2 W        | 2.52              | 18.05                              | 20.85     | 5.57              |  |



**Figure S5.** CIE chromaticity diagram showing the emission colors of  $Na(Lu_{0.87}Ln_{0.03}Yb_{0.1})(WO_4)_2$  (Ln=Ho, Er and Tm) under varying excitation power.



Figure S6. Excitation and emission spectra of NaLu(WO<sub>4</sub>)<sub>2</sub>.